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Linear and weakly non-linear inverse problems

Objective function

In order to solve a linear or weakly non-linear inverse problem
which is (a) under or mixed determined and (b) has data errors
with a Gaussian distribution, one possible objective function is:

S(m) = ¥(m) + ed(m) + nQ(m)
where

W(m) = (g(m) — dops) " C; " (g(m) — dops)
®(m) = (m —mg)” C;'(m — my)

Q(m) =m’D"Dm



Linear and weakly non-linear inverse problems

Objective function

In general, we are faced with an ill-posed problem that has data

noise and may be non-linear.
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Linear and weakly non-linear inverse problems

Common solutions

Gauss-Newton:

om, = —[G]C;'Gn+VmG]Cy'(g(m,) — dops)
+eCp,' +nD" D] [G] C5'[g(M,) — dobs]
+€eCry' (M, — mg) + 7D Dm)]
Quasi-Newton:
om, = —[G]Cy'Gn+¢Cqr' + DT D7'[G] C; lg(m),) — dops]
+¢eCp' (Mp — mg) + D" Dmy)
Generalised subspace:
sm=-AAT(G"C,'G+¢C,' +nD'D)A|'AT4
Damped and smoothed least squares:
sm=[G'C,;'G+¢C,' +nD'D]"'G"C;"éd



Linear and weakly non-linear inverse problems

Objective function




Linear and weakly non-linear inverse problems

Common solutions

Maximum likelihood or Stochastic inverse
sm=[G'C,'G+C,"'1"'G"C;"sd

Damped least squares (DLS)
sm=[G'C;'G+¢C,'l"'G"C;"sd

An equivalent approach is to find the least-squares solution of:

_1 1
CdZG1 C,2%0d
VeCp? | M= 1 0
VD 0

Application of SVD or iterative solvers like LSQR could be used
to solve the equation as they can equally well be applied to
non-square systems and will solve the equations in a
least-squares sense.



Linear and weakly non-linear inverse problems

Iterative non-linear approach
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Linear and weakly non-linear inverse problems

Solution robustness

Resolution and posterior covariance

R=G9G
R=[G'C,'G+¢C,' +9D'D|"'G"C;'G
Cy=G9Cy(G 9T
Synthetic reconstruction tests

Jackknife and Bootstrap

Linear and iterative non-linear sampling



Linear and weakly non-linear inverse problems

Summary

Strengths

@ Can tackle very large problems (10s of millions of data
measurements, millions of unknowns).

@ Quantitative and qualitative estimates of posterior
covariance and resolution relatively simple to generate.

Weaknesses

@ Only applies to linear or weakly non-linear inverse
problems

@ Solution non-uniqueness a major issue

@ Regularisation tends to be ad hoc and methods for
assessing solution uncertainty often of limited value.



Transdimensional tomography

Motivation: non-linearity, non-uniqueness

Multi-modal data misfit/objective function.
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Transdimensional tomography
Bayes’ theorem

All information is expressed in terms of a probability density

function.
Posterior PDF
> Likelihood
homd -
k7] function
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Bayes’ rule (1763)

p(mid, /) oc p(d|m, /) x p(m|/)
Posterior probability density « Likelihood x Prior probability
density




Transdimensional tomography

Typical parameterization
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Transdimensional tomography

Solution

Unknowns to be inverted for include:

@ Velocity: Constant velocity value in each cell
@ Location: Coordinates of all Voronoi nodes
@ Number of parameters: Number of Voronoi cells

@ Data errors: Hyper-parameters defined by
Cq = f(hy, ho,...). The simplest case is hy = o, the
standard deviation of the data errors.

In order to sample the posterior PDF, we use a variant of the
Metropolis-Hastings algorithm commonly referred to as
reversible-jump Markov chain Monte Carlo (rj-McMC).

In the case of traveltime tomography, ray geometries can be
updated infrequently for weakly non-linear problems, or
frequently for fully non-linear problems.



Transdimensional tomog

Example - Tasmania
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Transdimensional to

Example - Tasmania
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Transdimensional tomography

Example - Tasmania
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Transdimensional tomography
Example - Tasmania




Transdimensional tomography

Example - Tasmania
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Transdimensional tomography

Example - SE Australia
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