These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

The International Heismological Hummary. 1944 April, May, June.

INTERNATIONAL GEODETIC AND GEOPHYSICAL UNION.
ASSOCIATION OF SEISMOLOGY.
FORMERLY THE BULLETIN OF
THE BRITISH ASSOCIATION SEISMOLOGY COMMITTEE.

The Director of the I.S.S. wishes to express his thanks to U.N.E.S.C.O. and H.M. Treasury for financial support, which has covered the cost and preparation of this volume.

The second quarter of 1944 contains 72 epicentres, 43 of which are repetitions from previous determinations.

Cases of abnormal focal depth are noted below:—

			0	0	
April	7d.	13h.	11.5N.	86.3W.	0.020
	16d.	9h.		142.5E.	Suggested Deep
	23d.	10h.	21.0S.	178.0W.	0.030
160	29d.	21h.	36·3N.	71.0E.	0.010
May	14d.	8h.	22.7S.	179·4E.	0.080
3700	14d.	10h.	14.6S.	175·1W.	0.010
	25d.	1h.	21.5S.	179.0W.	0.080
June	2d.	2h.	40.9N.	142·7E.	Base of Superficial Layers.
	3d.	4h.	30.6N.	139·7E.	0.060
	3d.	11h.	31.6N.	141.7E.	0.010
	4d.	13h.	Undeter	mined sho	ck Suggested Deep
	6d.	11h.	41·1N.	142·2E.	0.005
	7d.	10h.	33.3N.	132·1E.	0.005
	8d.	2h.	9.0S.	71.0W.	0.080
	20d.	12h.	41.4N.	143.9E.	0.005
	25d.	14h.	21.5S.	170·2E.	Suggested Deep

Thanks are also due to the Director of the Meteorological Office and the Superintendent of Kew Observatory for hospitality extended to the staff, and assistance in administration.

KEW OBSERVATORY, RICHMOND, SURREY.

October, 1953.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

87

April 1d. 9h. Undetermined shock.

Wellington PZ = 29m.40s., PP = 31m.2s., S = 35m.41s., Q = 38.7m., RZ = 41m.. Christchurch PEZ = 31m.5s., SE = 35m.52s., QE = 38m.16s., REZ = 39m.53s. Auckland PP? = 31m.30s.?, S = 36m.20s., L = 39.8m. iPZ = 32m.4s.a, iSN = 40m.5s., iPS?E = 40m.19s., iPS?N = 40m.23s., Riverview eQE? = 46.5m., eRZ = 48.9m.Bogota i = 33m.52s.Tucson iP = 35m.3s., i = 35m.12s., and 35m.28s. Pasadena iPZ = 35m.15s., eLE = 58m. Riverside ePZ = 35m.15s. Haiwee ePZ = 35m.16s., eZ = 35m.25s.Tinemaha eZ? = 35m.26s. Huancayo eS = 40m.33s., eL = 47m.35s.Helwan eZ = 42m.9s. Stuttgart eZ = 42m.12s. Long waves were also recorded at Arapuni.

April 1d. Readings also at 0h. (near Balboa Heights), 2h. (Tacubaya and Oaxaca), 3h. (Zürich), 8h. (Bogota), 10h. (near Tucson (2)), 11h. (Zürich, Stuttgart, Triest, Uccle, De Bilt, Prague, Cheb, Bucharest, and Belgrade), 13h. (Prague and Wellington), 15h. (Mizusawa, Stuttgart, Zürich, Bucharest, and Belgrade), 21h. (Tinemaha, Tucson, Haiwee, Riverside, and Pasadena).

April 2d. 4h. Gulf of California.

Tucson iP = 41m.18s., i = 41m.31s., eS = 42m.11s., iL = 42m.28s.La Jolla ePN = 42m.20s., eS = 43m.36s.Haiwee ePZ = 42m.34s.Riverside ePZ = 42m.37s., eS = 44m.5s.Tinemaha ePZ = 42m.46s.Pasadena eZ = 43m.3s., eSEN = 44m.6s.Berkeley eE = 46m.54s., eZ = 47m.0s., eN = 47m.12s.Salt Lake City e = 47m.22s., eL = 48m.33s.Chicago eS = 49m.27s., eL = 53m.12s.Long waves were also recorded at Logan, Rapid City, and St. Louis.

April 2d. Readings also at 4h. (Arapuni, Christchurch, Wellington, Auckland, Riverview, and Brisbane), 7h. (near Malaga), 8h. (near Alicante (2) and Malaga), 12h. (Stuttgart), 17h. (Wellington), 20h. (near Lick, Branner, and Berkeley).

April 3d. 17h. Undetermined shock.

Apia eP = 53m.26s., eS = 56m.0s.?, e = 56m.17s., iL = 56m.31s.Auckland P? =54m.0s.?, Q =57.4m., R =58.8m. Riverview eZ = 55m.54s., eE = 64m.14s. Christchurch P?N = 55m.56s., eNZ = 57m.34s., Q = 59m.30s., R = 60m.50s. Sydney e = 57.4m., eL = 64.2m.Wellington S1Z = 57m.28s., Q = 59.8m., RZ = 60.5m. Brisbane eE =57m.29s. and 62m.5s., eN =62m.13s. and 64m.7s., eLN =64m.46s. Granada PKP = 62m.39s.k, iPP = 71m.35s., eSKKS = 77m.45s., eSKSP = 81m.36s., eSSS = 91m.15s., L = 102.8m.Pasadena ePZ = 63m.1s., eLEN = 85.5m. Riverside ePZ = 63m.2s. Haiwee ePZ = 63m.9s. Tucson eP = 63m.22s., e = 78m.7s., eL = 88m.27s.Stuttgart eZ = 70m.48s. Huancayo eS = 75m.35s., eSS = 81m.46s., eL = 90m.3s. St. Louis eSN = 76m.38s., eLN = 96.1m.Long waves were also recorded at Arapuni, Berkeley, Florissant, Uccle, Kew, Malaga, and Cheb.

April 3d. Readings also at 2h. (near Lick, Branner, and Berkeley), 5h. (Pasadena, Riverside, Side, Tucson, Tinemaha, and Haiwee), 6h. (Brisbane), 12h. (Pasadena, Riverside, Tinemaha, Haiwee, and Tucson), 13h. (Pasadena, Riverside, Tinemaha, Haiwee, Tucson, and St. Louis (2)), 18h. (Berkeley), 19h. (near La Paz).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

88

April 4d. 22h. 45m. 52s. Epicentre 37°-6S. 100°-6W. (as on 1942 October 12d.).

$$A = -.1461$$
, $B = -.7807$, $C = -.6076$; $\delta = +2$; $\hbar = -1$; $D = -.983$, $E = +.184$; $G = +.112$, $H = +.597$, $K = -.794$.

		Δ	Az.	P.	O - C.	"S.	O-C.		pp.	L.
Huancayo La Plata La Paz Bogota	N. Z.	$\frac{35.5}{48.7}$	49 99 64 37	m. s. e 6 50 12 28 i 7 5 e 8 47	**************************************	m. s. e 12 14 (12 28) i 12 48	+ 1 + 11 + 12	m. s. e 7 42 8 26	PP PP	m. e 14·7 15·8 17·1
Tucson		70.1	352	e 11 13	- 3	15 -15		e 15 59	PPP	e 36·9
Palomar Riverside Pasadena Santa Barbara Haiwee	Z. Z. Z.	72·2 72·9 73·2 73·8 75·1	347 346 346 345 347	e 11 24 e 11 29 i 11 34 e 11 38 e 11 46	- 5 - 4 - 1 0				=	e 30·5
Tinemaha St. Louis Granada Uccle Neuchatel	z.	76·1 76·5 116·3 126·8 127·4	347 10 62 50 55	e 11 52 e 11 54 e 23 39	+ 1 0 PPP	e 21 30 31 2 (37 8)	$\begin{array}{c} - & 9 \\ - & 9 \\ \text{PPS} \\ \text{SS} \\ - & - \end{array}$	i 46 0	<u>-</u>	37 <u>·1</u>
Basle Zürich Stuttgart Triest Cheb		127·9 128·5 129·3 131·5 131·6	54 55 54 58 52	e 23 38 e 23 32a e 23 32 e 24 88	PPP PPP PPP	e 27 34 e 28 27	$\{-55\}$ $\{-3\}$	e 33 33 36 51	PPS	
Prague Upsala Helwan Bucharest Ksara		132.9 135.5 139.7 139.9 144.7	52 40 87 63 83	i 20 20 e 21 41 e 19 39?	- [+50] [0]	e 28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	PKS	30 50 	PS	31·1
Kodaikanal Bombay Calcutta New Delhi	E. N. N.	152·7 160·5 163·1 170·8	176 161 210 167	e 24 2 e 22 23 e 22 16	PP ?	29 21 i 27 6 e 30 29 e 26 40	$\{-72\}\ [+1]\ \{-59\}\ [-32]$	28 9 c 34 33 i 27 48	PPP	31.0

Additional readings :—

Huancayo e = 7m.53s.

Helwan PPZ = 20m.29s., eNZ = 23m.15s. and 24m.55s.

Bombay eEN = 22m.47s., PPN = 23m.9s., eSN = 27m.2s., eE = 29m.30s.

Long waves were also recorded at Christchurch and Wellington.

April 4d. Readings also at 4h. (near Bogota), 10h. (near Apia), 12h. (Zürich, Neuchatel, and Stuttgart), 17h. (Riverside and Tucson), 18h. (Riverside, Pasadena, Tucson, Wellington, and Brisbane), 21h. (La Paz and near Mizusawa).

April 5d. 4h. 40m. 40s. Epicentre 40°-6N. 30°-9E.

Felt at Bolu and Istanbul. Epicentre 40°-5N. 31°E. Bulletin Météorologique, Séismique et magnétique de l'Observatoire d'Istanbul-Kandilli 1944, Istanbul 1944, p. 38.

$$A = +.6534$$
, $B = +.3911$, $C = +.6482$; $\delta = +5$; $h = -2$; $D = +.514$, $E = -.858$; $G = +.556$, $H = +.333$, $K = -.761$.

	Δ	Az.	P.	O-C.	s.	O-C.	Su	pp.	L.
	0	0	m. s.	s.	m. s.	s.	m. s.	THE STATE OF	m.
Istanbul	1.5	287	0 32	+ 4	0 53	+ 4	1 8	SSS	
Bucharest	5.2	318	i 1 19	- 2	1 2 17	- 5	1 1 32	P*	
Campulung	6.3	319	e 1 35	- 1				722	3.6
Ksara	7.8	148	e 1 59	+ 1	e 3 57	S*	0.00	· ·	-
Belgrade	8.8	302	e 2 9	- 2	i 3 44	- 9	1 4 21	s•	_
Helwan	10.7	179	2 38	0	_		e 5 10	SSS	-
Triest	13.5	298	i 3 13	- 2	-		Barrier .	- 177.55 - 177.55	e 7.4
Prague	14.9	315	i 3 31	- 3	e 6 29	+ 9	e 6 40	SS	e 7·3
Cheb	16.1	312	e 3 49	0	e 7 3	SS		-	e 7.8
Chur	16.6	299	e 3 56	0	e 7 12	SS		1.00	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

89

		Δ	Az.	P. m. s.	O – C.	S. m. s.	O -C.	m. s.	p.	L. m.
Milan Jena Potsdam Stuttgart Zürich	N.	16.6 16.9 17.0 17.4 17.4	294 314 320 305 300	4 5 e 3 58 i 4 0 e 4 4 e 4 5k	+ 9 - 1 - 1 - 2 - 1	7 17 e 7 14 e 7 26 e 8 16	**************************************			9·5 9·2 e 9·3 e 8·8
Basle Strasbourg Neuchatel Copenhagen Clermont-Ferrand		$18.1 \\ 18.3 \\ 18.4 \\ 19.4 \\ 20.9$	$300 \\ 305 \\ 299 \\ 328 \\ 294$	e 4 12 4 19 e 4 17 e 4 25 e 4 48	- 2 + 2 - 1 - 5 + 2	e 7 44 7 47 e 7 48 e 8 6 e 8 51	+ 9 + 8 + 7 + 2 SS	i <u>4</u> 28	=	e 10·1
De Bilt Upsala Uccle Barcelona Paris		$\begin{array}{c} 21 \cdot 0 \\ 21 \cdot 0 \\ 21 \cdot 1 \\ 21 \cdot 7 \\ 21 \cdot 7 \end{array}$	$313 \\ 341 \\ 307 \\ 283 \\ 301$	e 4 49 i 4 43 i 4 47k e 5 8 i 4 53	$^{+}_{-}\overset{2}{\overset{4}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$	i 8 44 8 39 i 8 42 e 8 58 i 8 53	+ 7 + 2 + 3 + 7 + 2	5 5 —	PP	e 10.3 e 10.6 10.3 e 11.8
Tortosa Kew Bergen Aberdeen Granada	N.	$23.0 \\ 24.1 \\ 25.4 \\ 26.9 \\ 27.0$	$281 \\ 308 \\ 331 \\ 319 \\ 275$	e 5 13 i 5 15k o 5 31 i 5 46k	$^{+}_{-}^{0}^{6}_{0}$	i 9 50 i 9 42 e 9 57 i 10 26 10 37	SS + 8 + 1 + 6 +15	e 5 50 i 10 56 6 25	PP	e 13·3 e 12·3 e 12·3 14·2 14·8
Malaga San Fernando Lisbon New Delhi Scoresby Sund	N.	27.7 29.2 30.7 39.5 40.1	275 274 281 93 336	e 5 53 e 8 6 5 54 e 7 32 16 52	+ 1 -25 - 2 SS	e 12 20 e 12 59 11 47 i 13 30	SSS + 26 - 7	e 11 31 —	PP 7	18.6 15.7 12.6 21.3
Bombay Calcutta Weston Ottawa Fordham	N.	$41.8 \\ 51.2 \\ 71.6 \\ 72.2 \\ 74.0$	$109 \\ 92 \\ 310 \\ 315 \\ 310$	i 7 54 e 11 24 e 11 27 i 11 39	$+ 1 \\ - 1 \\ - 2 \\ 0$	i 14 14 e 16 23	+ 3 - 2 =	9 36 — —	PP =	e 43·0 34·3 e 37·3
St. Louis Tucson		84·6 99·4	$\frac{318}{328}$	i 12 34 i 13 44	- 2 - 2	e 22 59	4	i 12 41	$\frac{\mathbf{P_{c}P}}{-}$	e 39·8

```
Additional readings:—
Bucharest iP<sub>g</sub>N =1m.43s., iS<sub>g</sub>E =2m.44s.
Belgrade i =2m.18s. and 2m.28s., ePP =2m.58s., i =3m.16s., 4m.7s., 4m.30s., 4m.32s., and 4m.49s.
Helwan eZ =3m.11s. and 4m.5s.
Stuttgart iP =4m.7s., eS =7m.29s.
Upsala SN =8m.43s.
Kew eSSEN = 9m.56s.
Granada PPP =6m.42s.
Malaga QN =15m.57s.
Bombay eN =14m.32s., iE =14m.38s.
Long waves were also recorded at Pasadena, Bozeman, Florissant, and Kodaikanal.
```

April 5d. 6h. Undetermined shock.

```
Ksara eP = 52m.37s., sS_x = 54m.49s.
Istanbul e = 53m.0s.?.
Helwan PZ =53m.51s., eZ =54m.9s., 54m.51s., 55m.27s., 56m.3s., and 57m.24s.,
    eNZ = 57m.40s.
Bucharest EN =54m.0s.?.
Triest e = 55m.48s. and 60m.2s.
Cheb eP? = 56m.20s., e = 60m.58s. and 61m.45s., eL = 65m.
Chur eP = 56m.26s.
Stuttgart ePZ = 56m.27s., eZ = 61m.20s., e = 62m.35s., eQ = 65.5m., eR = 66.6m.
Zürich eP = 56m.29s.
Copenhagen eP = 56m.35s.
Neuchatel eP = 56m.398.
Granada eP = 56m.42s., eS = 62m.15s., L = 67.2m.
Basle e = 56m.47s.
Prague e = 57m.37s., 60m.22s., and 61m.2s., eL = 64m.
Long waves were also recorded at De Bilt, Uccle, Kew, and New Delhi.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

90

April 5d. 18h. 5m. 59s. Epicentre 36° 7N. 54° 5E.

Destructive at Gorgan. Epicentre as adopted.

S. Asfia.

Relevé des séismes observés en Iran, 1941-45 (Manuscript).

A = +.4667, B = +.6543, C = +.5951; $\delta = +6$; h = 0;

Additional readings:—
Helwan SSN = 9m.23s., eN = 10m.26s.Bombay eN = 5m.26s.

- April 5d. Readings also at 0h. (Ksara), 1h. (near Berkeley), 2h. (Bucharest, Istanbul, Helwan, and near Ksara), 4h. (La Plata), 7h. (Istanbul (3)), 9h. (Pasadena, Riverside, Tucson, Haiwee, and Palomar), 11h. (Istanbul), 16h. (Granada, De Bilt, Uccle, Stuttgart, Cheb, and Calcutta), 18h. (Tacubaya, Stuttgart, Ksara, Helwan, Bombay, and New Delhi), 20h. (Istanbul and San Francisco), 21h. (Istanbul), 23h. (near Istanbul).
- April 6d. Readings at 1h. (Bucharest, Istanbul, Stuttgart, and Zürich), 2h. (Tacubaya, Palomar, Riverside, Tinemaha, Tucson, Florissant, and St. Louis), 4h.(Lick), 6h. (Mizusawa), 8h. (Bucharest), 9h. (near Apia and near Alicante), 10h. (Haiwee, Riverside, Tinemaha, Palomar, Pasadena, Tucson, and near Apia), 11h. (Riverview and Stuttgart), 12h. (Alicante, Malaga, Stuttgart, and near Reykjavik), 13h. (near Alicante), 16h. (Triest), 17h. (Malaga), 18h. (Mizusawa), 19h. (Tacubaya (3)), 20h. (Vera Cruz).

April 7d. 13h. 32m. 53s. Epicentre 11°·5N. 86°·3W. Depth of focus 0·020 (as on 1941 January 6d.).

$$A = +.0633$$
, $B = -.9782$, $C = +.1981$; $\delta = +13$; $h = +6$; $D = -.998$, $E = -.065$; $G = +.013$, $H = -.198$, $K = -.980$.

		Δ	AZ.	Ρ.	0 - C	s.	O-C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.	72.74	m.
Balboa Heights		7.0	109	i 1 41	0	i 2 54	- 6	-		
Merida	E.	9.9	341	i 2 14	- 5				-	
Bogota		13.9	119	i 3 12	+ 1			i 3 28	\mathbf{PP}	_
Tacubaya	E.	14.7	304	i 3 34	\mathbf{PP}				-	
San Juan		20.6	68	e 4 24	- 4	e 8 2	- 2	e 5 17	PPP	e 8·1
Columbia		22.9	11	e 4 52	+ 2	e 8 47	+ 2	: 3 :0		e 9·8
Huancayo		25.8	155	e 5 23	$^{+}_{+}$ $^{2}_{5}$	i 9 36	$+$ $\bar{3}$	e 5 55	PP	e 11.4
Cape Girardeau	N.	25.9	355	e 5 20	$\begin{array}{ccc} + & 1 \\ + & 3 \end{array}$	e 9 38	+ 3	e 10 43	SS	
St. Louis		27.2	354	i 5 34	+ 3	e 9 58	+ 2	i 6 26	\mathbf{PP}	
Bermuda		28.6	41	e 5 38	- 5	13 Grand (1975-174)	*****	e 6 31	\mathbf{PP}	e 11.5
New Kensington	É	29.5	10	e 5 59	+ 8		-		-	e 11·8
Philadelphia		30.0	18	i 5 56	Ö	e 10 35	- 5	e 11 14	sS	11.7
Chicago		30.2	358	e 5 56	- 2	e 10 38	- 6		-	e 11.9
Tucson		30.6	317	e 6 5	+ 4	e 16 29	ScS	e 7 38	pPP	e 12.9
Fordham		$31 \cdot 2$	20	i6 5	- 1	e 11 0	+ 1	e 12 0	sS	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

	Δ	Az.	Ρ.	0-c.	8.	0 -C.	Suj	pp.	L.
N.P. CONS	0	0	m. s.	8.	m. s.	8.	m. s.		m.
La Paz	33.1	147	7 38	\mathbf{PP}	100000	-			
Weston	33.4	20	e 6 25	0	_		e 12 40	ss	500 511
Ottawa	35.0	13	6 38	- 1	11 55	- 3	e 7 16	\mathbf{pP}	15.1
Palomar	35.4	314	i 6 49a	+ 7	i 12 15	+11	i 7 32	\mathbf{pP}	-
Rapid City	35.6	340	e 6 49	+ 5	e 13 17	sS	e 7 22	\mathbf{pP}	e 15·7
Riverside	36.1	315	i 6 54	+ 6	_	_	i 9 13	P_cP	
Mount Wilson z.	36.7	315	i7 0	+ 7		-	i 9 16	$P_{\mathbf{c}}P$	7000
Pasadena	36.8	315	i 6 59	+ 7 + 5		-	e 7 38	\mathbf{pP}	_
Shawinigan Falls	36.8	16	6 55	+ 1	12 25	- 1	22 (1 1 2 2 4 2)		
Haiwee z.	37.7	318	i 7 7	+ 5		-	i 9 19	$P_{\mathbf{c}}P$	****
Seven Falls	37.8	17	7 0	- 2	12 35	- 6			15.6
Tinemaha	38.4	318	i 7 13	+ 6	-	-	i 9 21	$P_{c}P$	
Berkeley z.	41.5	316	i 7 38	+ 5	:: :=== :	3	e 9 30	$P_{\mathbf{c}}P$	
Malaga	76.8	55	i 11 34	2	e 22 6	PS	i 12 14	\mathbf{pP}	40.1
Granada	77.4	55	i 11 43	+ 4	21 23	+ 9	12 26	\mathbf{pP}	-
Kew z.	78.6	39	e 11 43a	- 2	-	-	e 12 24	\mathbf{pP}	e 40·1
Clermont-Ferrand	81.5	46	e 11 59	- 2			e 12 41	\mathbf{pP}	
De Bilt	81.9	38	e 12 1a	- 2	e 23 71	PS	e 12 44	pP	
Stuttgart	85.0	42	e 11 17	-61	e 22 27	- 5	e 11 59	\mathbf{pP}	e 42·1
Copenhagen	85.5	34	e 13 3	\mathbf{pP}	22 37	0	24 23	pP pP pP PPS	
Triest	88.8	44	e 13 19	pP	2				1 (7)

Additional readings:—
Huancayo e = 6m.32s., i = 6m.51s., e = 10m.59s.St. Louis iP_cPZ = 8m.32s., eSN = 10m.10s., esSN = 10m.27s., eSSN = 11m.8s.Bermuda e = 9m.28s.

Philadelphia e =6m.37s.

Tucson e = 6m.48s., $eP_cP = 8m.57s.$, $eS_cP = 12m.25s.$

Ottawa PP = 7m.35s., e = 12m.51s.

Palomar iZ =8m.20s., iPcP =9m.12s., eScPZ =12m.45s.

Rapid City ePP = 8m.15s. Mount Wilson iZ = 7m.13s.

Pasadena iZ = 7m.14s., $iP_cP = 9m.17s.$

Haiwee eZ = 8m.38s.

Malaga PKP, PKP = 37m.40s.

Granada pPP = 15m.53s., S = 22m.32s.De Bilt ePP = 15m.13s.

Stuttgart ePPZ = 15m.36s., e = 23m.24s., esS? = 23m.40s., eSS = 29m.47s.

Long waves were also recorded at College.

April 7d. Readings also at 0h. (Mount Wilson, Pasadena, Riverside, Palomar, Haiwee, Tinemaha, Tucson, and near Lick), 2h. (Bucharest), 3h. (near Berkeley, Lick, and Branner), 5h. (Wellington and Christchurch), 6h. (near Mizusawa), 8h. (Riverview), 12h. (Riverview, Wellington, and Christchurch), 15h. (Bucharest, Triest, Stuttgart, and near Istanbul (2)).

April 8d. Readings at 2h. (Riverview), 3h. (Mount Wilson, Pasadena, Palomar, Riverside (2), Tucson (2), and Tinemaha (2)), 5h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and Tinemaha), 8h. (Brisbane and Riverview (2)), 9h. (Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Haiwee, Tinemaha, Stuttgart, Brisbane, Riverview, Suva, near Apia and Alicante), 11h. (near Balboa Heights), 12h. (Bogota, Huancayo, and La Paz), 17h. (near Bogota).

April 9d. Readings at 1h. (New Delhi), 2h. (near Tortosa (2)), 5h. (Belgrade), 7h. (Tacubaya and Vera Cruz), 10h. (near Istanbul), 12h. (Harvard, Ottawa, Seven Falls, and Shawinigan Falls), 17h. (Tacubaya), 18h. (Bombay, Calcutta, New Delhi, Zi-ka-wei, Mizusawa, Riverview, Aberdeen, Bergen, Upsala, De Bilt, Prague, Uccle, Stuttgart, and Helwan), 19h. (Calcutta, New Delhi, Zi-ka-wei, Upsala, Cheb (2), Potsdam, Stonyhurst, Kew (2), De Bilt, Uccle, Stuttgart, and Granada), 22h. (Mizusawa).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

92

April 10d. 3h. Undetermined shock.

Dehra Dun ePN = 36m.0s.?, iSN = 37m.35s., iLN = 39m.0s.New Delhi iPEN = 36m.10s., eP*N = 36m.24s., PgE = 36m.38s., iSEN = 37m.15s., $S*N = 37m.30s., S_EN = 37m.45s.$ Bombay ePN = 36m.59s., PPPEN = 37m.13s., eSE = 38m.45s., eSN = 38m.48s., SSN = 39m.6s., LEN = 39m.27s.Hyderabad eN = 37m.26s., PN = 37m.58s., SN = 40m.57s.Kodaikanal ePE = 39m.6s., iSS?E = 42m.51s.Colombo P = 39m.45s., S = 45m.19s., LE = 47m.8s.Helwan PZ = 41m.5s., PPZ = 42m.6s., eSN = 46m.40s., SSN = 48m.25s., eN = 49m.58s. Ksara e = 41m.10s., and 46m.7s.Calcutta iSN = 41m.43s. Stuttgart eZ = 43m.14s. Malaga eP = 44m.34s., e = 45m.48s.Upsala eE = 47m.39s., eN = 48m.0s.? and 54m.52s., eLN = 60m.Prague e = 48m.36s, and 55m.24s, eL = 62m. Cheb e = 50m. Long waves were also recorded at other European stations.

- April 10d. Readings also at 2h. (Huancayo, La Paz, St. Louis, and Potsdam), 5h. (New Delhi and near Lick), 6h. (Bombay and New Delhi), 8h. (near Balboa Heights), 9h. (near Alicante), 10h. (Bombay, New Delhi, Scoresby Sund, and near Alicante), 12h. (near Alicante), 14h. (Clermont-Ferrand), 16h. (near Mizusawa (2)), 18h. (near Chur), 19h. (near Mizusawa), 21h. (La Paz, La Plata, St. Louis, Tucson, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha).
- April 11d. Readings at 1h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, St. Louis, Kew, Clermont-Ferrand, and Stuttgart), 2h. (Mount Wilson (2), Pasadena (2), Palomar (2), Tinemaha (2), Tucson (2), Florissant, St. Louis, Triest, Kew, and Suva), 3h. (near Fort de France), 8h. (near Almeria), 10h. (near Malaga). 14h. (near Apia), 15h. (La Plata, Mount Wilson, Palomar, and Riverside), 20h, (Harvard), 22h. (Mizusawa), 23h. (Oaxaca, Puebla, Tacubaya, Vera Cruz, Tucson, Florissant, St. Louis, Mount Wilson, Pasadena, Palomar, Riverside, and near Tananarive).
- April 12d. Readings at 0h. (near Harvard), 1h. (Auckland and Wellington), 2h. (Stuttgart Christchurch, and near Mizusawa), 4h. (near Mizusawa), 7h. (Mount Wilson and Tucson), 9h. (near Tananarive and near Alicante), 10h. (Auckland and near Bogota), 13h. (Auckland, Wellington, and Christchurch), 15h. (Brisbane, Riverview, Auckland, Christchurch, and Tucson), 16h. (New Delhi and near Mizusawa), 19h. (New Delhi).

April 13d. 13h. Off coast of Oregon.

Ferndale ePEN = 51m.46s., iSEN = 51m.59s., iEN = 53m.17s.

Berkeley ePE = 52m.10s., eSEN = 53m.10s., EN = 55m.10s.

Branner ePEN = 52m.26s., eSN = 53m.23s., iSN = 53m.30s., iE = 53m.56s., iN = 54m.2s., eLEN = 55m.0s.

Ukiah eP = 52m.27s., e = 52m.39s. and 53m.7s., iS = 53m.28s.

Lick ePN = 52m.34s., ePE = 52m.41s., eSE = 53m.28s., eSN = 53m.32s.

Tinemaha ePZ = 53m.36s.

Tinemaha ePZ = 53m.16s.

Mount Wilson ePZ = 53m.24s., iZ = 53m.36s.

Pasadena iPZ = 53m.27s., iZ = 53m.36s.

Pasadena iPZ = 53m.36s.

Tucson eP = 54m.46s., e = 54m.52s. and 56m.14s., eL = 58m.52s.

Rapid City e = 55m.4s., eL = 61m.36s.

Long waves were also recorded at Santa Clara, Bozeman, Seattle, Salt Lake City, and Chicago.

- April 13d. Readings also at 0h. (Cheb, De Bilt, Uccle, Stuttgart, Granada, Malaga, Helwan, and La Paz), 6h. (La Jolla, Mount Wilson, Pasadena, Riverside, and Tucson), 7h. and 8h. (Istanbul), 11h. (Istanbul and Ksara), 12h. (Helwan), 13h. (Stuttgart), 15h. (Haiwee, Mount Wilson, Pasadena, Riverside, Tucson, Tinemaha, and St. Louis), 16h. (near Bogota), 19h. (Apia), 23h. (Istanbul).
- April 14d. Readings at 0h. (near Branner, Lick, and near Ferndale), 4h. and 5h. (near Istanbul), 6h. (Triest (2)), 7h. (Belgrade, Bucharest, and Stuttgart), 9h. (near Alicante), 11h. (near Balboa Heights), 12h. (Berkeley, near Branner and Lick), 14h. (Mount Wilson, Palomar, Tinemaha, and Tucson), 16h. (Auckland, Christchurch, Wellington, Riverview, and La Paz), 17h. (near Mizusawa), 18h. (Brisbane, Mount Wilson, Tucson, Palomar, Riverside, and Tinemaha).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

93

April 15d. Readings at 0h. (near Branner), 10h. (Mount Wilson, Palomar, Tinemaha, and Tucson), 12h. (near Apia), 15h. (Istanbul).

April 16d. 9h. 44m. 4s. Epicentre 23° ·0N. 142° ·5E. (as on 1939 June 16d.).

Pasadena suggests deep focus.

$$A = -.7310$$
, $B = +.5609$, $C = +.3885$; $\delta = -10$; $h = +4$; $D = +.609$, $E = +.793$; $G = -.308$, $H = +.237$, $K = -.921$.

		Λ.	AZ.	1		O-C.	S.	0 - C.	Su	pp.	L.
			o	m.	s.	s.	m. s.	8.	m. s.	MEGNI	m.
Mizusawa		16.1	356	3	44	- 5	6 49	O		-	-
New Delhi	N.	58.4	291		-		i 17 49	-13		-	e 30·1
Bombay	S PROSES	64.7	281	e 11	8	+26	i 19 14	- 8		3000	
Santa Barbara	Z.	83.4	55	i 12	32		1	-	-	_	
Tinemaha	OTTO A	83.4	53	i 12	32	$+ \frac{2}{2}$	-	5 2	-	-	
Haiwee		84.0	53	i 12	35	+ 2	-	-		-	
Mount Wilson	Z.	84 - 7	55	i 12	38	+ 1		-	-	-	****
Pasadena		84.7	55	i-12	37 a	0		_		***	-
Riverside	Z.	85.3	55	i 12	41 a	+ 1	****	e -	N. 68-32	3	::::: 23
La Jolla	z.	85.9	56	e 12	46	+ 3		-			-
Palomar		86.0	56	i 12	44	+ 1	_		-		
Copenhagen		90.9	334	13	5	- 2	-		_		
Tucson		91.0	53	i 13	9	+ 2	2000	-	e 16 29	\mathbf{PP}	02-10-5
Stuttgart		97.3	331	e 13	36	0	e 24 46	-12	e 17 27	PP	e 47.9
La Paz	Z.	150.5	81	i 19	The second secon	[+11]					

Additional readings :-

Mizusawa PE = 3m.47s. New Delhi iN = 19m.36s.

Bombay eN =19m.46s., iN =20m.26s.

Tinemaha iZ = 12m.59s.

Mount Wilson iZ = 13m.5s.

Pasadena iZ = 13m.4s. Riverside iZ = 13m.2s.

Palomar iZ = 13m.11s.

Tucson i = 13m.36s., e = 14m.16s. and 15m.6s.

Stuttgart eSKS = 24m.1s., eSS = 31m.14s.

Long waves were also recorded at De Bilt and Kew.

April 16d. Readings also at 1h. (Mount Wilson, Riverside, Tinemaha, near Tucson, and La Paz), 7h. (near Lick), 8h. (near Mizusawa), 10h. (Copenhagen and Mizusawa), 11h. (Triest), 12h. (Stuttgart, Brisbane, Riverview, Arapuni, Auckland, Christchurch, Wellington, and near Apia), 13h. (Wellington), 14h. and 19h. (near Mizusawa), 20h. (Wellington), 22h. (near Granada (2), Malaga, Almeria, and Toledo).

a na 150

April 17d. 17h. 37m. 28s. Epicentre 8°.7S. 107°.5E. (as given by Bombay).

$$A = -.2973$$
, $B = +.9429$, $C = -.1503$; $\delta = +4$; $h = +7$; $D = +.954$, $E = +.301$; $G = +.045$, $H = -.143$, $K = -.989$.

		Δ	Az.	1		0-C.	8	š.	0 -C.	Su	pp.	L.
			0	m.	8.	8.	m.	s.	в.	ın. s.		m.
Colombo		31.6	299	6	25	- 1	11	25	-10	-	(1) (1) (1)	16.0
Kodaikanal		35.3	302	e 7	2	+ 3	i 12	22	-11	0.73233	100	
Calcutta	N.	36.3	330	e 7	2	- 5	i 12	43	- 5	(- 1	-
Bombay	1740704	43.8	309	e 8	7	- 2	14	31	- 9	9 54	\mathbf{PP}	i 20·8
Brisbane		46.8	120	i 8	46	+13	i 15	41	+17	e 18 49	SS	i 24.9
New Delhi	N.	47.2	324	i 8	34 k	- 2	i 15	17	-12	i 18 57	SS	-
Riverview	525000	47.3	129	i 8	27 a	10	i 15	55	+24	i 18 40	SS	e 24·5
Christchurch		66.1	134	e 11	6	+15	19	49	± 10	e 11 36	P_cP	33.6
Wellington		67.3	132	11	127	+13	21	7	S_cS	34.95		40.0
Helwan		82.5	302	e 12	26	0	22	30	-12	15 26	\mathbf{PP}	
Prague		98.6	320	20	50	8	23	32	[-48]	T		
Triest		98.8	315	-	_	2	e 24		[-4]		_	
Cheb		99.9	320	e 18	59	3	e 24		(1 + 5)			e 46.2
Stuttgart		102.0	318	e 18	12	\mathbf{PP}	e 25	32	- 5)
Paris		106.4	318	e 31	59	3		_	-	e 35 321	1	72.5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

94

		Δ	Az.	Р.	0 - C.	S.	0 - C.	Supp.	L.
		٥	0	m. s.	8.	m. s.	8.	m. s.	m.
Kew		107.8	322	e 18 54	PP	-	-	e 21 7 PPP	e 27.5
Florissant	Z.	146.0		e 19 48				e 20 11 PKP.	
St. Louis		146.2	25	i 19 48	1 + 71	e 33 21	PS	i 20 10 PKP	
La Paz	z.	154.6	191	e 20 3	[+ 9]	42 53	?	i 24 0 PP	76.5

Additional readings:— Bombay iN =9m.3s., iEN =10m.54s., iE =14m.50s. and 17m.58s., iN =18m.1s., iE =20m.49s.

Brisbane iN = 24m.20s.

New Delhi SSN = 18m.12s., SSSN = 19m.17s.Riverview iSS?N = 19m.25s., iE = 19m.32s.

Christchurch eEN = 26m.40s.

Wellington SS = 25 m. 2s., PPP? = 30 m. 47s., Q = 37 m. 20s.

Helwan eZ = 13m.20s.

Long waves were also recorded at Auckland, De Bilt, and Uccle.

April 17d. Readings also at 2h. (Wellington), 8h. (Stuttgart (2), New Delhi, Riverview, Wellington, and Christchurch), 11h. (near Mizusawa), 18h. (Stuttgart and Paris), 19h. (De Bilt, Potsdam, and Triest), 21h. (Palomar and Tucson), 22h. (near Apia).

April 18d. Readings at 3h. (near Malaga), 6h. (Riverview, Tinemaha, Riverside, Palomar, Pasadena, and Mount Wilson), 8h. (Riverview), 10h. (near Apia), 16h. (Riverside, Palomar, Tucson, and near La Paz), 17h. (Riverview), 21h. (near Fort de France).

April 19d. 22h. 32m. 8s. Epicentre 27°·0S. 113°·0W.

Rough.

$$A = -.3486$$
, $B = -.8213$, $C = -.4516$; $\delta = 0$; $h = +3$; $D = -.920$, $E = +.391$; $G = +.176$, $H = +.416$, $K = -.892$.

	1500		(A. 50)			,	****			
		Δ	Az.	P.	0 - C.	and the Confederation of	O – C.	Suj	op.	L.
Huancayo Montezuma La Paz La Plata Bogota		38·3 40·2 42·8 47·4 49·0	75 94 85 113 57	e 7 27 e 11 17 e 8 39 e 9 4	$+\frac{3}{1} + \frac{1}{14}$	e 16 53 (e 14 6) e 16 37 15 40	S _c S + 18 S _c S + 8	e 9 1 e 16 48 e 11 10	PcP ScS PP PP	m. e 18·2 e 14·1 20·9 19·2
Tucson La Jolla Arapuni Wellington Palomar		59·0 59·7 59·8 59·9 60·1	$\begin{array}{r} 2\\356\\240\\237\\356\end{array}$	e 10 2 e 10 10 e 10 10	$-\frac{2}{1}$ $-\frac{1}{1}$	e 18 15 e 18 52? 18 34?	$+\frac{5}{32} \\ +\frac{13}{13}$	e 21 49 - 25 52?	ss - Q	e 26·1 27·4
Auckland Riverside Christchurch Pasadena Mount Wilson	z.	60 · 8 60 · 8 61 · 0 61 · 1	$\begin{array}{c} 241 \\ 355 \\ 233 \\ 355 \\ 355 \end{array}$	e 10 17 10 38 1 10 19 e 10 18	$\begin{array}{c} + 1 \\ + 20 \\ + 1 \\ 0 \end{array}$	18 39 e 18 44 e 18 46	$+ \frac{6}{11}$	25 22 —	- Q -	28·9 e 27·9 e 28·7
Tinemaha San Juan Santa Clara Berkeley Ukiah	z.	63·9 64·1 64·6 65·1 66·5	356 51 353 353 352	e 10 37 e 10 12 e 10 42 e 10 43	$ \begin{array}{r} 0 \\ -26 \\ +1 \\ -2 \\ 2 \\ \end{array} $	e 19 16 e 19 25 e 19 59	$+\frac{2}{2} \\ -\frac{2}{15}$			e 25·1 e 30·5 e 26·4 e 31·3
Salt Lake City Columbia Logan St. Louis Florissant	y	67·4 67·8 68·4 68·7 68·8	29 29 19 19	e 11 3 e 11 25 e 11 6 e 11 11	$^{+}_{-}^{4}_{19}$ $^{-}_{+}^{1}_{3}$	e 19 59 e 20 9 e 20 6 i 20 15 i 20 20	+ 4 + 9 - 1 + 5 + 9	i 13 5 e 28 10	PP SSS	e 33·4 e 29·7 e 33·5 e 32·9 e 32·9
Rapid City Chicago Bermuda Philadelphia Victoria		$71 \cdot 3$ $72 \cdot 4$ $74 \cdot 8$ $75 \cdot 4$ $75 \cdot 7$	$\begin{array}{r} 8 \\ 19 \\ 41 \\ 30 \\ 353 \end{array}$	e 11 29 e 12 3	$+\frac{6}{19}$	e 20 48 e 20 51 e 21 30 e 21 31 e 21 40	$^{+}_{-}{}^{7}_{2}$ $^{+}_{+}{}^{10}$ $^{+}_{+}{}^{10}$	e 25 28 e 26 22	ss ss	e 32·5 e 33·0 e 36·5 e 31·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

95

	Δ.	Az.	Р.	O - C.	s.	O-C.	Su	pp.	L.
	0	0	m. s.	s.	m. s.	8.	m. s.		m.
Fordham	76.6	30	e 12 27	+33	e 21 47	+ 7	-	-	_
Ottawa	79.6	26	e 12 16	+ 6	e 22 16	+ 4	-	-	e 36.9
Sitka	86.3	348		7. <u> </u>	e 23 18	1 + 91	e 29 15	SS	e 40·3
College	95.5	345	e 22 13	3	e 27 6	PPS	_		e 45.0
Malaga	119.8	61	e 20 28	\mathbf{PP}	e 24 40	[-69]			56.9
Granada	120.6	61	20 33k	\mathbf{PP}	28 51	3	32 9	PPS	64.3
Uccle	127.5	45				$\{-12\}$	_		e 59.9
Stuttgart	130-8	47	e 19 23	[+10]			_		e 63.4
Cheb	132.7	45	e 20 52?	3	e 23 7	PKS	e 28 56	$\{+20\}$	e 62.9
Helwan	N. 148.6	76		8	-	-	e 39 40	3	-
Bombay	N. 170·3	215	e 25 41	$\mathbf{p}\mathbf{p}$					
New Delbi	N 170.8	282		PKP.	i 26 1	3	e 25 2	PP	

Additional readings :—

La Plata E = 11m.10s., and 18m.58s.

Tucson e = 11m.19s., 11m.53s., 12m.37s., 19m.9s., and 25m.7s.

Palomar iZ = 10m.14s., 10m.18s., and 10m.28s.

Mount Wilson iZ = 10m.36s.

San Juan e = 11m.3s. and 23m.22s.

Berkeley eSN = 19m.31s. Salt Lake City e = 29m.25s.

St. Louis eSSSE = 28m.5s.

Rapid City e = 11m.57s. and 24m.28s.

Bermuda e = 12m.21s. and 22m.4s.

Philadelphia e = 22m.28s.

Fordham e = 13m.13s.

Sitka e = 25m.44s. College e = 29m.13s.

Granada SS = 38m.10s.

Long waves were also recorded at Honolulu, Bozeman, Riverview, Colombo, and other European stations.

April 19d. Readings also at 1h. (Tacubaya), 2h. (near Bogota), 8h. (Triest, Tinemaha, Tucson, and near Apia), 10h. (Malaga), 14h. (La Paz), 15h. (La Paz, Tinemaha, Tucson, and near Branner), 19h. (near Huancayo), 22h. (Granada, Malaga, San Fernando, Stuttgart, and Clermont-Ferrand), 23h. (Mount Wilson, Palomar, Riverside, Tucson, near Triest (2), and Stuttgart).

April 20d. Readings at 2h. (near Branner and Lick), 3h. (Pasadena, Tucson, and Riverside), 7h. and 8h. (near Mizusawa), 10h. (Triest (2)), 12h. (Helwan and Huancayo), 13h. (near Lick, Berkeley, and Branner), 15h. (near Fort de France), 22h. (Tinemaha, Mount Wilson, Pasadena, Riverside, Palomar, Tucson, La Plata, and near La Paz).

April 21d. 15h. 1m. 23s. Epicentre 4°-3N. 84°-5W.

A = +.0956, B = -.9926, C = +.0745; $\delta = -6$; h = +7; D = -.995, E = -.096; G = +.007, H = -.074, K = -.997.

		Δ	Az.	Ρ.	$\mathbf{O} - \mathbf{C}$.	s.	O-C.		pp.	L.
		0	0	m. s.	8.	m. s.	Б.	m. s.		\mathbf{m} .
Balboa Heights		6.8	46	e 1 43	- 1	-		·	-	
Bogota		10.4	87	e 2 37	+ 3 - 1		-	e 3 57	3	
Huancayo		18.6	150	e 4 20	- 1	e 7 57	+11	e 5 10	PPP	e 9.6
San Juan		22.8	50	e 5 5	Ō	e 9 18	+ 7	e 7 50	3	e 11·2
La Paz		26.3	142	5 39	ŏ	11 5	SS		<u></u>	14.6
		. 757,135					All Street			
Columbia		29.7	7		-	e 10 48	-18		10000	e 15.0
St. Louis		34.6	353	e 6 52	- 1	e 12 22	0	e 14 36	SS	
Florissant		34.8	353	e 6 55	+ 1	e 12 25	0	e 14 47	SS	
Philadelphia		36.5	14	1712		e 12 44	- 7			e 15.5
Tucson		37.2	322	e 7 15	0	e 12 53	- 9	c 8 45	\mathbf{PP}	e 19·7
Ottawa		41.6	9	7 51	0	14 13	+ 5	17 43	SSS	21.6
Palomar	z.	41.8	328	i 7 55	$+$ $\tilde{2}$,			
Riverside	Z.	42.5	328	e 8 0	$+$ $\tilde{1}$	_			-	-
		45.0	321	e 8 21	+ 2			<u> </u>	<u> </u>	
Tinemaha	z.	40.0	021	6 9 71	T 2	-				

Long waves were also recorded at Chicago and Pasadena.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

96

April 21d. Readings also at 3h. (Wellington), 4h. (Tinemaha and Tucson), 13h. (Riverview), 14h. (Ksara), 17h. (Auckland and Christchurch), 22h. (Berkeley (2) and near Branner).

April 22d. 3h. 35m. 45s. Epicentre 27°.0S. 113°.0W. (as on April 19d.).

		Δ	Az.	Ρ.	O-C.	8.	O - C.	Su	pp.	L
		0	000	m. s.	8.	m. s.	s.	m. s.	1000	111.
Huancayo		38.3	75	e 7 38	+14	e 13 29	+10	e 8 55	\mathbf{PP}	e 16.5
La Paz		42.8	85	e 8 0	- ī	1 14 37	$+\tilde{1}\tilde{1}$		~~~	20.5
Bogota		49.0	57	e 8 54				·	_	20.0
Tucson		59.0	2	e 10 2	$^{+}_{-}\ ^{4}_{2}$	e 18 34	+23	e 12 40	\mathbf{PP}	c 28·4
Palomar		60.1	356	e 10 11	õ	0 10 01	20	0 12 10		C 20 1
			000	O 10 11		50 = 00		-07		_
Riverside	z.	60.8	355	i 10 18	+ 2		-	-		
Christchurch		61.0	233	18 37	s	(18 37)	+ 2	26 45	0	29.9
Pasadena		61.0	355	i 10 17	- 1	(10 01)	A. 9	20 40	Q	
Mount Wilson	Z.	61.1	355	e 10 17	200				-	c 28·8
Haiwee					- 1	7.50 m			70.00	
Haiweo	z.	63.0	356	e 10 31	U	-		_	-	
Tinemaha	z.	63.9	356	e 10 36	- 1	<u> 2002</u> 3			2000	622
San Juan		64.1	51	e 13 41	PP	c 19 21	7		-	e 26.9
Salt Lake City		67.4	2	e 11 46	+47	0 10 21	-2111	e 24 29	88	
Logan		68.4	2	C 44 40	7 2.	e 22 22	9	6 24 20	20	e 33·5
St. Louis		68.7	19	e 11 4	- 3	e 20 13			1000	e 34.5
Se. Metas		00 1	10	611 4	- 3	0 20 13	+ 3	== 6		e 28·3
Florissant	E.	68.8	19		-	e 20 18	+ 7		-	
Bermuda	-550.5	74.8	41	e 12 31	+47	e 21 25	+ 5			e 36·0
Stuttgart	z.	130.8	47	e 19 17	[+3]					0 00 0
Helwan	Z.	148.6	76	19 50	1 + 51				323	
		The state of the s	40.00	A 10 TO 10 T	CARLO TERRO TE					

Additional readings :--Huancayo e = 8m.25s. La Paz iPZ = 8m.3s.

Christchurch $S_cSZ = 28m.4s$.

Helwan eZ = 20m.17s.

Long waves were also recorded at La Plata, Auckland, Riverview, Wellington, Berkeley, Ukiah, College, and Malaga.

April 22d. Readings also at 1h. (Cheb, Helwan, Riverview, Brisbane, Colombo, and Calcutta), 2h. (La Plata, Bergen, Upsala, Kew, Uccle, De Bilt, Stuttgart (2), Paris, Clermont-Ferrand, Malaga, Granada, Helwan, Tucson, Tinemaha, Haiwee, Riverside, Palomar, Mount Wilson, Pasadena, Riverview, Brisbane, Christchurch, and near Fort de France), 3h. (near Mizusawa), 6h. (near Malaga, Granada, Toledo, and Almeria), 14h. (Palomar, Pasadena, Mount Wilson, Haiwee, and Tinemaha).

April 23d. 9h. 10m. 10s. Epicentre 8°-1N. 83°-2W. (as on 1944. March 24d).

$$A = + \cdot 1172$$
, $B = - \cdot 9832$, $C = + \cdot 1400$; $\delta = + 2$; $h = + 6$; $D = - \cdot 993$, $E = - \cdot 118$; $G = + \cdot 017$, $H = - \cdot 139$, $K = - \cdot 990$.

		Δ	Az.	m. s.	0 -C.	S. m. s.	0 -C. s.	m. s.	p.
Balboa Heights		3.7	78	i 0 55	- 5	i 1 32	-13		-
Bogota		9.7	110	i 2 22	0		-		-
Tucson		35.1	317	i 6 57	0				
Palomar	Z.	40.0	314	i 7 39	+ 1	_	_	i 7 55	3
Riverside	z.	40.7	315	i 7 43	- 1		_		
Mount Wilson	Z.	41.3	315	e 7 48	- 1		-	200	
Pasadena	Z.	41.3	315	i 7 49	0	-	and the same of		****
Tinemaha	Z.	42.9	318	18 2	0				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

97

April 23d. 10h. 57m. 33s. Epicentre 21°·0S. 178°·0W. Depth of focus 0·030. (as on 1942 July 7d.).

A = -.9338, B = -.0326, C = -.3563; $\delta = -1$: D = -.035, E = +.999; G = +.356, H = +.012, K = -.934. Supp. O-C. L. m. s. m. Apia Auckland 200 18.2 3 54 192 Tuai 47 83 New Plymouth 19.319923 22 Wellington $21 \cdot 1$ 196 $P_{c}P$ 45 -19Kaimata $23 \cdot 2$ 20047 33 23.8 197 Christchurch 55 + 41 $27 \cdot 2$ 251 i 5 24 Brisbane 34 SSS i 9 -- 12 $(11 \ 51)$ i 11.9 i 5 Riverview $30 \cdot 1$ 239 49k i 10 18 -- 14 i 7 $\mathbf{p}\mathbf{P}$ 0 Santa Barbara 78.1 i 21 47 11 i 13 $\mathbf{p}\mathbf{P}$ Berkeley 78.7 c 21 i 13 pP pP La Jolla 78.949 e 13 10 Pasadena 79.048 41 a i 13 pP i 11 $79 \cdot 2$ 42 a Mount Wilson 48 e 21 i 13 \mathbf{pP} 79.5 49 Palomar 44 k e 21 i 11 20i 13 $\mathbf{p}\mathbf{P}$ Riverside 79.521 i 13 pP80.3 46 48 29 i 13 14 Haiwee e 21 pP 80.6 i 11 e 21 e 38 Tinemaha 46 51k34 PKPPKP 34 e 21 i 22 i 12 83.2 52Ξ Tueson i 13 29 59 \mathbf{pP} e 38·3 43 $87 \cdot 4$ e 13 52 $\mathbf{p}\mathbf{P}$ Logan College 88.713 e 22 43 -11pP 29 39 44 Rapid City $94 \cdot 1$ 88 52 24 37 $101 \cdot 1$ SKS St. Louis pPN. 147.5 Potsdam 347 e 19 18 2] De Bilt 148.9 355 i 19 21 k [+ i 20 56 pPKP Jena $149 \cdot 1$ 347 e 22 53 19 [+ 1) PP19 149.5Kew e 19 20 [+ 1] Cheb 149.8 347 e 22 27? PP e 19 Stuttgart 151.7 349 19 e 19 39 21 PKP, Helwan $152 \cdot 1$ i 23 12 293 19 19 2] $_{\rm PP}$ i 19 40 PKP [-- $153 \cdot 1$ Basle 351 19 21 e 21 45 pPKP Zürich $153 \cdot 2$ 350 19 16 e 19 29 PKP₂ 153.5 Chur 349 19 20 e 19 30 PKP 3 19 28 Granada $163 \cdot 2$ 15 21 30 sPKP 7] 22 36 SKP 19 e 19 32 163.4 Malaga e 20 32 pPKP

```
Additional readings :—
  Auckland i = 5m.25s., i = 6m.44s.
  Wellington P_cS = 11m.47s., S_cS = 14m.57s.
  Kaimata i=4m.58s.
  Riverview iPPEZ = 7\text{m.9s.}, iZ = 7\text{m.45s.}, iPePE = 8\text{m.34s.}, iSSEN = 12\text{m.33s.}, iSSE =
      12m.48s., iEN = 12m.59s., iE = 14m.7s., iN = 14m.18s.
  Berkeley pPE =13m.8s., eSN = 21m.10s.
  Pasadena ePKP PKPZ = 38m.24s.
  Mount Wilson ePKP PKPZ = 38m.30s.
  Palomar ePKP PKPZ = 38m.34s.
  Riverside ePKP PKPZ = 38m.34s.
  Haiwee ePKP PKPZ = 38m.34s.
  Tucson esP = 14m.9s., eSP = 22m.52s.
  Logan i = 14m.9s.
  Rapid City e = 28m.53s.
  St. Louis iE =24m.8s., eSSE =31m.51s.
  Jena eE = 19m.24s., 20m.8s., eN = 22m.49s.
  Stuttgart i = 19m.27s., e = 20m.49s.
  Helwan iZ = 20m.59s., iZ = 21m.33s.
  Granada PP = 25m.3s.
  Malaga i = 21m.59s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

98

- April 23d. Readings also at 0h. (Helwan), 1h. (Granada and Malaga), 3h. (La Paz, Ksara, Pasadena, Palomar, Mount Wilson, Riverside, Tucson, and Tinemaha), 4h. (La Paz), 6h. (Tinemaha, La Jolla, Haiwee, Mount Wilson, Riverside, Palomar, Pasadena, Santa Barbara, and Tucson), 8h. (Bogota (2), Tucson, Palomar, Mount Wilson, Riverside, Tinemaha, and St. Louis), 9h. (Bogota, Tinemaha (2), Riverside (2), Mount Wilson (2), Palomar (2), Pasadena (2), Tucson (2), Riverview, Wellington, Christchurch, Auckland, and Stuttgart), 15h. (Wellington, Christchurch, Auckland, and Riverview), 18h. (Wellington, Auckland, Christchurch, Riverview, and Stuttgart), 20h. (La Paz and near Mizusawa), 22h. (Palomar, Tucson, and near Malaga), 23h. (Granada).
- April 24d. Readings at 1h. (Auckland), 2h. (Stuttgart, Upsala, Neuchatel, Chur, Basle, Zürich, Tucson (3°, Tinemaha (3), Riverside (2), Palomar, Pasadena (2), Mount Wilson (2), St. Louis, Florissant, Sitka, La Plata, and Wellington), 5h. (Stuttgart), 11h. (Stuttgart, Ravensburg, Basle, and Zürich), 13h. (Wellington), 15h. (Tucson, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 18h. (near Ksara), 22h. (near Branner).

April 25d. 6h. 5m. 32s. Epicentre 47° 7N. 8° 5E.

Intensity V in the region of Balingen-Ebingen and in the Canton of Schaffhouse. Epicentre as adopted.

Dr. E. Wanner. Jahresbericht des Erdbebendienstes der Schweiz im Jahre 1944, Zürich 1945, p. 2, carte 1, p. 17.

$$A = +.6681$$
, $B = +.0998$, $C = +.7374$; $\delta = +8$; $h = -5$; $D = +.148$, $E = -.989$; $G = +.729$, $H = +.109$, $K = -.676$.

	Δ	AZ.	Р.	O-C.	S.	$0 - \mathbf{c}$.	ծաբ	p.
	0	0	m. s.	8.	m. s.	s.	m. s.	
Zürich	0.3	171	i 0 11	0	e 0 24	+ 6		-
Basle	0.7	255	i 0 16	- 1	e 0 32	+ 4		-
Strasbourg	1.0	331	(i0 22)	+ 1	i 0 22	P		
Chur	1.1	140	e 0 22	. 0	e 0 40	+ 1	-	_
Neuchatel	1.2	236	e 0 28	+ 4	e 0 52	Sa		
Stuttgart	1.2	24	e 0 2	3	e 0 35	- 6	e 0 9	ē

April 25d. Readings also at 4h. (Bogota), 9h. and 10h. (near Alicante), 13h. (San Francisco, near Lick, Branner, and Berkeley), 8h. (near Bogota), 18h. (Tucson, Tinemaha, Riverview, Auckland, Wellington, Arapuni, and near La Paz), 19h. (Kew), 21h. (Tucson, Tinemaha, Haiwee, Palomar, Riverside, Mount Wilson, and near Apia), 22h. (near Mizusawa), 23h. (Tinemaha, Riverside, Palomar, Mount Wilson, Tucson, and near La Paz).

April 26d. 1h. 54m. 11s. Epicentre 0°.8S. 133°.5E. (as on 1938 December 24d.).

$$A = -.6883$$
, $B = +.7253$, $C = -.0138$; $\delta = +1$; $h = +7$; $D = +.725$, $E = +.688$; $G = +.010$, $H = -.010$, $K = -1.000$.

			0.00					-	
	Δ	Az.	P.	O-C.	s.	O-C.	Sup	p.	L.
	0	0	m. s.	8.	m. s.	s.	m. s.		m.
Brisbane	32.5	147	i 6 27	- 7	i 11 46	- 3	i 6 30	pP	i 14·0
Miyazaki	32.6	357	6 38	+ 3		-			e 14·3
Kôti	34.2	Ö	e 6 45	- 4	12 1	-15			5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Hukuoka	34.3	356	6 53	+ 3		-	e 11 35	1	e 14.6
Perth	35.2	207	7 5	÷ 7	12 42	+11	8 12	PP	2.00
Kobe	35.3	4	e 6 55	- 4	12 38	+ 5	2000	200	-
Kyoto	35.7	4	e 7 4	- 4 + 2 + 9 - 4	12 43	+4			
Nagoya	35.9	6	7 13	+ 9	12 42	0	-		_
Toyooka	36.2	3	7 2	- 4	12 45	- 2		-	-
Hunatu	36.5	4 6 3 8	7 6	- 3	12 31	-20	-	_	_
Yokohama	36.5	9	8 20	\mathbf{PP}	16 11	\mathbf{L}	_	_	(16.2)
Riverview	36.8	156	i 7 11a		i 12 52	- 4	i 8 38		e 18.4
Sydney	36.8	156		·	e 12 7	-49		_	e 18.8
Tokyo	36.8	9	e 7 11	0				-	16.2
Kumagaya	37.2	8	e 7 20	+ 5	13 39	P_cS	-	-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

99

		Δ	Az.	P. m. s.	O – C.	S. m. s.	O -C.	m. s.	ıpp.	L. m.
Nagano Wazima Hukusima Sendai Mizusawa		37·5 38·1 38·9 39·5 40·3	°6 5 9 9	e 7 17 e 7 19 e 7 15 e 7 27 e 7 43	$ \begin{array}{r} 0 \\ 3 \\ -14 \\ -7 \\ +3 \end{array} $	13 39 13 10 13 27 13 15 13 53	PeS - 6 - 1 - 22 + 4	e 13 58	PPS	19.1
Hatinohe Mori Sapporo Calcutta Auckland		41·8 43·2 44·2 49·5 52·4	9 8 302 140	e 7 52 e 7 55 8 13 1 8 51 k 8 59?	$ \begin{array}{r} - & 1 \\ - & 9 \\ + & 1 \\ - & 3 \\ - & 17 \end{array} $	e 14 31 e 14 47 i 15 58 16 45	- 4 - 1 + 1 - 4 + 3	i 17 17 17 17	ss ss	21.3
Arapuni Colombo Wellington Christchurch Kodaikanal	E.	53·6 54·1 54·9 55·0 56·8	140 279 144 147 284	11 2 9 32 9 34 1 10 9	P _e P - 3 - 1 + 21	16 19 18 37 17 9 17 14 1 18 9	$ \begin{array}{r} -39 \\ -3 \\ -3 \\ +28 \end{array} $	21 49 i 18 47 9 49 11 47	PP	$25.8 \\ 27.3 \\ 29.5$
Hyderabad Dehra Dun New Delhi Bombay	E. N.	$57.1 \\ 57.1 \\ 61.1 \\ 61.2 \\ 62.7$	292 292 306 303 293	9 54 9 51 e 9 57? i 10 19k e 10 30	$^{+}_{-21}^{4}_{00}$	19 22 17 44 i 18 17 i 18 38 i 18 58	$ \begin{array}{r} S_c S \\ -1 \\ -20 \\ 0 \\ +1 \end{array} $	$\begin{array}{r} 11 & 50 \\ 10 & 59 \\ \hline -12 & 38 \\ 12 & 49 \\ \end{array}$	PP PP PP	e 31·8
Honolulu College Tananariye Sitka Ksara		70·5 85·9 85·9 91·3 96·8	$\begin{array}{r} 67 \\ 26 \\ 251 \\ 33 \\ 303 \end{array}$	e 11 21 e 12 43 12 49 i 13 8 e 13 42	+ 3 0 + 6 - 1 + 8	e 20 36 e 23 12 23 16 i 24 8 e 24 27	$\begin{array}{ccc} + & 4 \\ - & 4 \\ 0 \\ + & 2 \\ - & 4 \end{array}$	e 15 36 e 15 58 16 20 i 16 54	PPP PP PP	e 32·2 e 35·9 44·2 e 37·9
Victoria Seattle Ukiah Helwan Berkeley		99.3 100.1 100.8 100.9 101.7	$\begin{array}{r} 41 \\ 42 \\ 50 \\ 299 \\ 52 \end{array}$	$\begin{array}{c} 13 & 53 \\ e & 20 & 24 \\ \hline i & 13 & 55 \\ i & 13 & 57 \\ \end{array}$	+ 8 PPP + 3 + 1	25 15 e 26 56 25 25 i 25 47	$+ 1 \\ - 3 \\ + 12$	e 32 44 18 7 1 18 7	SSP PP PP	e 44.8 e 50.1 e 46.9 e 45.9
Santa Clara Bucharest Upsala Tinemaha Haiwee	z. z.	102.0 102.9 103.4 105.0 105.4	52 315 332 52 53	i 14 4 e 14 2 e 18 14 e 14 14 e 14 15	+ 7 + 1 PP + 3 + 2	e 27 34 e 27 29 e 25 49	PS PS —	e 18 6 e 18 23 e 33 18 e 30 16	PP PP SS PKKP	e 46.6 38.8 e 42.8
Pasadena Mount Wilson Riverside Belgrade Palomar	z.	$105.6 \\ 105.7 \\ 106.3 \\ 106.8 \\ 106.8$	55 55 316 55	i 14 12 e 14 12 e 14 15 e 18 36 i 14 20	$ \begin{array}{rrr} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 0 \end{array} $	e 24 56 — e 29 5 e 27 49	[+ 3] PPS PS	i 18 31 i 18 39 e 18 48 i 18 44	PP PP PP	e 43·2 — e 57·2
Copenhagen Bozeman Saskatoon Bergen Scoresby Sund		107·7 108·1 108·5 108·6 108·6	329 41 34 336 352	e 14 27 e 14 25 e 19 1 e 19 5 18 19	P P PP PP [-11]	e 25 5 e 25 14 e 26 36 e 25 0 25 7	[+ 3] [+ 10] S [- 6] [+ 1]	e 28 14 28 20 26 16 18 49	PP PS PS SKKS PP	e 49.8 e 49.6 52.8 e 53.8 53.8
Potsdam Logan Prague Salt Lake City Cheb		108·7 108·8 108·9 109·0 110·1	326 46 323 47 323	i 19 7 e 18 51 e 15 32 e 18 51 e 14 38	PP PP PP	e 28 25 i 28 17 e 25 24 e 28 19 e 25 12	PS PS [+17] PS [-1]	e 21 19 e 34 12 19 6 e 34 22 i 19 15	PPP SS PP PP	e 50·8 e 45·5 e 43·8 e 44·2 e 55·8
Jena Triest Tucson Stuttgart Chur		$\begin{array}{c} 110 \cdot 2 \\ 111 \cdot 0 \\ 112 \cdot 0 \\ 112 \cdot 5 \\ 113 \cdot 2 \end{array}$	$324 \\ 319 \\ 55 \\ 323 \\ 321$	e 19 0 i 19 6 e 14 45 e 14 44 e 18 45	PP PP P P 6]	e 28 39 i 25 20 e 25 19 e 27 18 e 29 5	PS [+ 4] [- 1] S PS	i 21 42 e 18 43 i 19 29 e 19 32	PPP PRP PP	e 54·8 e 46·2 e 54·3
De Bilt Strasbourg Zürich Aberdeen Rapid City		$113.2 \\ 113.5 \\ 113.5 \\ 113.6 \\ 113.9$	328 324 323 335 40	e 14 52 e 19 35 e 17 52 i 19 43 e 19 43	P PP PP	i 25 29 e 25 28 i 29 20 e 29 18	[+ 4] [+ 2] PS PS	i 19 39 e 22 1 e 19 36 i 35 45 e 35 49	PP PPP SSP SSP	e 51·8
Milan Basle Uccle Neuchatel Stonyhurst	E.	114.0 114.1 114.3 114.7 115.9	320 323 328 323 333	19 543 e 17 51 i 19 42a e 19 39 i 19 55	PP PP PP	30 26 i 29 25 26 50	PPS PS {+ 4}	e 19 41 i 35 53 i 22 22	PP SSP PPP	e 52·8 e 52·8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

100

```
O - C.
                                                                                Supp.
                                                                                               L.
                               Az.
                                                 8.
                                                                           m.
                                                                                              m.
                                                                               52
                                                                          i 18
                                                                                    PKP
                                                                  +27]
                       116.3
                               329
Kew
                                                                          e 36
                                                                                     SSP
                               326
                                    e 20
                                                PP
                                                             49
                                                                   _{\mathrm{PS}}
                                                                                             52.8
                       116.4
Paris
                               323
                                                                   _{\mathrm{PS}}
                      117.6
                                                _{\rm PP}
                                                                                           e 62.6
Clermont-Ferrand
                                    e 19
                                                                                     SSS
                                                                   _{\rm PS}
                                                             26?
                                                                          e 41 42?
                                42
                      119.7
Lincoln
                                                PP
                               319
                                      20 23
Barcelona
                       120 \cdot 4
                                                                                    PPP
                  E. 121.8
                               319
                                                \mathbf{P}\mathbf{P}
                                                                                             66.1
Tortosa
                                                \mathbf{PP}
                                                                                      _{\rm PS}
                                                                 [+28]
                                                                                             49.5
                       124 \cdot 9
Chicago
                                                                           20 48
                                                                                     \mathbf{P}\mathbf{P}
                       124.9
Florissant
                                                                                     \mathbf{PP}
                                                                                           e 59·4
                                                                          1 20 50
St. Louis
                       125 \cdot 1
                                                                 SKP
                                                   01
                                                                          i 21
                                                                                     \mathbf{PP}
                               317
                       126.4
                                    i 19
                                                                                             66 \cdot 1
Granada
                                                                  SKP
                                                                          i 20 46
                                                                                     \mathbf{P}\mathbf{P}
                                                                                             56.8
                       127 \cdot 2
                              317
                                    i 19
                                               [+1]
Malaga
                                                             40
                                      21 18
                                                             35
                                                                  SKP
                                                \mathbf{PP}
                                                                            33 19
                                                                                     PPS
                                                                                             63.8
                       127.8
                                21
Seven Falls
                                                         26
                                                                            21 31
                                                                                     PP
                       128.5
                               318
                                      19
                                         16
                                                             54
                                                                                             63.8
                                                   7]
                                                                 [+38]
San Fernando
                                      19 11
                      128.7
                                                                            20 53
                                                                                     \mathbf{P}\mathbf{P}
                                26
                                                             19
                                                                 \{+8\}
                                                                                           e 58.8
Ottawa
                                                                          e 21
                                                                                     \mathbf{PP}
                                    e 19
                       129.0
                                                                  skp
Buffalo
                                                                  skp
                                                                                     \mathbf{p}\mathbf{p}
                               322
                                      19 16a [+ 6]
                                                                            21 21
                                                                                             60.3
                      129 \cdot 1
Lisbon
                                                         22 42
                                                                  SKP
                                                                                           e 67·1
                                33
                       130.3
New Kensington
                                                PP
                                                                  SKP
                                                                          e 38 40
                                                                                      SS
                                                                                           e 59·3
                                                            40
                       130.5
Vermont
                                                       i 22 50
                                    i 19 18
                                                                  skp
                                                                          i 21 38
                      133.0
                                30
                                                                                     \mathbf{P}\mathbf{P}
                                                                                           e 63.8
                                                   0]
Fordham
                                                                            21 40
                                                                                     \mathbf{PP}
                                25
                                      19 19
                                                                  SKP
                      133.0
                                                   1]
Weston
                                                                  skp
                      133 \cdot 1
                                      21 38
                                                \mathbf{p}\mathbf{p}
                                                        i 22 43
                                                                          e 31 49
                                                                                      _{\mathrm{PS}}
                                                                                           e 57.4
Philadelphia
                                    e 21 44
                                                       e 22 53
                                                PP
                                                                          e 32
                                                                                      _{\rm PS}
                                                                  SKP
                      133.8
                                40
                                                                                           e 46.3
Columbia
                                   e 23 49?
                       133.8
                                16
                                                                                             65.8
Halifax
                                                                                     \mathbf{PP}
                                                                            22 49
                                                                                             77 \cdot 1
                  E. 142.9
                              164
                                         37
                                                         29
                                                             37
                                                                 \{-1\}
                                      19
                                                   1)
La Plata
                                                                            23 19
                                                                                    skp
                                      19
                                                         29
                                                             31
                                                                                             79.8
                              164
                                         37
                   N. 142.9
                                   e 19 35
                                                       e 41 26
                                                                   88
                                                                          e 23 16
                                                                                     \mathbf{PP}
                                                                                           e 67·3
                                                   3]
Bermuda
                      144 \cdot 2
                                               +--
                                    e 19 44
                                                   31
                      146 \cdot 1
                                               [+
Balboa Heights
                                                                                     PP
                                   e 19 50
                                                   5]
                                                       e 26 23 [-29]
                                                                                           e 54·1
                              115
                                               [+
                      148 6
Huancayo
                                   e 19 55
                                                                          e 23 43
                                                                                     \mathbf{PP}
                      152.2
                                81
                                                   4]
Bogota
                                                                                     PP
                                                   6]
                                                       1 26 39 [-18]
                                                                                             73.5
                              130
                                    i 19 57 a
                      152.6
La Paz
                                   e 19 59
                                                       12725[+26]
                                                                         e 23 24
                                                                                           e 64.2
                                47
                      154.0
                                               [+
                                                   6]
San Juan
                              187 e 19 49
                   N. 156.2
                                                   7]
Rio de Janeiro
                                               ---
                                   e 19 58
                                                   3]
                      160.0
                                45
Fort de France
                                               [ -
  Additional readings :-
     Brisbane iN =6m.33s., iPPN =7m.51s., iSN =11m.43s.
     Perth PPP = 8m.32s., SS = 13m.53s., SSS = 14m.27s.
    Riverview iP_cP = 9m.33s., iN = 13m.50s., iSSE = 15m.15s., iZ = 15m.22s., iE = 15m.37s.
          iN = 16m.34s., iS_cSE = 17m.22s., iZ = 18m.9s.
    Calcutta PPN =11m.11s., iSSN =20m.16s.
     Auckland PPP? = 12m.14s., sS_cS? = 19m.24s., SS = 21m.19s., sSS? = 21m.54s.
     Wellington sPZ = 10m.9s., iZ = 10m.37s., sP_cPZ = 11m.12s., PP?Z = 11m.51s., iZ = 10m.51s.
          12m.32s., PPPZ = 12m.49s., pP<sub>c</sub>SZ = 14m.39s., i = 15m.52s., sS<sub>c</sub>S?Z = 19m.56s.
         sS = 21m.12s., Q = 23.3m.
    Christchurch PPPEZ = 12m.56s., S_cSE = 19m.33s., SSE = 21m.22s., QEN = 23m.27s.
    Hyderabad SSE = 21m.10s.
    New Delhi eSE = 18m.41s., PSN = 19m.9s., S_cSN = 20m.21s., SSN = 22m.49s., SSSN = 22m.49s.
         24m.34s.
    Bombay iPN = 10m.33s., PPPE = 14m.22s., iN = 15m.11s., iN = 19m.12s., ScSN =
         20m.22s., SSN = 23m.10s.
    Honolulu eSS = 24m.51s.
    College ePPS = 24m.17s., eSS = 28m.50s.
    Tananarive S = 23m.23s.?, PS = 24m.5s., SS = 29m.17s.
    Sitka i = 25 \text{m.} 30 \text{s.}, i \text{SS} = 30 \text{m.} 34 \text{s.}
    Victoria SS = 31m.25s.
    Helwan eZ = 16m.46s. and 17m.16s., PPPZ = 20m.31s., PSN = 27m.17s., PPSE =
         28m.7s.
                 iPE = 14m.1s., ePSZ = 26m.37s.?, iPSE = 27m.11s.
                                                                               iPPSN = 28m.3s.
          iPPSZ = 28m.9s., iE = 32m.46s., iN = 32m.51s.
     Santa Clara eSSE = 33m.3s.
     Bucharest eN = 22m.31s., iEN = 28m.30s.
   Upsala eN = 18m.23s., eE = 20m.36s., 23m.49s., and 27m.31s.
    Pasadena ePSE = 27m.25s., ePPSZ = 28m.31s., iSSN = 33m.41s.
     Belgrade e = 26m.47s, and 28m.42s.
    Copenhagen ePKP = 17m.56s., 28m.14s., and 34m.30s.
     Bozeman eS = 26m.32s., eSS = 34m.9s., eSSS = 38m.9s.
    Saskatoon SS = 34m.23s.
    Bergen PPN = 23m, 20s., PPPN = 25m, 20s., SKSN = 26m, 20s., eNZ = 29m, 27s., SSN =
         37m.16s.
    Scoresby Sund 21m.8s., 27m.0s., 28m.19s., and 29m.29s., SS = 33m.49s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

101

```
Potsdam ePPPN = 21m.11s.?, ePSE = 28m.29s.
Logan e = 38m.59s.
Prague ePKP=18m.8s., ePPP=21m.23s., eSKKS=26m.17s., PS=28m.29s., ePPS=
    29m.30s., eSS = 33m.49s., eSSS = 38m.49s.
Salt Lake City eSSS = 38m.34s.
Cheb ePPP = 21m.27s., iPS = 28m.39s., ePPS = 29m.47s., eSS = 35m.52s.
Jena eE = 19m.3s., eZ = 19m.6s., eN = 19m.10s. and 19m.13s.
Triest iPS = 28m.49s., eSS = 35m.15s.
Tucson ePP = 19m.20s., e = 21m.3s., eS = 27m.2s., ePS = 28m.22s., eSS = 35m.11s.,
    eSSS = 39m.14s.
Stuttgart ePKPZ = 18m.4s., ePPP = 22m.11s., ePS = 29m.7s., ePKKPZ = 29m.32s.,
    ePPS = 30m.10s., eSS = 35m.13s.
De Bilt ePKP = 18m.14s., ePS = 29m.9s., eSS = 35m.19s.
Strasbourg PS = 29m.2s.
Aberdeen iEN = 29 \text{m.43s.} and 45 \text{m.56s.}
Stonyhurst iSKSP = 29m.42s., i = 30m.11s., PPS = 30m.31s., e = 32m.7s., iPcP,PKP =
    33m.26s., iSS = 35m.56s., eSSS = 40m.16s.
Kew iPP=19m.57s., ePPPEZ=22m.26s., eSKKSEZ=27m.32s., ePS=29m.38s.,
    ePPS = 30m.50s., eSSNZ = 36m.28s., eSSSNZ = 41m.20s.
Tortosa PPPE = 22m.16s., SSE = 36m.15s., SSSE = 41m.37s.
Chicago e = 33m.7s., eSS = 37m.38s., e = 38m.19s., eSSS = 42m.23s.
Florissant eSKPE = 22m.14s., eSPE = 30m.44s., eE = 36m.24s., eSSE = 37m.37s.,
    iSSE = 37m.41s., iPPSSE = 38m.15s., iSSSE = 42m.28s.
St. Louis ePPPZ = 23m.49s., eSPE = 30m.43s., iSSE = 37m.44s., ePPSSE = 38m.19s.,
     eE = 40m.42s., iSSSE = 42m.32s.
Granada ePS = 31m.59s., PPS = 33m.8s.
Malaga iPPP = 23m.28s., SS = 36m.37s., Q = 50.8m.
Seven Falls SS = 38m.40s.
San Fernando SKPE = 22m.36s., eE = 24m.22s., PSE = 31m.23s., SSE = 37m.36s.,
    SSSE = 42m.198.
Ottawa SKP = 22m.29s., SS = 38m.49s., SSS = 42m.49s.
Lisbon PKPN = 19m.22s., PKPE = 19m.27s.%, SSE = 38m.19s.%, SSN = 39m.1s.%.
Vermont e = 42m.43s. and 44m.0s.
Fordham i = 22m.58s, and 32m.1s.
Weston 38m.48s.
Philadelphia eSS = 39m.3s., ePKP,PKP = 40m.19s., eSSS? = 44m.23s.
Columbia e = 40m.18s.
La Plata PPN = 25m.1s., PPPN = 27m.49s.?, PPSE = 40m.1s., SKSP?E = 41m.1s.,
    PSSN = 47m.49s., QE = 62.8m., QN = 69.8m.
Bermuda e = 34m.40s.
Huancayo eS = 29m.52s.
Bogota iP? =20m.1s.
La Paz iSKKS = 30m.4s., iPSKS = 33m.24s., iPPS? = 37m.45s., SS = 43m.49s.
San Juan e = 33m.36s., ePKP,PKP = 40m.22s., eSSS = 49m.8s.
```

April 26d. Readings also at 1h. (Ksara), 5h. (near Mizusawa), 12h. (Kew, De Bilt, Stuttgart, Triest, Cheb, Prague, Helwan, and Bucharest), 18h. (St. Louis, Palomar, Riverside, Mount Wilson, Tucson, Tacubaya, Vera Cruz, and near Bogota), 23h. (near Mizusawa).

April 27d. 14h. 38m. 3s. Epicentre 1°·1S. 133°·1E.

A = -.6831, B = +.7300, C = -.0190; $\delta = -11$; h = +7; D = +.730, E = +.683; G = +.013, H = -.014, K = -1.000.

	Δ	Az.	P.	0 -C.	s.	O-C.	Su	PD.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.		m.
Brisbane	32.5	146	16 28 a	- 6	i 11 41	- 8	i 6 35	\mathbf{pP}	-
Miyazaki	32.9	357	e 5 59	-39	11 44	-12	200100	_	
Unzendake	33.8	355	6 37	- 9	12 14	+ 4	760 000 20	- 500	-
Zi-ka-wei	34.0	342	e 6 45	- 3	12 15	+ 2	i8 9	\mathbf{PP}	14.6
Muroto	34.2	1	6 44	- 5	12 23	+ 7		_	
Hukuoka	34.6	356	e 6 54	+ 1	12 2	-20	14 28	Q	16.2
Perth	34.7	207	7 10	+16	12 42	+18	8 30	PPP	
Kobe	35.7	4	e 7 2	0	12 39	0	-		
Kyoto	36.0	4	e 7 9	+ 4	12 41	- 3	-		
Riverview	36.7	155	i78	- 2	i 13 7	+13	i 8 50	PPP	e 18·0
Sydney	36.7	155	i7 3a	7	1 12 54	0	-	-	e 17·0
Toyooka	36.7	3	7 9	- 1	12 49	- 5	-	-	
Yokohama	36.9	9	e 7 27	+15	-	-	e 15 43	SSS	
Tokyo	37.1	9	e 7 20	+ 6	e 9 27	$P_{c}P$			10.4
Wazima	38.5	5	e 7 21	- 5	13 10	-12	-	-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

102

		Δ	Az.	P. m. s.	O – C.	S. m. s.	O -C.	m. s.	pp.	L. m.
Hukusima Sendai Mizusawa Akita Miyako		39·2 39·8 40·7 41·1 41·3	°9 9 9 10	7 31 e 7 31 7 47 7 56 e 7 46	- 5 + 3 + 9 - 3	13 36 13 36 14 0 14 4 14 8	+ 4 - 6 + 5 + 3 + 4			16.9
Hatinohe Mori Sapporo Calcutta Auckland	N.	42·1 43·5 44·6 49·6 52·4	$\begin{array}{r} 9 \\ 8 \\ 302 \\ 139 \end{array}$	e 4 41 e 8 14 e 8 50 9 22	- 6 - 2 - 5 + 6	$\begin{array}{c} 14 & 13 \\ e & 9 & 54 \\ 14 & 59 \\ i & 16 & 11 \\ 16 & 51 \end{array}$	- 3 PP + 7 + 8 + 9	e 10 46 11 29	PP PP	e 14·1 — 24·3
Arapuni Colombo Kaimata Wellington Christchurch	E.	53·6 53·7 53·7 54·9 55·0	139 279 146 143 146	9 57 7 9 27 9 42 9 37 9 41	$^{+32}_{+16} \\ ^{+16}_{+2} \\ ^{+6}$	$17 \ 33$ $17 \ 14$ $17 \ 13$ $17 \ 12$ $17 \ 13$	$^{+35}_{+15}$ $^{+14}_{-4}$	$\frac{20}{-}$ $\frac{39}{11}$ $\frac{41}{41}$	SS PP PP	$25.5 \\ 29.8 \\ \\ 26.5 \\ 29.5$
Tuai Apia Kodaikanal Hyderabad Dehra Dun	E.	55.0 56.0 56.5 56.9 60.9	$\begin{array}{c} 139 \\ 106 \\ 284 \\ 292 \\ 306 \end{array}$	9 38 e 9 48 i 10 55 9 59 e 10 7	$^{+\ 3}_{+\ 5} \ _{\mathbf{PeP}}^{+\ 5} \ _{+\ 10}^{+\ 10}$	$\begin{array}{c} 17 & 18 \\ e & 17 & 37 \\ \hline & 17 & 54 \\ i & 18 & 3 \end{array}$	$^{+}_{+}$ $^{1}_{7}$ $^{+}_{-}$ $^{12}_{-}$	 11_50	PP	28·2 i 30·1
New Delhi Bombay Honolulu Tananarive College		$61.1 \\ 62.4 \\ 71.0 \\ 85.4 \\ 86.3$	$304 \\ 293 \\ 67 \\ 251 \\ 25$	e 10 16k e 10 27 e 11 29 e 12 50 e 12 45	$^{-}_{\overset{0}{0}}^{\overset{2}{0}}_{+\overset{7}{10}}^{\overset{7}{0}}$	i 18 46 18 52 e 20 32 23 20 e 23 17	$^{+}$ $^{-}$ 5 $^{+}$ 9 $^{-}$ 3	$\begin{array}{c} 12 & 47 \\ 12 & 53 \\ e & 14 & 24 \\ 16 & 19 \\ e & 16 & 1 \end{array}$	PP PP PP PP	i 30·7 28·3 e 27·9 41·0 e 35·7
Sitka Ksara Victoria Ferndale Helwan		$91.8 \\ 96.6 \\ 99.7 \\ 100.3 \\ 100.7$	$33 \\ 303 \\ 41 \\ 49 \\ 299$	i 13 13 e 13 43? e 17 57 14 0	$^{+2}_{+10}_{PP}$.	i 23 52 e 24 27 e 24 33 e 26 47 24 30	[+ 8] {- 3} [+ 7] PS [0]	e 17 3 e 26 45 e 29 0 e 27 32 18 14	PP PPS PPS PP	e 40·2 42·0 e 54·5
Seattle Istanbul Ukiah Berkeley Santa Clara		$\begin{array}{c} 100.7 \\ 101.3 \\ 101.3 \\ 102.2 \\ 102.5 \end{array}$	$\begin{array}{r} 41 \\ 312 \\ 50 \\ 52 \\ 52 \end{array}$	e 23 22 18 23 e 16 35 i 17 59 e 13 54	PKP	25 57 e 24 37 i 24 37 e 26 59	$^{+26}_{[+\ 4]}_{[-\ 1]}$	28 15 e 26 57 i 18 11 e 18 30	PKP PS PP PP	e 49·3 e 64·0 e 41·4 e 41·0 e 46·3
Bucharest Upsala Tinemaha Haiwee Pasadena	z.	102.9 103.5 105.5 105.9 106.1	315 332 52 53 55	i 18 32 a i 18 29 i 14 11 e 14 19 i 14 16	PP PP P	i 24 53 e 25 56 i 25 0	[+12] $+6$ $[+5]$	i 27 37 e 20 39 e 18 15	PS PPP — PKP	e 43·0 e 43·0
Mount Wilson Belgrade Riverside Palomar Copenhagen	z. z.	$106.2 \\ 106.7 \\ 106.8 \\ 107.3 \\ 107.7$	316 316 55 329	i 14 19 e 18 23 e 14 18 i 14 38 e 14 32	[-P3] PP	e 25 8 25 11	$[+\frac{10}{10}]$ $[+\frac{8}{8}]$	i 19 2 - 18 57	PP PP	e 57·6 — 44·0
Bozeman Bergen Potsdam Scoresby Sund Prague		$108.6 \\ 108.7 \\ 108.8 \\ 108.8 \\ 108.9$	336 326 352 323	e 19 14 18 28 i 19 9 19 14 e 18 17	PP [-2] PP PP [-14]	e 25 3 25 5 1 28 30 25 21 e 25 18	[+14]	e 28 11 e 19 5 e 29 45? 28 32 i 19 10	PS PP PS PP	e 44.2 e 45.0 e 45.0
Saskatoon Logan Salt Lake City Cheb Jena		$109.0 \\ 109.3 \\ 109.5 \\ 110.1 \\ 110.2$	$\begin{array}{r} 34 \\ 46 \\ 47 \\ 323 \\ 324 \end{array}$	e 18 49 e 19 11 e 14 57? e 14 48	PP [+17] PP P	25 18 1 25 22 e 25 20 e 25 29 e 25 25	[+13] [+10]	34 25 i 28 21 e 28 23 i 19 20 e 19 14	SS PS PP PP	45.0 e 45.4 e 45.3 e 52.0 e 38.8
Triest Stuttgart Tucson Chur De Bilt		110.9 112.5 112.5 113.2 113.2	$319 \\ 323 \\ 55 \\ 321 \\ 328$	i 19 29 e 14 52 e 14 41 e 18 38 e 15 0	PP P P [-1]	i 25 28 e 25 21 i 28 55 e 25 37	[-1]	i 28 54 e 19 24 e 19 25 e 29 24 i 19 45	PS PP PS PP	e 53·0 e 55·6 e 44·5 e 49·0
Strasbourg Zürich Aberdeen Basle Milan		113·5 113·5 113·7 114·0 114·0	$324 \\ 323 \\ 335 \\ 323 \\ 320$	19 38 e 18 52 i 18 0 e 19 13 e 19 12	PP $[+12]$ $[-40]$ $[+32]$ $[+31]$	e 29 15 e 29 19 i 29 24 e 27 8 29 20	PS PS +35} PS	e 22 27 e 19 49 i 19 47 e 19 39	PPP PP PP	56.0 51.7 55.4
				Continue	d an man	40.00.00				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

103

	Δ	Az. P. m. s.	0 – C. s.	S. O-C. m. s. s.	m. s.	L. m.
Uccle Bonid City	114.3	328 e 18 58?	[+16]	i 29 26 PS	19 46? PP	52.0
Rapid City Neuchatel	$114.4 \\ 114.7$	40 e 19 34 323 e 19 49	PP	e 29 9 PS e 29 28 PS	e 35 42 SSP	e 48·7
Stonyhurst Kew	$116.0 \\ 116.4$	333 i 20 1 329 i 15 11k	PP	e 25 44 [+ 7]	29 44 PS i 19 0 PKP	52·0 e 54·0
Paris	116.4	326 i 20 4	PP	e 25 47 [+10]	e 29 27 PS	e 52·0
Clermont-Ferrand Lincoln	$117.6 \\ 120.2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP	e 31 45 PPS	e 41 25 SSS	e 63·8 e 57·8
Barcelona	120.4	319 20 33	\mathbf{PP}		i 41 25 SSS	e 57·8
Tortosa	121.7	319 e 20 39	PP	26 11 [+16]	23 8 PPP	60.2
Chicago Florissant	$125.4 \\ 125.4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP [+ 9]	e 26 13 [+ 6] i 26 19 [+12]	e 32 25 PPS e 20 49 PP	e 52·6
St. Louis	125.5	41 e 19 4	[+1]	i 26 19 [+12]	i 20 58 PP	
Tacubaya E. Granada	$125.7 \\ 126.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP [+ 6]	32 42 PPS	i 21 14 PP	62.1
RESERVED VINASSANCE	550000000000000000000000000000000000000	AUGUSTA DESCRIPTION	32124 S25		50.0545900W881=8 \$60.0769	Carrier and an analysis
Malaga San Fernando E.	$127 \cdot 1 \\ 128 \cdot 5$	$317 i 19 14 \\ 318 e 21 26$	[+ 8] PP	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i 21 17 PP 33 18 PPS	$63.0 \\ 61.5$
Vera Cruz E.	128.5	66	-	e 26 17 [+ 1]		
Lisbon Ottawa	$129 \cdot 1 \\ 129 \cdot 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[+13] [+ 6]	22 44 PKS 26 27 [+ 9]	21 29 PP 21 15 PP	57·4 e 61·0
	ADMINISTRATION OF THE	CARACTER ALMAN CARACTER	5224345652		PERC CENTERS DAMES	House and
Shawinigan Falls Seven Falls	$129 \cdot 4$ $129 \cdot 6$	22 19 23 20 19 27	[+12] [+16]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 27 PS 21 27 PP	59·0 62·0
New Kensington	130.7	33 e 21 24	PP	e 22 40 PKS	e 38 59 SS	e 54·2
Vermont Harvard	$130.9 \\ 133.2$	25 e 21 30 25 i 20 7	PP [+49]	26 41 [+19]	i 22 43 PKS	53.0
				00 -1 (
Weston Fordham	$133.4 \\ 133.5$	25 19 22 28 i 19 29	[+4] $[+10]$	e 28 54 {+13} i 40 11 SSP	21 41 PP i 21 42 PP	e 63·7
Philadelphia	133.5	30 e 21 45	PP	i 22 53 PKS	e 31 41 PS	54.0
Halifax Columbia	$134 \cdot 2 \\ 134 \cdot 3$	16 e 24 577 40 —	PPP	e 22 52 PKS	e 34 16 PPS	62·0 e 58·2
The Company of the Co	110781170 1107		r + 01		ALTEROPER POSITIONS	3-03-01-02-0
La Plata E.	$142.7 \\ 142.7$	164 19 43 164 19 44	[+ 8] [+ 9]	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	23 15 PKS 21 39 PP	77·0 77·0
Bermuda	144.7	26 —		i 23 19 PKS	e 42 1 SS	e 59·7
Balboa Heights Montezuma	$146.6 \\ 148.2$	74 e 19 45 138 e 20 2	[+3] [+17]		e 43 26 SSP	_
22.23	837332/152			a 90 10 () 7)	(5.85) 5655 5612540	- 00 -
Huancayo Bogota	$148.9 \\ 152.6$	115 e 19 56 81 i 20 1	[+10] [+10]	e 30 19 {+ 7}	e 34 19 PS	e 62·5
La Paz	152.7	131 19 59	[+ 8]	i 26 50 [- 7]	i 23 46 PP	72.6
San Juan Rio de Janiero N.	$154.5 \\ 155.9$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[+9] [+59]	e 43 17 SS 1 31 2 {+11}	i 24 2 PP i 24 7 PP	e 63·8 i 44·8
Fort de France	160.4	45 e 20 10	[+9]			

Additional readings:—
Brisbane ipP?E =6m.38s., iZ =6m.41s.

Zi-ka-wei iN = 6m.57s. and 7m.15s. Perth PPP = 8m.46s.

Riverview iP = 7m.15s., iN = 8m.57s., iP_cPN = 9m.31s., iE = 9m.55s., iSN = 13m.11s., eN = 13m.36s., iE = 13m.48s., iN = 14m.10s., iE = 15m.35s., iSN = 15m.49s., iN = 16m.16s., eQE = 16m.33s.

Calcutta iPPPN = 11m.43s., PSN = 16m.50s., iSSN = 19m.18s., iSSSN = 20m.48s. Auckland i = 9m.54s., PPP = 12m.5s., i = 19m.42s. and 18m.12s., ScS = 19m.22s., i = 19m.45s., SS = 20m.42s., Q = 22m.57s.?

Arapuni i=22m.57s. Wellington iZ=10m.7s. and 10m.27s., $P_cPZ=10m.39s$., iZ=12m.42s., $P_cPZ=12m.52s$., $P_cS=14m.39s$., i=17m.34s., iZ=18m.17s., i=18m.37s. and 18m.57s., $S_cS=19m.23s$., i=19m.50s., 20m.27s., and 20m.57s., $S_cS=21m.30s$., $S_cS=23m.50s$.,

Q = 24 m. 39 s.Christchurch iZ = 9m.48s., iE = 17m.26s., SSE = 20m.46s., QEN = 22m.43s.

Hyderabad $P_cPE = 10m.44s.$, $S_cSN = 19m.33s.$, SSE = 21m.27s.New Delhi iPEN = 10m.25s., $P_cPN = 10m.55s.$, iSN = 18m.50s., PSN = 19m.10s., $S_cSN = 20m.20s.$, SSN = 23m.10s., SSE = 23m.13s., iN = 26m.36s.Bombay iN = 27m.40s.

Bombay alone records two subsequent shocks for which the readings are (referred to the above T_e):—II ePN = 10m.37s., iSN = 19m.2s., $S_cSN = 20m.25s.$; III iPN = 10m.42s., iSN = 19m.7s., PSE = 19m.33s., $S_cSE = 20m.29s.$, SSN = 23m.30s., SSSN = 26m.2s.

Tananarive S = 23m.25s., $S_cS = 23m.43s.$, PS = 24m.10s., SS = 28m.55s., SSS = 32m.30s., Q = 35m.31s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

104

```
College e = 14m.55s., eSS = 28m.58s., eSSS? = 32m.31s.
Sitka iS = 24m.12s., iPS = 25m.14s., eSS = 30m.21s.
Ferndale eEN = 45m.1s., eE = 50m.24s.
Helwan eZ = 16m.54s., eN = 25m.42s., PSN = 27m.23s., PPSN = 28m.9s.
Seattle e = 30 \text{m.} 13 \text{s.}, 35 \text{m.} 35 \text{s.}, and 39 \text{m.} 2 \text{s.}
Ukiah e = 17m.19s., eSSS = 36m.24s.
Berkeley iPPZ = 18m.52s., iE = 20m.45s., iZ = 20m.48s., iE = 24m.26s., iE = 26m.43s.,
     iZ = 27m.15s., iE = 27m.20s.
Santa Clara eE = 33m.12s.
Upsala PPiN = 18m.33s., ePPPiN = 21m.22s., SKSiE = 24m.52s., ePPSiE = 27m.34s.,
     eE = 28m.52s., eSS?E = 32m.59s.?, eSS?N = 33m.30s., eSS?N = 36m.57s.?.
                                                                   eSSSE = 35m.57s.7,
Pasadena ePSE = 27m.33s.
Belgrade e = 20 \text{m.31s.} and 22 \text{m.4s.}, ePS = 28 \text{m.12s.}, eQ = 43 \text{m.35s.}
Copenhagen 26m.10s., 26m.35s., 28m.17s., 34m.15s.?, and 38m.9s.?.
Bozeman eS = 26m.32s., e = 34m.19s., eSSS = 38m.2s.
Bergen SKSN = 25m.20s., SKSZ = 25m.33s., PPS = 28m.27s., PKKPZ = 29m.10s.,
     eEN = 30m.4s., eE = 33m.57s., eN = 34m.12s., eNZ = 34m.27s.
Potsdam iPSE = 28m.33s., eSS?EN = 33m.57s., eSSSN = 38m.27s.?.
Scoresby Sund 34m.39s.
Prague ePPP = 21m.27s., ePS = 28m.27s., ePPS = 29m. 99s. cSS = 33m.57s., eSSS =
    38m.27s.
Saskatoon S = 26m.46s.
Logan eS? = 26m.41s., e = 33m.59s., eSS? = 34m.30s., e = 38m.20s.
Salt Lake City eS? = 26m.55s., ePPS = 29m.8s., eSS = 34m.2s.
Cheb e = 17m.57s., and 23m.3s., eSKKS = 26m.29s., iPS = 28m.47s., ePPS = 30m.12s.,
     eSS = 34m.47s., eSSS = 39m.43s., e = 42m.32s.
Triest PPP = 21m.57s., iSS = 30m.7s., iSSS = 39m.20s.
Jena ePP?E = 19m.20s., eS?N = 28m.41s. and 28m.46s., eSS?E = 34m.28s.
Stuttgart eZ = 17m.38s., ePKPZ = 18m.28s., iPPZ = 19m.37s., ePPPZ = 21m.33s.,
     ePPP = 21m.39s., eS = 27m.22s., iSPZ = 29m.9s., ePKKPZ = 29m.47s., ePPS =
    30\text{m.}43\text{s.}, eSS = 35\text{m.}20\text{s.}, eSSS = 39\text{m.}37\text{s.}, eQ = 52.8\text{m.}
Tucson ePKP = 18m.31s., eS = 27m.5s., ePPS = 29m.44s., e = 35m.1s., eSSS = 39m.19s.
De Bilt 1PS = 29m.17s., 1SS = 35m.37s.
Zürich ePPS = 30m.43s.
Aberdeen iN = 29m.44s., iE = 35m.30s., iN = 39m.30s., iEN = 46m.23s.
Uccle iSSE = 35m.43s.
Stonyhurst iPKS = 22m.21s., iPPP = 22m.28s., SKKKS = 27m.42s., PKKS = 33m.1s.,
    SS = 35 \text{m.} 51 \text{s.}, SSP = 36 \text{m.} 88 \text{s.}, P_cS, PKP = 37 \text{m.} 20 \text{s.}, PKP, PKP = 38 \text{m.} 11 \text{s.}, Q = 38 \text{m.} 11 \text{s.}
    47m.18s., SKS,SKS = 51m.10s.
Kew iPP = 19m.57s., ePPPE = 22m.28s., eSKKS = 26m.58s., ePS = 29m.51s.
     ePPSEZ = 31m.18s., eSSEN = 36m.20s., eSSSEZ = 40m.57s.?, eQN = 46m.57s.?.
Paris eSS = 35m.57s.
Tortosa PPSE? = 32m.48s., SSE? = 36m.36s., SSPE = 37m.24s., SSSE = 41m.59s.
Chicago e = 27m.41s., iSS? = 37m.53s., e = 40m.57s.
Florissant iZ = 21m.24s., ePPPZ = 23m.8s., eSKKS?E = 27m.44s., iSE = 29m.23s.,
    iSPE = 30m.56s., eSSE = 37m.33s., eE = 37m.59s., eSSSE = 42m.34s.
St. Louis iPZ=19m.9s., iZ=19m.14s., iPPPZ=23m.35s., eE=27m.48s., eSE=
    29m.4s., iSPE = 30m.54s., iE = 33m.26s., iSSE = 37m.50s.
Granada PPP = 24m.20s., PS = 31m.50s., SS = 38m.2s., SSS = 44m.11s.
Malaga PKS = 22m.35s., PPP = 23m.56s., PS = 31m.25s., PKKP = 32m.35s., SKKS =
    36m.17s., iPKP,PKP = 37m.37s., SS = 38m.11s., Q = 54.0m.
San Fernando PPPE = 24m.14s., SKKSE = 27m.30s., SSE = 38m.55s.
Lisbon iPPZ = 21m.32s.k, SSE = 38m.45s., SSN = 39m.9s.
Ottawa SKP = 22m.37s., SKKS = 28m.3s., PPS? = 34m.3s., SS = 38m.27s., SSS =
    43m.57s.?, e = 52m.57s.?.
Shawinigan Falls SS = 37m.51s., SSS = 43m.33s.
Seven Falls PPS = 33m.13s., SS = 38m.53s., e = 53m.27s.
New Kensington e = 32m.9s., eSSS = 43m.45s.
Vermont ePP = 21m.43s., e = 24m.43s., and 38m.13s., eSSS = 43m.40s.
Weston e = 33m.40s., SS = 39m.26s.
Fordham iSKP = 23m.41s.
Philadelphia eSS? = 39m.35s., eSSS = 44m.17s.
Columbia eSS? = 39m.5s.
La Plata PKSN = 23m.27s., N = 23m.57s., PPPN = 25m.33s., SKKSEN = 29m.27s.,
    SKSP?E = 31m.39s., PSE = 33m.57s., PPSN = 35m.15s., PPS?E = 37m.27s., SSE =
    41m.27s., PSSN = 41m.51s., SSS?E = 44m.27s., SSSN = 46m.39s., E = 49m.57s..
    QE = 59.0 \text{m.}, Q?N = 64.6 \text{m.}
Bermuda e = 32m.51s.
Huancayo e = 21m.59s., eSS? = 42m.37s.
Montezuma e = 33m.45s., eSS? = 42m.7s.
Bogota i = 20m.12s. and 20m.31s., e = 22m.48s. and 31m.52s.
La Paz iPKPZ = 20m.4s.k, iPKP_2 = 20m.37s., iSKP_3 = 23m.16s., iPPZ = 23m.52s.
     iSKKSN = 30m.39s., PSKS? = 34m.44s., PPSN = 37m.11s., SSN = 43m.7s., eN =
    49m.57s., QN = 65m.51s.
San Juan i = 24m.38s., e = 44m.56s., eSSS? = 49m.28s.
Long waves were also recorded at Branner.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

105

April 27d. 19h. 5m. 1s. Epicentre 0°.8S. 133°.5E. (as on 26d.).

```
A = -.6883, B = +.7253, C = -.0138;
                                                               \delta = +1:
                                                                                   Supp.
                                                0 - C.
                                                             S.
                                                                   O-C.
                                                                                                  L,
                                                                              m. s.
                                                                                                  m.
                                                   В.
                                                                              i 6 44
                                                                                        pP
                                                                                               i 15·9
Brisbane
                                                  \mathbf{P}\mathbf{P}
                                207
Perth
                                                                                         88
88
                                156
Riverview
                                156
Sydney
                                302
Calcutta
                         49.5
                   N.
                                                                     +10
                                                                                                 24.4
                                                  P_{c}P
                                                            16 52
                                138
                                       10
                                           193
                         52 \cdot 4
Auckland
                                                                            c 18 59?
                                                                                        ScS
                                                                                                 26.0
                        53.6
                                           591
                                140
Arapuni
                                                                        1
                                           31
                                279
                         54 \cdot 1
Colombo
                                                                     +\ \frac{5}{2}
                                                                                        PcP
                                                           17
                                                                                                 26.0
                                                                              10 44
                         54.9
                                144
                                           39
                                                               21
Wellington
                                                            17
                                           34
                                                               19
                                                                              19 30
                                                                                                 28.2
                                147
                                                                                        ScS
                         55.0
Christchurch
                                                  P_{c}P
                         56.8
                                284
                                     c 10
Kodaikanal
                   E.
                                      e 9
                                292
                         57.1
                                           37
                                                  -13
Hyderabad
                   N.
                                                                                        ScS
                                                          i 18
                                                               34
                                303
                                     e 10
                                           20
                        61 \cdot 2
                                                  +
New Delhi
                                                                                   2
                                     e 10 28
                                                            18
                                                               55
                                                                             i 13
                                                                                        PP
                         62.7
                                293
Bombay
                                                                   [+
                                                                                               e 44·1
                                                                                         S
                                                               46
                                                                        6]
                                                                            e 24 12
                                 33
                         91.3
Sitka
                                                         e 25
                                                               29
                                       18
                                                                     +
                       100.9
                                299
Helwan
                                                                                               e 25·0
                                                                        8}
                                                                             i 21 22
                                 52
                                     i 19
                                                           (24 59) {~
                       101 \cdot 7
Berkeley
                                     e 18 36
                                                  \mathbf{p}\mathbf{p}
                                 52
                       105.0
Tinemaha
                                     e 18 32
                                                  \mathbf{PP}
                                 55
                       106.3
Riverside
                                                                      PS
                                                                                        SSP
                                                         e 28
                                                                            e 34 33
                                323
                       108.9
Prague
                                                    ...
                                     e 19
                                                  _{\rm PP}
                                                                      _{\rm PS}
                                                                            e 23 33
                                323
                                                               38
                       110.1
Cheb
                                                                      PS
                                                  PP
                                     e 19
                                                         e 28
                                                                            e 35 19
                                                                                        ssp
                                                               59
                       112.0
                                 55
                                                                                               e 51.5
Tucson
                                     e 19 32
                                                  \mathbf{PP}
                                                          e 27
                                                               17
                                                                      S
                                323
                                                                            e 28 59
                                                                                         _{\mathrm{PS}}
                       112.5
                                                                                               e 56.5
Stuttgart
                                                                      SS
                                                          e 34
                                328
                                                               59
                                                                                               e 52·0
                       113 \cdot 2
De Bilt
                                     e 15 24
                                                   \mathbf{P}
                                                                                         _{PS}
                                                               35
                                                                        7]
                       113.9
                                                                   [+
                                                                                               e 56·2
Rapid City
                                 40
                                                         e 28 59?
                                                                     PS
                                                                            e 38 597
                       114.3
                                328
                                                                                               e 59·0
Uccle
                                                                   [+12]
                                                         e 26 18
                                     e 19 12
                                                                            e 21
                                                     9]
                                                                                        \mathbf{PP}
                                                                                               o 57·8
                       125 \cdot 1
                                 41
St. Louis
                                     e 20 24
                       127-2
                                                                                                 73.0
                                317
Malaga
                                     e 33 593
                       127.8
                                 21
                                                                                                 66.0
Seven Falls
                                     e 33 597
                                                                                                 64.0
                       128.7
                                 26
Ottawa
                                                                    skp
                                                          e 22 42
                                 30
                                                                                               e 60·1
                       133 \cdot 1
Philadelphia
                                                          e 23 57
                                                                                         SS
                                                                    SKP
                                 26
                                                                                               e 55.9
                       144 \cdot 2
Bermuda
                                     e 19
                                                                                        ssp
                                                                                               e 72.6
                                115
                                                     91
                                                                            e 42 59
                       148.6
                                           54
                                                 [+
Huancayo
                                     i 19
                                130
                                           59 a
                                                     81
                                                                                      pPKP
                                                                                                 76.0
                       152.6
La Paz
                                                  +15]
                                     e 20
                                                                            e 43 34
                                 47
                                                                                         SS
                                                                                               e 76.4
                       154.0
San Juan
```

Additional readings :-

Brisbane iSSN = 13m.32s.

Riverview iE = 13m.55s., iN = 14m.4s., iE = 15m.38s.

Wellington iZ = 11m.3s., Q = 23m.29s.?.

Christchurch SSEN = 21m.21s., Q?N = 23m.33s.

Bombay iE = 13m.11s., eN = 19m.2s., $S_cSN = 20m.19s$., SSE = 22m.55s., eEN = 23m.15s.

Sitka ePS = 25m.15s., e = 30m.52s. and 31m.17s.Prague e = 30m.59s., 37m.35s., and 43m.17s.

Stuttgart eSPP = 30m.7s., eSS = 35m.19s.

St. Louis eSPN = 31m.0s., eSSN = 37m.53s., eE = 38m.39s., and 40m.48s., eSSSE =

42m.48s. Philadelphia e = 32m.43s. and 38m.24s.

Huancayo e = 39m.2s.

La Paz $iPKP_2 = 20m.16s.$, sPKP = 21m.46s., iPPZ = 23m.46s., iZ = 24m.19s.

San Juan e = 24m.49s. and 34m.0s.

Long waves were also recorded at other American and European stations.

April 27d. Readings also at 6h. (Logan), 7h. (San Francisco), 15h. (La Paz (2) and near Branner), 17h. (Stuttgart (2)), 20h. (Riverview (2)), 21h. (Kew, Wellington, Christchurch, Sydney, Riverview, and Brisbane), 22h. (Wellington and Riverview).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

106

April 28d. 5h. 50m. 27s. Epicentre 8°·1N. 83°·2W. (as on 1944 March 23d.).

$$A = +.1172$$
, $B = -.9832$, $C = +.1400$; $\delta = +2$; $h = +6$; $D = -.993$, $E = -.118$; $G = +.017$, $H = -.139$, $K = -.990$.

Transition of the second		Δ	Az.	Ρ.	O-C.	s.	O - C.	Suj	pp.	L.
		0		m. s.	s.	m. s.	s.	m. s.	25/25/07/	m.
Balboa Heights		3.7	78	i 0 51	- 9	i 1 40	- 5	Name :	-	_
Bogota		9.7	110	e 1 16	66		-		_	_
Tacubaya	E.	19.1	309	e 4 43	+16					_
San Juan		19.5	56	i 4 31	0	18 8	+ 2			e 9.9
Huancayo		21.5	159	e 4 48	- 4	e 8 39	+ 2 - 8		_	e 10·9
Columbia		25.9	3	e 5 40	+ 5	e 10 9	+ 5		-	e 13·0
La Paz	Z.	28.6	148	e 6 2	$^{+}_{+}$ $^{5}_{2}$	i 11 0	+12		-	16.6
Bermuda		29.5	33	e 6 28	+20	e 11 56	+54			e 14·2
St. Louis		$31 \cdot 1$	349	i 6 20	- 2	e 11 24	- 4	i 7 18	\mathbf{PP}	-
Florissant		31.3	349	i 6 22	- 2	e 11 30	- 1	i 7 20	\mathbf{PP}	_
Philadelphia		32.5	13	e 11 10	9	e 11 53	+ 4 + 8	-	_	e 14·0
Chicago		33.8	353	e 7 58	\mathbf{PP}	e 12 18	$^{+}_{+}$ $^{4}_{8}$		-	e 14·1
Tucson		35.1	317	i 6 59	+ 2			-	-	e 20·5
Ottawa		$37 \cdot 7$	9	7 17	- 2	e 13 11	+ 1	8 47	\mathbf{PP}	19.6
Palomar		40.0	314	17 40 a	+ 2		-	-	-	
Seven Falls	2000	40.3	13)221 8	e 14 3	+14	(1.11)	-	19.6
Riverside	Z.	40.7	315	i 7 45	+ 1		W	_	-	_
Pasadena	Z.	41.3	315	i 7 51	+ 2					
Tinemaha	z.	42.9	318	i8 4a	+ 2	-	-		7.5	5.17 7.1
Bozeman		44.5	333			e 14 55	+ 4	-	-	e 29·0
Saskatoon		47.9	341		35	e 15 58	+19		_	29.6
Stuttgart		85.6	41	e 12 39	- 2		-	1771	\equiv	e 41.6
Bombay	N.	144.2	40			e 35 16	PPS	=		
Kodaikanal	E.	153.5	45	1		33 24	PS		$\overline{}$	
Colombo		157.5	48	_	7	e 32 33?	8	-	-	_

Additional readings :-

Balboa Heights i = 2m.46s.

Bogota i = 2m.25s. and 2m.31s., e = 6m.57s.

San Juan e = 5m.4s. and 7m.46s.

Huancayo e = 6m.13s. St. Louis eE = 13m.15s. Florissant eE = 13m.20s.

Tucson e = 10m.26s. and 11m.46s.

Bombay eN = 38m.54s., 39m.47s., 39m.58s., and 41m.53s.

Long waves were also recorded at New Kensington, Sitka, and other European stations.

April 28d. Readings also at 0h. (Bombay, New Delhi, and Riverview), 2h. (Ksara), 5h. (St. Louis, Tinemaha, Tucson, Wellington, Christchurch, Brisbane, Riverview, Sydney, and near Mizusawa), 6h. (Stuttgart, Kew, Haiwee, Mount Wilson (2), Pasadena (2), Tucson (2), Palomar (2), Riverside (2), and Tinemaha (2)), 7h. (Balboa Heights), 15h. (near Lick), 16h. (near Fort de France), 18h. (near La Paz), 23h. (Jena).

April 29d. 21h. 41m. 17s. Epicentre 36°·3N. 71°·0E. Depth of focus 0·010 (as on 1943 Dec. 28d.).

$$A = + \cdot 2630$$
, $B = + \cdot 7638$, $C = + \cdot 5894$; $\delta = -5$; $h = 0$; $D = + \cdot 946$, $E = - \cdot 326$; $G = + \cdot 192$, $H = + \cdot 557$, $K = - \cdot 808$.

		Δ	Az.	Ρ.	0 -C.	s.	0 - C.
		•	0	m. s.	8.	m. s.	8.
New Delhi		9.3	144	2 22	+ 9	i 3 58	+ 2
Bombay		17.4	174	i 4 4	+ 6	i 7 13	+ 7
Hyderabad	N.	19.9	159	4 27	+ 1	8 7	+ 7
Calcutta	N.	20.4	127	e 4 28	- 3	i8 1	- 8
Ksara	==0	28.8	275	e 5 55	+ 4	e 11 59	SS

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

107

		Δ	Az.	Р.	$\mathbf{O} - \mathbf{C}$.	s.	0-C.
2418 05ES ES				m. s.	8.	m. s.	8.
Stuttgart	z.	46.0	306	i 8 13	- 2		
Basle	500A	47.3	304	e 8 23			
Tinemaha	z.	106.5	7	e 16 57			
Mount Wilson	Z.	109.3	7	e 16 39	3		_
Palomar	Z.	110.5	6	i 16 27	3	_	_
Tucson	1000.0	111.8	1	e 15 46	8		

Additional readings:—
New Delhi iN =2m.46s. and 4m.44s.
Bombay iN =5m.2s., iSN =7m.16s., iE =7m.21s.

April 29d. Readings also at 1h. (Palomar and Tucson), 2h. (Bucharest, De Bilt, Kew, and Stuttgart), 3h. (near Triest), 6h. (Riverview, Chicago, Philadelphia, Florissant, St. Louis, Rapid City, Logan, Salt Lake City, Bozeman, Tucson, College, and Stuttgart), 7h. (De Bilt, Kew, and Uccle), 9h. (Bergen, Upsala, Helwan, Ksara, and New Delhi), 10h. (De Bilt, Kew, and near Apia), 11h. (Bucharest, Helwan, Ksara, and Stuttgart), 13h. (Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 16h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, St. Louis, and Stuttgart (2)), 17h. (De Bilt), 18h. (Stuttgart, St. Louis, Tucson, Mount Wilson, Pasadena, Tinemaha, San Juan, and near Balboa Heights), 19h. (Kew and near Fort de France), 20h. (near Branner), 21h. (Mount Wilson, Palomar, Tucson, and Tinemaha).

April 30d. Readings at 0h. (Palomar, Pasadena, Tinemaha, and Tucson), 11h. (near Mizusawa), 14h. (La Paz), 16h. (Seven Falls), 17h. (near Mizusawa), 20h. (La Paz), 22h. (Scoresby Sund), 23h. (Kew).

May 1d. Readings at 0h. (Kew), 6h. (Wellington), 11h. (Mount Wilson, Palomar, Tucson, and Stuttgart), 19h. (New Delhi), 22h. (Auckland, Christchurch (2), Wellington, and Riverview (2)), 23h. (Christchurch, Wellington, Brisbane, and Riverview).

May 2d. 11h.

Felt in Austria. Epicentre Hungary approx. 47°N. 18°E.

E. Trapp.
"Makros. Beobachtungen in den Jahren 1941-1945." Anhang 8 zum Jahrbuch für 1947 der Zentralanstalt fur Meteorolog. und Geodynam., Vienna. Macroseismic chart page D48.

Stuttgart eP?Z=52m.43s., ePZ=52m.47s., eP $_g$?=53m.6s., e=53m.12s., eZ=53m.33s., e=54m.14s., eS $_g$?=54m.18s. and 54m.22s. Zürich eP=52m.48s., eS $_g$ =54m.13s.

Jena eEN = 52m.55s., eN = 53m.56s., eEN = 54m.3s., eE = 54m.13s., 57m.36s., and 58m.29s.

Basle eP = 54m.18s., eS_g = 55m.53s. Strasbourg e = 54m.43s. and 55m.4s.

May 2d. Readings also at 0h. (Granada), 4h. (Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 10h. (near Bogota), 12h. (Bombay, Calcutta, Hyderabad, New Delhi, and Helwan), 13h. (Kew), 15h. (Kew and Ksara), 17h. (Kew, Mount Wilson, Palomar, Tinemaha, Tucson, and near Apia), 18h. (Riverview), 22h. (La Plata and near Branner).

May 3d. Readings at 2h. (Tucson, Mount Wilson, Palomar, and Tinemaha), 3h. (Oaxaca), 4h. (Pasadena, Mount Wilson, Palomar, Riverside, Tinemaha, Tucson, Lick, Santa Clara, near Berkeley, and Branner), 5h. (Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, and Alicante), 9h. (La Paz, Palomar and Pasadena), 12h. (Palomar and Tucson), 13h. (Istanbul), 17h. (Bombay, Calcutta, and New Delhi), 19h. (Scoresby Sund and near Reykjavik), 20h. (Kew (2), De Bilt, Uccle, Clermont-Ferrand, Stuttgart, Scoresby Sund, and near Reykjavik (2)), 21h. (Kew, Scoresby Sund, Tucson, Mount Wilson, Tinemaha, near Reykjavik, and near Mizusawa), 22h. (near Branner).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

108

May 4d. 6h. 40m. 9s. Epicentre 6°-3S. 148°-2E. (as on 1942 Nov. 14d.).

A = -.8449, B = +.5238, C = -.1090; $\delta = +10$; h = +7; D = +.527, E = +.850; G = +.093, H = -.057, K = -.994.

		Δ	Az.	Р.	0 - C.	s.	O-C.	Su	pp.	L.
		•	•	m. s.	8.	m. s.	s.	m. s.	12000	m.
Brisbane	200	21.5	170	i 4 49a	- 3	i 8 45	- 2	*****	*****************	i 11-0
Riverview		27.5	175	e 5 51	÷ 1	i 10 46	+16	i 6 54	\mathbf{PP}	e 13·2
Sydney		27.6	175	27 <u>21</u> 22	** <u>-</u>	e 10 51	+19		-79_	
Auckland		38.9	145	- 		13 46?				17.8
Perth		39.5	226	13 46	S	$(13 \ 46)$	+ 9		-	i 21.7
Wellington		42.1	150	7 563	+ 1	14 11	- 5	9 41	PP	20.8
Christchurch		42.8	154			13 49	-37	17 25	Ô	22.0
Mount Wilson	Z.	96.6	56	e 13 35	+ 2			~~~	*	
Tinemaha	Z.	96.6	53	e 13 33	0	_	-			_
Riverside	z.	97.1	56	e 13 43	+ 8		- <u>20-</u> 7			
Palomar	z.	97.5	57	e 13 42	+ 5				-	

Additional readings :-

Brisbane eSE = 8m.53s. Wellington PPPZ = 10m.13s., SS = 17m.26s.

Long waves were also recorded at Arapuni and other American and European stations.

May 4d. Readings also at 3h. (New Delhi), 6h. (Huancayo, St. Louis (2), Tucson (3), Haiwee, Mount Wilson (2), Pasadena, Palomar (3), Riverside, Tinemaha (3), and Brisbane), 7h. (Brisbane (3), Riverview, and Tinemaha), 8h. (Auckland, Christchurch, Wellington, Mount Wilson, Pasadena, Riverside, Tinemaha, and Tucson), 11h. (Bogota and Bombay), 17h. (near Mizusawa), 20h. (St. Louis, Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, San Francisco, near Berkeley, Branner, Lick, Santa Clara, and near Balboa Heights), 21h. (near Branner), 22h. (Basle).

May 5d. 5h. Undetermined shock.

Brisbane eZ = 54 m. 50 s., eN = 54 m. 53 s., 61 m. 6 s., and 63 m. 33 s.

Kodaikanal eE = 55m.25s.

Colombo PE = 56m.43s., SE = 63m.36s., LE = 72m.30s.

New Delhi ePN = 57m.8s., iSN = 64m.35s., iN = 64m.56s., S_cSN = 65m.3s.

Bombay ePE = 57m.16s., eSEN = 64m.57s., iEN = 65m.15s., iN = 67m.18s.

Tinemaha ePZ = 61m.44s., eZ = 65m.22s. and 65m.42s.

Hyderabad SN = 63m.42s.

Palomar iZ = 63m.51s., eZ = 66m.21s., iZ = 66m.43s.

Riverview iS?N = 64m.55s., iEZ = 64m.58s., eLE = 70m.12s.

Christchurch eN = 65 m. 40 s., iN = 73 m. 4 s., eEN = 74 m. 14 s., e = 79m.36s.82m.50s.

Auckland P? = 65m.56s.?, L = 73m.Tucson e = 66m.21s., eL = 101m.28s.

Stuttgart eZ = 66m.23s., eQ = 104m.Wellington P?Z = 66m.30s., P_cP ?Z = 67m.37s., i = 70m.43s., S = 72m.7s.?, SS = 76m.20s.,

RZ = 80m.

Riverside eZ = 66m.39s.

Bogota e = 67 m.49s. and 68 m.14s.

Victoria eE = 71m.36s., L = 94m.

Long waves were also recorded at Pasadena, Huancayo, De Bilt, Uccle, and Kew.

May 5d. 8h. May be near Kermadec Islands and Deep.

Tuai P = 22m.41s., S = 24m.19s.

New Plymouth P = 23m.2s., S = 24m.59s.

Wellington P = 23m.14s., S = 25m.21s.Christchurch P = 23m.49s., S = 26m.21s.

Kaimata S = 26m.12s., i = 26m.20s.

Mount Wilson iPZ = 32m.34s.

Pasadena iPZ = 32m.34s.

Palomar iPZ = 32m.36s.k.

Riverside ePZ = 32m.36s. Tinemaha iPZ = 32m.43s.

Tucson iP = 32m.52s.k. e = 34m.2s.

May 5d. Readings also at 0h. (Mizusawa), 1h. (Colombo, Basie, Stuttgart, Bucharest, Ksara, and Helwan), 4h. (near Almeria, Granada, and Malaga), 5h. (Tucson, Palomar, Tinemaha, Auckland, Wellington, near Apia), 13h. (Tucson (3), near Stuttgart and Zurich), 16h. (New Delhi), 17h. (Bogota), 18h. (Tucson, Palomar, and Tinemaha), 19h. and 20h. (near Mizusawa), 22h. (Berkeley, Branner, and Lick).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

109

May 6d. 0h. 13m. 44s. Epicentre 22°.5N. 45°.0W.

A = +.6539, B = -.6539, C = +.3805; h = +4: D = -.707, E = -.707; G = +.269, H = -.269, K = -.925. O-C. O-C.Supp. AZ. m. s. m. 8. m. s. Fort de France $17 \cdot 1$ 246 e 4 32 -1420.0 304 Bermuda 263San Juan 13 3 26.8 330 e 6 16? $\mathbf{P}\mathbf{P}$ Halifax $_{\rm PP}$ e 11 43 +3929.6 - 319 e 6 6 Weston e 6 11 29.8 319 Harvard PPi 6 17 30.4 314 + Fordham PPP i 6 20 e 11 23 30.9 311 Philadelphia ** i 11 +-14.8 i 6 29 41 31.9 309 Georgetown 53 PPPe 11 39 e 13.5 320 6 28 31.9 Vermont 13.3 327 28 $32 \cdot 2$ Seven Falls e 6 34 14.3 32.9 325 Shawinigan Falls e 8 33.3 242 44 Bogota e 12 12 e 7 51 PPe 15.4 e 6 43 299 33.6 Columbia SS 14 16 15.8 320 6 44 10 33.9 Ottawa +13i 13 i 15 29 88 17.3 37.7 58 20 a Malaga 58 i 13 26 55 $\mathbf{p}\mathbf{p}$ 22.3 38.5 24 a Granada e 9 26 PPe 13 42 e 16.5 309 41 40.4 Chicago \mathbf{PP} i 14 15 e 9 304 51 e 19.6 41.7St. Louis \mathbf{PP} e 9 41 e 19.6 41.8 304 53 e 14 Florissant PPe 21·3 42.3 54 i 7 59 20 45 Tortosa e 14 + e 18 SSS 56 46 44.7 34 Stonyhurst e 8 21? 8 21 e 15 13 e 10 413 PPP 5 e 20·8 38 44.9 Kew + +10PP 212 3 i 15 10 22.0 44.9 La Paz 45.2 e 8 23 47 Clermont-Ferrand 178 20 i 22.6 45.2 i 15 Rio de Janeiro N. PPP e 8 23 e 10 49 e 18.8 224 e 15 45.4 Huancayo e 8 16? $21 \cdot 3$ 45.7 Paris 31 i 11 38 20.6 46.5 Aberdeen + 1 e 19·3 e 8 e 15 33 47.4 41 40 a + Uccle 46 e 8 44 48-1 Neuchatel + e 20·3 e 15 48 e 8 + 39 46 48.3 De Bilt 46 48.7 48 Basle 49.0 44 59 + Strasbourg 46 e 8 52k 49.3 Zürich PPe 8 56 e 10 51 e 21·2 45 e 16 50.0 Stuttgart e 16 34 29 24.6 51.4Bergen 43 51.9 Jena e 10 56 e 16 43 $_{\rm PP}$ $52 \cdot 1$ 310 i 9 14 e 25.7 Rapid City e 16 48 e 10 37 $P_{c}P$ e 24·3 26 +1152.2 44 e 9 + Cheb e 16 58 + 7 53.1 40 22 e 10 10 Potsdam 22 16 57 36 e 9 $23 \cdot 3$ 53.5 $\dot{-}$ Copenhagen e 25·3 43 26 + e 16 59 + 1 53.6 e 9 Prague PPS 32 24.3 55.2 318 17 40 Saskatoon _ e 24·3 32 46 e 17 44 57.1 Upsala SS e 27.0 e 21 58 e 11 e 17 3 57.7311 30 56 + Bozeman -1358.3 306 e 10 e 17 48 e 26.7 + Logan +12e 10 12 e 17 56 6 e 26.6 58.4 305 Salt Lake City P_cP e 18 9 e 11 e 27.8 58.5 295 Tucson + e 10 22 30.3 61.3 50 Bucharest

Continued on next page.

+11

-16

+

+

2

0

P'P'

P'P'

P'P'

P'P'

PeP

e 30·3

e 30·1

29.3

e 39 38

39 40

e 39 34

i 39 38

i 11 12

8

19 29

i 19 57

298

298

301

296

302

298

298

299

314

303

32

36

40

58

34

52

e 10

e 10

e 10

e 10 38

e 10 44

e 10 36

63.3

63.6

63.7

63.7

63.8

 $64 \cdot 1$

 $64 \cdot 2$

65.4

65.9

66.8

z.

z.

z.

z.

Palomar

Haiwee

La Jolla

Tinemaha

Pasadena

Victoria

Berkeley

Mount Wilson

Santa Barbara

Riverside

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

Logan i = 10m.9s., c = 19m.11s.

Helwan eZ = 11m.46s, and 12m.19s.

Tucson ePPP = 11m.44s.

Pasadena iZ = 10m.45s.

20m.3s.

```
0 - C.
                                                                            Supp.
                             Az.
                                    m. s.
                                                                        m. s.
Ukiah
                       67 \cdot 3
                             305
Helwan
                       67.8
                                                                        13 37
                                                                                 _{\mathrm{PP}}
Ksara
                       70.6
Sitka
                       71.5
                             326
                       75.1
                             334
College
New Delhi
                  N. 104.6
                                                                                         61.8
Colombo
                     118.7
                                  e 18 16? [-34]
  Additional readings :-
     Bermuda i = 7m.55s.
    Weston e = 6m.15s.
    Philadelphia i = 7 \text{m.} 0 \text{s., } c = 12 \text{m.} 16 \text{s.}
    Vermont e = 7m.9s., 11m.25s., and 12m.56s.
    Columbia e = 9m.21s. and 13m.34s.
    Granada PPP =9m.44s., SS = 16m.8s., SSS = 16m.41s.
    Chicago e = 11m.7s, and 15m.26s.
    St. Louis iPZ = 7m.54s, and 7m.57s, iZ = 8m.45s, eS_cP?E = 13m.57s, eSS?N =
         17m.13s., eE = 18m.5s.
    Florissant eZ = 8m.38s., eSS?N = 16m.52s., eE = 18m.6s.
    Tortosa PSE = 14m.30s., SSE = 16m.57s.
    Kew eZ = 9m.31s.?, eSSNZ = 18m.31s.
    Huancayo eP_cP = 9m.41s.
    Stuttgart iPZ = 9m.2s., ePcP?Z = 10m.19s.
    Cheb e = 14m.36s.
    Upsala eE = 9m.54s., iN = 17m.47s.
```

110

May 6d. Readings also at 2h. (Stuttgart, Tucson, Riverside, Haiwee, Tinemaha, Mount Wilson, and Pasadena), 6h. (Wellington, Riverview, and Alicante), 11h. (Alicante), 17h. (Pasadena, Palomar, Tinemaha, Haiwee, Riverside, Tucson, St. Louis, Stuttgart, and Auckland), 19h. (Huancayo, Stuttgart, and near Malaga).

Berkeley iE = 11m.3s. and 15m.33s., iZ = 15m.36s., iN = 15m.40s and 20m.0s., iZ =

Long waves were also recorded at La Plata, Tananarive, Riverview, and Wellington.

May 7d. 15h. Aleutian Islands. The observations are all in nearly the same azimuth.

```
College eP? = 11m.49s., e = 12m.22s., eS = 13m.6s., eL = 13m.21s.
Victoria e = 16m.0s., L = 20m.
Tinemaha iP = 16m.28s.
Haiwee iP = 16m.34s.
Pasadena iPZ = 16m.46s., iZ = 17m.9s.
Mount Wilson iPNZ = 16m.47s.
Riverside iPZ = 16m.51s.
Palomar iP = 16m.58s.
Tucson eP = 17m.30s., eL = 31m.36s.
St. Louis iPZ = 18m.15s., ePP?Z = 20m.4s., eSE = 25m.1s., eScSN = 28m.23s., eLE =
    32.7m.
Fordham e = 19m.8s., eL = 37m.18s.
Weston e = 19m.13s., eL = 35m.53s.
Saskatoon e = 21m., L = 25m.
Stuttgart eZ = 21m.27s. and 21m.33s.
Florissant eN = 25m.23s., eS_cSN = 28m.22s.
Philadelphia e = 26m.46s, and 29m.9s., eL = 35m.34s.
Bombay iN = 33m.43s.
Long waves were also recorded at Scoresby Sund, Kew, and other American stations.
```

- May 7d. Readings also at 0h. and 3h. (Kew), 6h. (Alicante), 10h. (near Bucharest), 18h. (Riverview, Auckland, and Wellington), 20h. (near Bogota), 22h. (Stuttgart), 23h. (Tucson, Mount Wilson, Palomar, and Riverside).
- May 8d. Readings at 0h. (near La Paz), 2h. (Stuttgart), 3h. (Scoresby Sund), 4h. (near Fort de France), 7h. (Riverview), 8h. (Tucson, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 10h. (Bombay, Calcutta, New Delhi, De Bilt, Uccle, and Kew), 12h. (Bombay, Calcutta, New Delhi, De Bilt, and Upsala), 16h. (Christchurch, La Plata, Tucson, and Palomar), 18h. (Stuttgart), 21h. (Mizusawa).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

May 9d. 14h. 29m. 49s. Epicentre 3°·1N. 74°·8W.

Felt throughout Colombia, particularly at Sibunday, Poparjah, Cari, Pereira, Puerto Lopez, Acacia, Rorira, Ibague, Junin, Bogota.

Epicentre 3° 5N. 75° 5W. Magu VI (Gutenberg).

111

Mapa sismico y tectonico de Colombia (Banco de la República, Bol. gráfico 7, febrero de 1947).

$$A = +.2618$$
, $B = -.9636$, $C = +.0537$; $\delta = -5$; $h = +7$; $D = -.965$, $E = -.262$; $G = +.014$, $H = -.052$, $K = -.999$.

		^	Az.	P.	O-C.	s.	0 -C.	Su	pp.	L.
			0	m. s.	s.	m. s.	s.	m. s.		m.
Bogota		1.9	26	i 0 31	- 3	i 1 2	+ 3	_		
		7.5	322	e 1 58	+ 5	i 3 22	$^{+}_{+}$ $^{3}_{2}$	_	-	* 25
Balboa Heights			184	e 3 35	+ 5 - 1	i 6 14	$-1\overline{1}$	e 4 14	\mathbf{PP}	i 7.7
Huancayo		15.1			100000	1.00	-20	e 5 49		e 7·5
San Juan		17.4	28	e 4 4		e 6 59		C O EU	افساد	
Fort de France		17.7	52	e 4 4	- 6		-	5. E-36.		
La Paz		20.6	161	4 48	+ 5	i 8 36	+ 7		_	10.8
Philadelphia		36.7	ô	e 7 8	- 2	e 12 52	- 2	e 7 54	PP	e 15.0
St. Louis		38.1	340	e 7 19	- 3	i 13 10	6	e 7 30		
	and and	38.3	340			i 13 13	- 6	e 16 14	$_{ m SS}^{ m pP}$	
Florissant	E.			- 12 24	s	(e 13 34)		0 10 11	-	i 20·2
Rio de Janeiro		40.2	132	e 13 34		(6 19 94)	- 11			1 20 2
Ottawa		42.1	359		+	e 14 11	- 5	e 17 11	SS	22.2
Tucson		44.5	315	e 8 15	0			e 9 1	PP	e 21·4
- T	z.	49.5	313	i 8 54	0	- Telephone I		i 10 15	PP	
Dimondido	z.	50.1	313	e 8 59	ŏ					
10 (CC) (CC) (CC) (CC) (CC) (CC) (CC) (CC	L.	50.8	313	i 9 4	ŭ			i 9 38	8	e 22·0
Pasadena		30.9	313	13 4	U	34743			*.	0 0
Mount Wilson	z.	50.8	313	e 9 5	+ 1		****	2.55	1	277
Tinemaha	z.	52.3	316	e 9 16	+ 1					
Berkeley		55.5	315	-	Section in the	i 17 26	+ 2	-	1	e 23·7
Victoria		61.3	325	_	-	e 20 6	$\mathbf{s_cs}$		_	32.2
Scoresby Sund		75.3	16		" =	21 23	3	-	-	

Additional readings:—
Bogota iS?=1m.6s.

Huancayo i = 4m.22s. St. Louis eSS = 15m.33s.

Tucson e = 8m.26s. and 11m.18s.

Palomar iZ =9m.6s.

Long waves were also recorded at Bermuda, La Plata, Kew, De Bilt, Cheb, Wellington, and Riverview.

- May 9d. Readings also at 10h. (Tucson, Riverside, Mount Wilson, Tinemaha, Palomar, and Pasadena), 11h. (Riverside, Mount Wilson, Tinemaha, Palomar, Pasadena, Zürich, Stuttgart, and Ebingen), 13h. (Wellington, Calcutta, New Delhi, Bombay, and Colombo), 14h. (Ksara), 15h. (Wellington), 17h. (Alicante), 19h. (Stuttgart, Zürich, Neuchatel, Basle, and St. Louis), 21h. (Stuttgart, Helwan, Bucharest, and Ksara).
- May 10d. Readings at 9h. (Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 14h. (Stuttgart), 15h. (Alicante), 17h. (Bombay and New Delhi), 18h. (De Bilt, Kew, and near Istanbul), 21h. (Tucson, Mount Wilson, Pasadena, Palomar, and Tinemaha), 22h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and near La Paz).
- May 11d. Readings at 0h. (Tucson, Mount Wilson, Palomar, and Riverside), 4h. (near Mizusawa), 5h. (Calcutta and Almeria (2)), 7h. (Istanbul and Riverview), 8h. (Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, St. Louis, Huancayo, and La Paz), 12h. (Istanbul), 14h. (Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, and near La Paz).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

112

May 12d. 7h. 2m. 2s. Epicentre 10°.5S. 161°.5E. (as on 1937 Sept. 15d.).

A = -.9327, B = +.3121, C = -.1811; $\delta = +13$; h = +6; D = +.317, E = +.948; G = +.172, H = -.057, K = -.984.

		Δ	Az.	Р.	0 - C.	S.	0 - C.	Su	p.	L.
		- 0	O.	m. s.	8.	m. s.	s.	m. s.	100000000	m.
Brisbane		18.7	204	i 4 24	+ 2	i8 2	+14	_	-	i 9.8
Riverview		25.1	199	i 5 31a	+ 3	i 9 59	+ 8	1 10 57	SS	e 12·4
Sydney		25.1	199	e 7 46	3	Test official		**************************************		
Auckland		28.9	159	al-may.	_	12 58?	Q	1 	-	16.5
Wellington		32.8	161	6 35 k	- 2	12 3	+ 9	7 28	\mathbf{sP}	16.0
Christchurch		34.3	165		-	12 8	- 9	14 32	Q	17.4
Pasadena	Z.	87.9	55	e 12 59	+ 6		-	-		e 39·0
Mount Wilson	Z.	88.1	55	e 12 51	- 3		_		****	-
Riverside	Z.	88.6	55	e 12 54	- 2		_		-	
Tinemaha	Z.	88.7	52	e 12 59	+ 2		-		_	_
Palomar	Z.	88.88	56	i 12 58	+ 1		_	-	-	-

Additional readings :-

Riverview iN =10m.41s.

Wellington iZ = 8m.38s., $P_cP?Z = 9m.33s.$, sSZ = 12m.53s., Q = 15.0m.

Mount Wilson iZ = 12m.58s.

Palomar eZ = 13m.2s.

Long waves were also recorded at Arapuni, Tucson, and St. Louis.

May 12d. Readings also at 7h. (near Fort de France), 11h. (near Balboa Heights), 14h. (Tucson, Mount Wilson, and Tinemaha), 15h. (Istanbul), 20h. (Fresno, near Branner, Lick, and near Malaga), 21h. (De Bilt, Strasbourg, and Stuttgart).

May 13d. Readings at 2h. (La Paz, St. Louis, Tucson, Mount Wilson, and Palomar), 10h. (Bogota and near Balboa Heights), 14h. (Stuttgart, Helwan, and near Ksara), 15h. (Kew), 16h. (near Branner), 20h. (Mizusawa), 22h. (Florissant, St. Louis, Tucson, Palomar, Riverside, Tinemaha, Saskatoon, and Sitka), 23h. (La Paz, Rapid City, and near Malaga).

May 14d. 8h. 51m. 36s. Epicentre 22° 7S. 179° 4E. Depth of focus 0.080.

A = -.9234, B = +.0097, C = -.3837; $\delta = -1$; h = +4; D = +.010, E = +1.000; G = +.384, H = -.004, K = -.923.

		Δ	Az.	Ρ.	O-C.	s.	O-C.	Sup	pp.
		0	D	m. s.	s.	m. s.	s.	m. s.	
Apia		12.2	45	i 2 38	- 3	-			
Auckland		14.6	195	3 03	- 5	5 40	+ 5		-
Arapuni		15.7	191	e 2 243	3		·	-	-
New Plymouth		16.9	194	3 33	+ 5	6 24	+ 8	i 3 45	PP
Wellington		18.9	192	3 47k		6 44	+ 8 - 6	14 4 ?	$s_{o}s$
Brisbane	N.	24.3	254	i 4 36	0	i 8 15	- 3	-	- 12
Riverview		27.1	239	i 5 1 a	0	i 9 2	U	i 7 42	$P_{c}P$
Berkeley		81.4	44	i 11 22k	+ 1	e 20 36	-12	i 13 26	pP
La Jolla	Z.	81.9	51	e 11 23	- 1		-		-
Pasadena	A. 575 A.	81.9	49	e 11 23k	- 1	i 20 55	+ 2	i 13 29	\mathbf{pP}
Mount Wilson	z.	82.1	49	i 11 25k	0		-	i 13 30	\mathbf{pP}
Palomar	(=5511)	82.4	50	i 11 27k	+ 1	-		i 13 31	\mathbf{pP}
Riverside	Z.	82.4	49	i 11 26	0		-	i 13 32	pP
Haiwee	90000	83.2	47	i 11 29	-1	-	-	e 13 35	\mathbf{pP}
Tinemaha	z.	83.5	47	i 11 32k	0			i 13 37	\mathbf{pP}
Tucson		86.2	53	i 11 46	+ 1	e 21 43	+ 9	e 13 52	\mathbf{pP}
Copenhagen		145.7	347	i 18 37	[0]		*********		
Stuttgart	z.	152.9	346	e 18 46	[- 2]	-	-	e 21 7	pPKP

Additional readings :-

New Plymouth i = 7m.56s. Wellington iZ = 6m.17s., 7m.22s., and 7m.32s.

Riverview is SEN = 12m.2s., iS $_{c}SE = 14m.43s.$ Berkeley eSE = 20m.48s., iZ = 21m.50s., iEN = 25m.24s.?.

Stuttgart eZ = 18m.54s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

113

May 14d, 10h, 54m, 26s. Epicentre 14°-6S, 175°-1W. Depth of focus 0.010.

$$A = -.9646$$
, $B = -.0827$, $C = -.2505$; $\delta = +4$; $h = +6$; $D = -.085$, $E = +.996$; $G = +.250$, $H = +.021$, $K = -.968$.

	Δ	Az.	P. m. s.	0 - C.	s. m. s.	O -C.	m. s.	ipp.	L. m.
Apia Auckland Wellington Brisbane N		$\begin{array}{c} ^{\circ}_{76} \\ 200 \\ 197 \\ 241 \\ 221 \end{array}$	i 0 52 a 5 11 5 39 i 7 47	+ 1 + 5 - 5 PPP	i 1 28 9 16 12 22? e 14 4	- 1 + 4 SSS SSS			
Riverview Santa Barbara Berkeley Lick La Jolla Pasadena	36·0 71·7 72·0 72·1 72·6 72·6	231 46 42 42 48 46	i 11 14 i 11 17k e 10 15 i 11 20 i 11 18k	$\begin{array}{c} + & 1 \\ + & 2 \\ - & 61 \\ + & 1 \\ - & 1 \end{array}$	e 12 31 e 20 26 i 13 58	+ 7 - 1 - PP	e 12 2 e 11 57	PP PP	e 15·7 e 30·2 e 30·1
Mount Wilson Z. Fresno N. Riverside Palomar Haiwee	T. C.	46 43 46 48 45	i 11 20k e 11 22 i 11 22 i 11 21k i 11 27	$\begin{array}{c} & 0 \\ + & 2 \\ 0 \\ - & 1 \\ + & 1 \end{array}$			i 13 58 e 14 6 i 14 4	PP PP	
Tinemaha Tucson Victoria Florissant St. Louis	74·2 77·1 77·8 95·0 95·0	200 (200)	i 11 28k i 11 44 e 13 13 e 13 12 i 13 12	0 0 ? - 1 - 1	e 22 58 e 23 33 e 23 33	PPS [- 5] [- 5]	e 17 1 e 17 0	PP PP	e 35·9
Strasbourg Stuttgart z. Clermont-Ferrand Granada Malaga	145.0 145.7 148.9 156.3 156.4	356 354 2 17 18	e 19 28 i 19 32 i 19 43 i 20 20k i 20 3a	[+ 2] [+ 5] [+10] PKP ₂ [+20]	i 44 43 e 26 50	SS [+12]	e 20 19 20 43 21 30	pPKP pPKP pPKP	e 85·5

Additional readings :-

Riverview iScSE = 17m.1s.

Tucson i = 11m.54s., e = 12m.46s.

Granada iPP = 23m.58s., pPP = 24m.19s.

Malaga PP = 23m.56s., i = 35m.20s., PPS = 37m.1s.

May 14d. Readings also at 4h. (Istanbul), 6h. (Haiwee, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and Stuttgart), 8h. (Palomar, Pasadena, Riverside, Tinemaha, Tucson, Mount Wilson, and La Paz), 14h. (Rapid City), 17h. (Bogota, Huancayo, St. Louis, Tucson, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 19h. (near Ksara).

May 15d. 19h. 18m. 36s. Epicentre 5°·1S. 153°·1E. (as on 1941 Jan. 24d.).

$$A = -.8883$$
, $B = +.4507$, $C = -.0883$; $\delta = 0$; $\hbar = +7$; $D = +.452$, $E = +.892$; $G = +.079$, $H = -.040$, $K = -.996$.

		Δ	Az.	Р.	O-C.	S.	O -C.	Sur	p.	L.
		0	•	m. s.	s.	m. s.	s.	m. s.		m.
Brisbane		22.3	182	1 4 54 a	- 7	i 9 3	+ 1	i 9 31	SS	i 11·1
Riverview		28.6	184	e 6 4	+ 4	e 11 4	+16	10.		e 13.5
Sydney		28.6	184	_		e 10 0	-48		-	
Auckland		37.3	152	7 9	7	12 59	- 5	15 54?	Q	-
Wellington		40.9	155	7 59	+13	13 54	- 4	9 39	\mathbf{PP}	18-4
Christchurch		42.0	159	7 25	-29	14 0	-14	16 42	SS	20.6
Mizusawa	E.	45.4	348	(e 8 24)	$+^{-2}$	e 8 24	P			
Honolulu	-30	54.8	60			e 16 54	-20	e 23 29	SS	e 26.8
New Delhi	N.	80.1	299	<u> </u>	-	e 22 11	- 7		_	
Bombay	993	82.5	290	e 12 26	0	i 22 37	- 5	****	-	
Sitka		84-4	32	-	*******	e 23 2	+ 1	-	-	e 35·8
Berkeley		88.9	53	i 13 0 a	+ 2	i 23 51	+ 7	i 29 52	SS	e 40.5
Victoria		89.5	42			e 23 33	1+ 31			43.4
Pasadena		91.8	57	i 13 11	0	_		_		e 37.5
Mount Wilson	z.	91.9	57	i 13 13	+ 2		-			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

114

		Δ	Az.	Р.	0 - C.	s.	0 - C.		pp.	L.
2.84 2.33		0	0	m. s.	8.	m. s.	8.	m. s.		m.
La Jolla		92.4	58	e 13 17	+ 3	_	_	_	_	_
Riverside	Z.	92.4	57	e 13 14	0	· .	-	-	72 	-
Palomar		92.8	58	e 13 6	-10			e 16 55	\mathbf{PP}	
Tueson		97-8	58	e 14 7	+29	e 37 37	SSS	e 17 44	\mathbf{PP}	e 45.3
Florissant	E.	113.8	50	_	-	e 26 43	$\{+11\}$	e 29 19	PS	e 52·4
Ottawa		121.6	38	e 18 55	[-1]		_			61.4
Weston		125.9	40	19 5	[+1]		_		-	e 52.7
Stuttgart		126.8	331	e 19 4	[-2]	e 27 54	$\{-5\}$	e 21 5	PP	e 61.4
Kew		128.8	338		portion.	e 22 30	PKS	e 31 9?		e 62·4
La Paz	Z.	133.9	120	i 22 53	PKS	-				68.4
San Juan		139.5	67	e 22 52	PKS	-	-	e 39 2	SS	e 67·2
Malaga		142.4	330	e 19 33	[-2]	e 26 12	[-31]			e 78·4
Granada		142.5	330	19 35a	[0]	27 3	[+20]	23 24	PKS	74.5

Additional readings :—

Brisbane iPN =4m.57s., ePE =5m.0s., eSSN =9m.38s.

Riverview iE = 10m.45s., 11m.58s., and 12m.33s.

Wellington Q = 17m.6s.

Christchurch QEN = 17m.32s.

Bombay eSN = 22m.40s., iEN = 22m.55s.

Berkeley iE = 23m.3s.

Pasadena eZ=13m.37s.

Palomar i = 13m.48s.

Stuttgart eSP? = 30m.54s., eSP?Z = 31m.2s., eSS = 38m.18s., eSSS = 43m.24s.

La Paz iZ = 23m.7s.

Granada SKKS = 29m.32s., SKSP = 33m.20s.

Long waves were also recorded at Huancayo and other American and European stations.

May 15d. Readings also at 0h. (near Lick), 5h. (near Bogota), 21h. (Bucharest, Ksara, near Istanbul, and near Mizusawa), 23h. (near Mizusawa).

May 16d. Readings at 0h. (near Berkeley, Branner (2), Lick, and San Francisco), 1h. and 5h. (near Mizusawa), 7h. (Stuttgart and near Belgrade), 11h. (Istanbul), 12h. (Mizusawa), 19h. (near Apia), 22h. (Alicante (5) and near Tananarive).

May 17d. Readings at 6h. and 6h. (near Mizusawa), 5h. (Alicante (2)), 7h. (Tinemaha, Mount Wilson, Pasadena, Haiwee, Tucson, St. Louis, and Kew), 8h. (Harvard, San Juan and Fort de France), 16h. (near Mizusawa), 20h. (Tucson, Tinemaha, Mount Wilson, Pasadena, Haiwee, Riverside, Palomar, and near Malaga).

May 18d. 4h. 43m. 17s. Epicentre 2°.0S. 152°.3E.

$$A = -.8849$$
, $B = +.4646$, $C = -.0347$; $\delta = +11$; $h = +7$; $D = +.465$, $E = +.885$; $G = +.031$, $H = -.016$, $K = -.999$.

		Δ	Az.	P.	0 - C.	s.	O-C.	Su	pp.	L.
				m. s.	8.	m. s.	s.	m. s.		m.
Brisbane		25.3	179	e 5 25	- 5	i 10 2	+ 8	e 9 28	$P_{c}P$	
Riverview		31.7	182	i 6 27k	0	i 11 35	- 2	17 34	\mathbf{PP}	i 15.2
Auckland		40.4	151	7 18	-23	i 13 38	-12	17 5	SSS	21.0
Arapuni		41.8	152	7 43?	-10	-		_		19.7
Wellington		44.0	156	8 8	- 3	17 18	SS	10 21	PPP	27.7
Christchurch		45.1	159			14 54	- 5	18 18	SS	23.5
Perth		45.4	225					i 19 31	SSS	
Honolulu		54.0	62	e 10 1	+33	e 17 3	0	e 11 59	\mathbf{PP}	e 24·4
Colombo	E.	72.8	278	11 43?	+11		-		-	
Hyderabad	65000	75.2	289	e 11 46	0	21 26	+ 1	21 58	PS	34.4
Kodaikanal	E.	75.4	282	i 11 59	+12			-		-
New Delhi	N.	77.9	299	e 12 1	0	i 21 54	0	22 21	PS	****
College	323,634	79.5	22	e 12 3	- 7	e 22 6	- 5			e 38·1
Bombay		80.7	289	i 12 17	+ 1	i 22 25	+ 1	e 23 22	PPS	44
Sitka		82.3	32	e 12 24	- 1	e 22 35	- 5	e 27 43	SS	e 34·2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

115

		Δ	Az.	Р.	0 – C.	s.	O - C.	Carlot and	pp.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Ukiah		87.0	51			e 23 30	7.	e 28 2	7	e 38·8
Berkeley		87.6	53	e 12 52a	+ 1	i 23 19	1+ 11	i 16 13	\mathbf{PP}	e 39·9
Victoria		87.7	42	10.00	_	e 23 19	[+ 1]		-	36.7
Santa Clara		87.8	53	e 12 52	0	e 23 19	1 01	10.00		e 41·3
Pasadena		90.7	56	e 13 0	- 6	i 23 38	[+ 1]	e 16 37	\mathbf{PP}	e 40·7
	z.	90.7	54	e 13 9	+ 3		_	_		-
Mount Wilson	z.	90.8	56	i 13 8	+ 2			-		
	z.	91.4	56	e 13 10	+ 1		-	-	-	
	Z.	91.8	57	i 13 13	+ 2		-	-		
Butte		95.0	44	e 22 33	¥	**************************************	2000		5238	e 42·0
Logan		95.7	48			e 24 6	[+ 1]	e 24 34	SKKS	e 42·2
Salt Lake City		95.7	49			e 24 10	[+5]	and the same		e 43.8
Bozeman		96.1	44	e 17 13	PP	e 24 9	[+ 2]	e 26 2	$_{\rm PS}$	e 44·3
Tueson		96.9	58	e 13 30	- 4	e 26 16	PS	e 17 26	\mathbf{PP}	e 38·5
Saskatoon		98-4	38		-	e 24 18	[-1]	-	_	42.7
Rapid City		101.8	45		25- 8	e 24 35	[-1]	e 27 9	PS	e 52·0
Scoresby Sund		111.5	358	19 25	PP			28 50	PS	54.7
Florissant		112.3	49	e 19 21	PP	e 25 22	f 01	e 28 54	PS	
St. Louis		112.5	49	e 19 22	PP	e 25 20	1 - 21	i 28 54	PS	e 51·7
Chicago		113.4	45	-	-	e 25 24	[-2]	e 29 2	$\mathbf{P}\mathbf{S}$	e 52·2
Copenhagen		117.5	336	e 20 5	\mathbf{PP}			36 18	SS	
Ottawa		119.7	37	20 13	PP	25 49	[0]	29 51	PS	55.7
Seven Falls		121.6	33	7 <u>4</u>		e 25 37	1 - 181			58.7
De Bilt		123.0	337	e 20 43	PP					e 56.7
Fordham		$123 \cdot 2$	40	e 20 40	\mathbf{PP}	e 25 50	[-10]	_	(3) 1	e 57·7
Stuttgart		123.7	331	e 19 0	[0]	e 27 49	$\{+10\}$	e 20 45	$\mathbf{p}\mathbf{p}$	e 63·7
Weston		124.0	37	e 19 6	[+5]	e 30 31	PS	e 20 40	PP	
Uccle		124 4	337	e 20 43?	PP	e 30 433		e 37 431		e 56.7
Kew		125.6	339	e 19 5	[+1]	e 32 83		e 21 19	\mathbf{PP}	e 46.7
Clermont-Ferrand	33	128.7	332	e 21 12	PP			38 41	SS	
Huancayo		130.7	107			e 22 45	SKP	e 39 10	SS	e 63·4
Bogota		133.6	85	e 19 22	[+ 3]	e 22 52	SKP		(W <u>168)</u>	42 04 A
Tortosa		133.7	329		100	i 22 54	SKP	24 10	9	
Bermuda		133.9	45	e 21 56	PP	e 28 34	$\{-10\}$	e 22 57	SKP	e 65.5
La Paz		136.1	116	i 19 25	[+2]	26 25	[-8]	23 1	\mathbf{SKP}	68.8
Granada		138.5	331	19 31 a	[+ 3]	23 0	SKP	22 19	\mathbf{PP}	68.2
San Juan		139.0	63	e 19 29	1 01	e 29 11	$\{-4\}$	e 23 0	SKP	e 65.8
Malaga		139.3	331	e 19 13	1-161	e 26 17	1 - 211	19 28	pPKP	65.7
San Fernando		140.4	332			e 23 29	SKP	e 41 53	SSP	74.7
Fort de France		144.6	67	e 19 29	[-10]				-	
Additional read Brisbane iPN										

```
Brisbane iPN =5m.288.
Riverview iN = 11m.28s., iE = 13m.46s.
Auckland i = 17m.48s.
Wellington P_cPZ = 8m.31s., iZ = 9m.5s., i = 20m.18s., SS? = 21m.18s., e = 21m.43s.?
    SSS? = 23m.13s., Q = 24.6m.
Christchurch QN = 19m.58s.
New Delhi iN = 12m.54s. and 23m.2s., SSN = 27m.0s.
Bombay eN = 26m.7s.
Sitka iS = 22m.49s.
Berkeley iZ = 16m.37s., iPPN = 17m.11s., iZ = 23m.23s., iE = 35m.13s., iN = 36m.27s.
    iE = 38m.37s., iN = 38m.49s., eZ = 39m.39s.
Pasadena iZ = 13m.7s., iPPPZ = 19m.5s., iEZ = 25m.7s., iZ = 26m.7s.
Logan e = 27m.39s.
Bozeman e = 30 \text{m.} 27 \text{s.}
Rapid City eSS = 32m.27s.
Florissant eZ = 19m.54s., eSKKSE = 26m.27s., eSSSE = 39m.14s.
St. Louis eSKKSE = 26m.28s., eSSSE = 39m.27s.
Copenhagen 20m.31s, and 30m.19s.
Ottawa SKKS = 27m.13s., SS = 36m.43s.
Stuttgart ePPPZ = 23m.17s., eSS = 37m.25s.
Uccle e = 26m.43s.?.
Kew eS?Z = 30m.17s., eSS?Z = 39m.43s.?.
Huancayo e = 23m.25s., ePS = 32m.26s.
Granada iSS =40m.37s.
San Juan e = 33m.50s, and 34m.57s.
Malaga PP = 22m.22s., P_cP_rPKP = 27m.35s., e = 31m.38s., PPS = 34m.44s., SKKKS = 34m.44s.
    37m.36s., SS = 40m.30s., SKS,SKS = 42m.34s.
Long waves were also recorded at Sydney.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

Helwan

116

May 18d. 19h. 55m. 6s. Epicentre 45°-0S. 110°-7W.

A = -.2508, B = -.6637, C = -.7047; $\delta = 0$; D = -.935, E = +.353; G = +.249, H = +.659, K = -.710. Supp. L. O-C.AZ. m. m. s. m. s. 54Huancayo La Paz Christchurch Tueson 354 e 12 78.9Riverside Z. 354 $79 \cdot 1$ Mount Wilson Z. ++ i 12 354 $79 \cdot 1$ Pasadena e 12 35481.0 Haiwee i 12 23 354 $82 \cdot 0$ Tinemaha SS + e 12 41 85.316 St. Louis SS e 27 54? e 12 41 16 85.4 Florissant SS e 30 41 e 44.2 28 91.6Fordham e 60.9 e 40 24? 3] i 22 58 PKS56 134.8 Kew 62 139.7Stuttgart i 19 50 k 146.6 104

Additional readings :-La Paz iSZ? = 14m.46s. Christchurch iEN = 23m.18s.

Kew eZ? = 35m.29s. Helwan eZ = 20m.59s.

Long waves were recorded at Wellington.

May 18d. Readings also at 0h. (Ferndale, Tucson, Tinemaha, and near Bogota), 8h. (near Bogota), 11h. (near Granada, Malaga, Almeria, and Toledo), 12h. (Tacubaya). 14h. (Alicante), 17h. (near Bogota and near Branner).

May 19d. 0h. 19m. 17s. Epicentre 2°-0S. 152°-3E. (as on 18d.).

. A		3849, 1	3 = +	·4646, C=	- 0347	7; δ=	+11;	h=+7		
		Δ	Az.	Р.	o-c.	_s.	O-C.	- 10 m S - 12 m S - 1	pp.	L.
			0	m. s.	8.	m. s.	в.	m. s.	T	m.
Brisbane	E.	25.3	179	e 5 31	+ 1	i 9 53	- 1	i 9 28	$P_{c}P$	_
		25.3	179	1 5 25k	- 5	i 10 2	+ 8	i 9 23	$P_{c}P$	
Riverview		31.7	182	i 6 27k	0	i 11 36	- 1	i 11 53	8S	e 14·8
Sydney		31.7	182	e 5 43	-44	i 11 40	+ 3	e 13 10	SS	e 15·2
Shizuoka		39.0	343	e 8 14	+44	14 14	+45	1872 - T. S.	_	_
SHIZUOKA		00 0	0.10			180000000000000000000000000000000000000	100 0000			
Miyazaki		39.1	332	7 51	+20	13 36	+ 5	-	_	
		39.5	335	e 7 37	+ 3	13 37	0		_	
Koti		40.4	151	7 28	-13	13 43	- 7	i 9 31	\mathbf{PP}	20.7
Auckland		41.0	332	7 56	+10	13 54	- 5		-	_
Hukuoka					1.1	13 59	- 6	_	_	-
Sendai		41.4	348	e 7 51	т.	10 00	U			9000000
		41.0	152	2227	1	13 43	-28		-	19.7
Arapuni		41.8		8 17	+21	17 44	SS	-	-	
Mizusawa	N.	42.2	348		+17	15 2	+33	200		
Akita		43.0	347	8 20	Charles of the Control of	14 33	-10	8 36	nP	21.7
Wellington		44.0	156	8 20 8 7k 8 17	- 4		- 10	10 11	$_{\mathrm{PP}}^{\mathbf{PP}}$	21.2
Christchurch		45.1	159	8 17	- 3	14 50	- 5	10 11	•	~ L
The state of the s		15.4	005	8 35	+13	15 5	+ 1	18 43	SS	-
Perth		45.4	225		- 4	the state of the state of the state of	-12	e 11 59	$\widetilde{\mathbf{P}}\widetilde{\mathbf{P}}$	e 24·2
Honolulu		54.0	62			e 16 51		i 21 1	ScS	
Calcutta	N.	66.9	296	e 12 23				1 41 1	565	
Colombo	E.	72.8	278	11 31	- 1	01.07	0	21 58	PS	36.6
Hyderabad		$75 \cdot 2$	289	11 45	1	21 25		21 00	10	00 0
Kodaikanal	E.	75.4	282	e 13 39	2	-			-	
Control of the Contro	The state of the s	77.9	299	e 12 6	+ 5	i 21 54	0	22 25	PS	
New Delhi	N.	79.5	22	e 12 11	+ 1	e 22 3	- š	e 27 34	SS	e 34·1
College	-			i 12 21	$+ \frac{1}{5}$	120 CM 120 CM 120 CM	- 2	23 12	PS	
Bombay	E.	80.7	289		T 3	Selection of the Selection	- î	23 18	PS	11.0
	N.	80.7	289	e 12 19	- 3	e 22 23		20 10	1 13	(

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	P.	O –C.	s. m. s.	O -C.	m. s.	pp.	L.
Sitka Ukiah Berkeley Victoria Santa Clara		82·3 87·6 87·6 87·7	32 51 53 42 53	m. s. e 12 23 e 12 51 i 12 53 a 12 50 e 12 59	- 2 + 3 + 2 - 2 + 7	e 22 39 e 23 21 i 23 21 23 26 e 23 28	- 1 {+ 1} [+ 3] {+ 1} {+ 2}	m. s. i 23 28 e 16 16 i 18 7	PS PP PPP	e 34·2 e 33·1 e 39·7 e 39·8
Mount Wilson	Z. Z. Z.	88·4 90·7 90·7 90·8 91·0	43 56 54 56 54	e 13 0 e 13 3 e 13 7 e 13 3	- 6 - 3 + 1 - 4	e 24 40 i 23 35	PS [-2]	i 16 55	PP	e 41·4 e 39·6
Riverside Palomar Butte Logan Salt Lake City	z.	91·4 91·8 95·0 95·7 95·7	56 57 44 48 49	e 13 6 e 13 12 e 22 319 e 13 41 e 17 22	- 3 + 1 + 12 PP	i 23 49 e 23 59 e 24 10	[+6] $[-6]$ $[+5]$	e 30 6? e 17 12 e 26 9	SS PP PS	e 39·8 e 42·2 e 41·3
Bozeman Tucson Saskatoon Rapid City Tananarive		96·1 96·9 98·4 101·8 103·3	58 38 45 250	e 17 13 e 13 32 e 18 10	PP 2 PP	e 24 8 e 24 16 e 24 22 e 24 31	[+ 1] [+ 5] [+ 3] [- 5]	e 26	PS PS PS	e 40.9 e 44.0 45.7 e 32.8 49.7
Lincoln Scoresby Sund Florissant St. Louis Upsal &		107 · 2 111 · 5 112 · 3 112 · 6	358 49 49 337	e 17 25 19 24 e 19 22 e 19 24 e 13 23	[-62] PP PP PP	25 20 e 25 26 e 25 20 e 26 43	$[+ \frac{2}{4}]$ $[- \frac{2}{2}]$ $\{+20\}$	e 23 12 28 50 e 28 52 i 28 57 e 19 43?	PS PS PP	e 51·1 52·7 e 52·7 e 52·7 e 47·7
Chicago Copenhagen Helwan Potsdam Ottawa	z.	113·4 117·5 117·6 119·4 119·7	336 302 333 37	e 19 29 e 20 7 e 18 52 20 9	PP (+ 4) PP	e 25 28 29 55 e 36 43 25 51	[+ 2] PS [+ 2]	e 29 0 36 19 e 20 4 29 55	PS PP PS	e 51·2 e 57·7 e 55·7
Prague Aberdeen Seven Falls Vermont Philadelphia		120·3 121·3 121·6 121·7 122·8	330 344 33 37 42	e 19 19 i 22 1 20 37 e 20 30 e 20 35	[+ 26] PP PP PP	e 30 19 25 45 i 25 55 e 26 2	PS [-10] [-1] [+3]	e 20 43 27 25 8 e 30 22 e 30 17	PP SKKS PS PS	e 56·7 e 54·7 e 51·0 54·3
De Bilt Fordham Stuttgart Weston Stonyhurst		123.0 123.2 123.7 124.0 124.3	337 40 331 37 343	e 19 13 e 20 40 e 18 53 e 20 42 e 20 28	[+14] PP [-7] PP PP	e 25 50 e 37 18 e 26 3	[-10] SS [0]	e 37 13 e 30 30 e 20 52 e 30 26	SS PS PP PS	e 55·7 e 58·2 e 59·4 e 58·3
Uccle Strasbourg Zürich Basle Kew		124·4 124·5 125·0 125·3 125·6	337 332 331 331 339	e 19 4 e 21 45 e 19 0 e 19 40 e 19 87	[+3] $[-2]$ $[+37]$ $[+4]$	e 26 28	- [+20]	e 20 55 e 28 22 e 32 8	PPs PPS	e 55·7 — e 61·7
Paris Clermont-Ferrand Huancayo Bogota Tortosa	E.	126·7 128·7 130·7 133·6 133·7	335 332 107 85 329	e 21 18 e 19 53 e 19 22	PP [+40] [+3]	e 31 54 i 22 45	PS SKP	e 36 43? e 42 14 e 21 47 e 23 54 25 17	PP PPP	e 57·7 e 62·8
Bermuda La Paz Granada San Juan Malaga		133.9 136.1 138.5 139.0 139.3	45 116 331 63 331	e 21 43 i 19 24 e 19 1 e 19 32 e 19 32	PP [+1] [-27] [+3] [+3]	e 28 47 28 40 26 33 e 29 15 41 38	{+3} {-18} [-4] {-3} SSP,	i 22 56 i 22 9 i 21 53 e 22 18 22 52	SKP PP PP PP	e 63·5 64·1 63·1 e 61·6 66·7
San Fernando Fort de France Rio de Janeiro	n.	140·4 144·6 151·0	$332 \\ 67 \\ 149$	e 22 32 e 19 39 e 20 5	PP [0] [+16]	i 23 20		e 41 5 (e 43 3)	$\frac{ss}{ss}$	68·7 e 43·1

Additional readings:— Riverview iPPNZ=7m.31s., iP_cPN=9m.12s., iSN=11m.33s., iZ=12m.13s., iSSSE=13m.44s. Auckland i=11m.28s., 15m.13s., and 16m.43s., sSS?=17m.43s., Q=19m.18s. Wellington sP_cPZ=10m.33s., SS=17m.59s., pSS?=18m.23s., i=19m.33s., Q=20·4m. Christchurch iZ=8m.53s., P_cSE=13m.58s., iEN=15m.46s., SSEN=18m.3s., QEN=18m.50s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

118

```
Perth SSS = 20m.8s.
Hyderabad SSN = 25m.37s.
New Delhi iN = 23m.3s., SSN = 26m.55s.
College e = 12m.37s., 16m.0s., and 26m.29s.
Bombay iSE = 22m.27s., SSN = 27m.42s., SSE = 27m.47s.
Sitka e = 12m.50s., iS = 22m.43s., eSS = 28m.5s.
Ukiah eSS = 29m.8s.
Berkeley iE = 13m.47s., iSZ = 23m.6s.
Pasadena ePPZ = 16m.21s., iZ = 25m.5s., 29m.55s., and 33m.23s.
Logan e = 24 \text{m.} 21 \text{s.}, ePS = 25 \text{m.} 58 \text{s.}, eSS = 31 \text{m.} 2 \text{s.}
Salt Lake City e = 27m.1s.
Bozeman ePP = 17m.29s., eSSS = 35m.27s.
Tucson e = 13m.48s., ePP = 17m.38s., eSS = 31m.33s., eSSS = 34m.43s.
Scoresby Sund SS = 35m.11s.
Florissant eE = 22m.36s., eSKKSE = 26m.28s., eSSE = 34m.51s., eSSSE = 39m.30s.
St. Louis eSKKSE = 26m.30s., eE = 38m.46s., eSSSE = 39m.31s.
Upsala e = 34m.43s.?.
Chicago e = 33m.58s., eSSS = 38m.45s.
Copenhagen 20m.31s, and 27m.46s.
Helwan iN = 27m.55s.
Ottawa SKKS = 27m.15s., SS = 36m.43s.
Prague ePPP? = 23m.31s., e = 32m.43s., eSS? = 37m.1s., eSSS? = 41m.19s.
Seven Falls SS = 37m.37s.
Vermont e = 27m.26s., eSS = 36m.47s.
Philadelphia e = 21m.17s., 27m.38s., and 35m.33s., eSS = 36m.55s.
Fordham ePP = 23m.45s., eSS = 37m.40s.
Stuttgart ePPPZ = 23m.53s., eSS = 37m.23s.
Stonyhurst e = 22m.3s., i = 28m.49s.
Uccle eEN = 19m.328.
Kew ePPZ = 21m.21s., ePPPZ = 24m.53s., eSKKSZ = 27m.46s., eSSZ = 39m.28s.
Huancayo e = 22m.28s., 23m.45s., 30m.6s., and 39m.8s.
Bermuda ePP = 22m.3s., e = 32m.6s., eSS = 40m.9s.
La Paz iPKPZ = 19m.30s., SKP = 23m.2s., PPP = 24m.33s., SSZ = 38m.33s.
Granada S = 30 \text{m.7s.}, PPS = 34 \text{m.3s.}, iSS = 40 \text{m.39s.}
San Juan ePS = 33m.1s., e = 37m.1s.
Malaga PPP = 26m.2s., PPP(\triangle > 180^{\circ}) = 34m.22s., SKS.SKS = 42m.37s.
San Fernando iE = 23m.35s.
Long waves were also recorded at Lisbon and Bergen.
```

May 19d. Readings also at 0h. (near Mizusawa), 3h. (Bucharest), 9h. (near Bogota), 14h. (Harvard), 15h. (near Fort de France), 16h. (Tucson, Palomar, Haiwee, Tinemaha, Riverside, Mount Wilson, Pasadena, Riverview, Wellington, and Auckland), 18h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Haiwee, Palomar and Tucson), 19h. (Tucson, Pasadena, Mount Wilson, Riverside, Tinemaha, Haiwee, and Palomar).

May 20d. 22h. 35m. 31s. Epicentre 50° 0N. 29° 0W. (small foreshock of 20d. 23h.).

$$A = +.5644$$
, $B = -.3128$, $C = +.7639$; $\delta = -7$; $h = -5$; $D = -.485$, $E = -.875$; $G = +.668$, $H = -.370$, $K = -.645$.

		Δ	Az.	P.	$\mathbf{o} - \mathbf{c}$.	s.	$\mathbf{O} - \mathbf{C}$.	L.
		0	0	m. s.	8.	m. s.	s.	m.
Clermont-Ferr	and	21.8	90	4 59	+ 3			-
Malaga		$22 \cdot 1$	118	e 5 2	+ 3			10.5
Stuttgart	7	24.7	78	e 5 23	- 1	e 9 49	+ 5	_
Copenhagen		25.4	61	5 36	+ 5	10. 200 - 20		13.5
St. Louis	Z.	44.1	280	e 8 10	- 2		-	-
Tucson		61 - 1	287	i 10 16	- 2	, — ·	,	-
Tinehama.	Z.	62.3	295	e 10 23	3			
Palomar	7	64.0	909	e 10 36	9	200		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

119

May 20d. 23h. 30m. 22s. Epicentre 50°.0N. 29°.0W. (as at 22h.).

$$A = +.5644$$
, $B = -.3128$, $C = +.7639$; $\delta = -7$; $h = -5$; $D = -.485$, $E = -.875$; $G = +.668$, $H = -.370$, $K = -.645$.

		Δ	Az.	1	٠.	0 - C.	s.	O-C.	Su	pp.	L.
		0	0	m.	8.	8.	m. s.	8.	m. s.	727	m.
Stonyhurst		16.8	67	i 4	1	+ 3	i 7 18	+13	i 4 11	\mathbf{PP}	e 7.6
Aberdeen		17.4	56	i 4	5	- 1		100			e 8.7
Kew		18.2	75	i 4	16	0	_			_	e 9.3
Paris		20.5	83	e 4	387	- 4		•			e 11.6
Scoresby Sund		20.8	7	4	48	+ 3	-	-	AND THE REAL PROPERTY.		9.6
Uccle		21.2	76	e 4	48a	- 1	e 8 48	+ 7	200		e 10.6
San Fernando		21.3	123	4	59	+ 9	(9 1)	+18	S-25		e 11·4
De Bilt		21.5	71	i 4	52	0	e 9 3	+16	. —	-	e 10.6
Clermont-Ferrand		21.8	90	e 4	57	+ 1		-		-	
Malaga	7-0	22.1	118	i 4	59	0	e 8 36	-22	-		10.6
Granada		22.3	116	i 5	1 k	0	i 9 13	+11	05 1110	-	10.1
Strasbourg		23.9	79	e 5	15	- 1		_	1.500	-	
Basle		24.1	83	e 5	19	+ 1		-	2	_	
Stuttgart		24.7	78	e 5	24 k	0	e 9 58	+14	90 11111 4		e 12.5
Zürich		24.8	83	e 5	25	0	. —			_	-
Copenhagen		25.4	61	е 5	32	+ 1		_			13.6
Prague		27.6	73	e 3	38	8	e 10 50	+18			e 13.6
Florissant		44.1	280	e 8	13	+ 1				-	e 24·1
St. Louis		44.1	280	e 8	11	- 1	e 14 56	+11		- (e 22·6
Helwan		49.0	91	i 8	51 k	+ 1	e 16 8	\mathbf{ps}	e 18 48	ss	
Tucson		61.1	287	i 10	18	0	-		-	-	e 30·4
Tinemaha	Z.	62.3	295	e 10	25	- 1		12017	<u> </u>	_	
	Z.	64.0	292	e 10	36	- 2	(1000)			-	
Mount Wilson	z.	64.1	294	e 10	38	0		-		(

San Fernando gives S as PPE. Long waves were also recorded at Upsala and Pasadena.

May 20d. Readings also at 0h. (Tucson, Palomar, Pasadena, and Tinemaha), 1h. (Kew, Stuttgart, Florissant, St. Louis, Chicago, Philadelphia, Salt Lake City, Bozeman, and Tucson), 2h. (Hyderabad), 4h. (Bermuda), 5h. (Pasadena), 7h. (near Mizusawa), 12h. (Palomar, Tucson, Pasadena, Mount Wilson, Riverside, and Tinemaha), 13h. (Helwan), 16h. (Malaga and near Branner), 17h. (Riverview and Tortosa), 21h. (Ferndale, Tucson, Palomar, and Tinemaha), 22h. (De Bilt, Kew, Malaga, and Stuttgart), 23h. (Stuttgart).

May 21d. 0h. 15m. 20s. Epicentre 73°-5N. 9°-5W.

$$A = + .2819$$
, $B = -.0472$, $C = + .9583$; $\delta = +3$; $h = -13$; $D = -.165$, $E = -.986$; $G = +.945$, $H = -.158$, $K = -.286$.

		The same of		Alectroster (II)	Administrate free	CANT OFFI	200000000			
		Δ	Az.	Ρ.	O-C.	s.	$\mathbf{O} - \mathbf{C}$.	Suj	pp.	L.
		•	0	m. s.	8.	m. s.	8.	m. s.		m.
Scoresby Sund		4.9	238	1 17	0	-	_	-	100	2.7
Aberdeen		16.7	165		_	i 6 42	-21	_		4 <u>444.</u> ,
Upsala		17.1	129	e 4 4	+ 2	17 13	+ 1	i7 0	3	2227
Copenhagen		20.0	142	i 4 33	- 4		-12		-	9.7
Stonyhurst		20.0	168	e 7 48	3	e 8 5	-12	_	1	e 9·2
De Bilt		22.4	155	i 4 58	- 4	e 8 45	-19			e 10·7
Potsdam		23.2	144	e 5 10	+ 1	e 9 20	+ 2	e 5 22?	PP	e 13·7
Uccle		23.6	159	e 5 18a	+ 5	e 9 12	-13	_	-	e 10.7
Jena	N.	24.4	146	e 5 19	- 2	**************************************		-	-	-
Paris	5212)	25.3	162	e 5 16	-14	-	-		-	14.7
Prague		25.7	143	e 5 35	. + 2	e 10 1	0		-	e 13·7
Strasbourg		26.1	153	e 5 37	0	e 10 11	+ 4			_
Stuttgart		26.1	151	15 36a	- 1	e 10 8	+ 1			e 13.9
Basle		27.1	154	e 5 45	- 1		-			
Zürich		27.4	153	e 5 50	+ 1		-		-	1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

120

		Δ	Az.	P.	0 -C.	s.	0 -C.	Sup	op.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.	2700	m.
Clermont-Ferrand		28.4	161	e 5 56	- 2			-	(Martina)	
Philadelphia		45.3	260		-	e 15 12	+10			e 18·7
St. Louis		50.8	275	e 9 20	+16		- 300	e 21 27	SS	e 24 · 7
Tinemaha	Z.	59.9	299	e 10 31	+21	2 <u>-2</u>	_			
Mount Wilson	Z.	62.5	298	e 10 48	+20		_			_
Tueson		62.5	290	1 10 46	+18					_

Long waves were also recorded at other European and American stations.

May 21d. 4h. 42m. 0s. Epicentre 10°.9N. 43°.6W.

$$A = +.7114$$
, $B = -.6774$, $C. +.1874$; $\delta = +8$; $h = +6$; $D = -.690$, $E = -.724$; $G = +.136$, $H = -.129$, $K = -.982$.

		Λ	Az.	P.	O-C.	s.	O – C.	Su	pp.	L.
		•		m. s.	8.	m. s.	8.	m. s.	45,45,5	m.
San Juan La Paz		23·0 36·4	$\frac{292}{222}$	e 5 8 i 7 10k	$^{+}_{+}$ $^{1}_{2}$	e 9 16 i 12 58	+ 2 + 8	8 38	PP	$\begin{array}{c} {\bf e} \ 10.3 \\ {\bf 20.0} \end{array}$
Huancayo Weston Fordham		38·9 39·6 40·0	$\frac{235}{328}$	e 7 16 i 7 41	$-\frac{13}{3}$	e 13 28 e 13 43 e 13 54	$^{+}_{+10}^{0}$	e 8 3	PP	e 16.8
Philadelphia Columbia St. Louis		40·3 41·2 49·9	$\frac{322}{311} \\ 312$	e 7 43 e 8 56	+ 3 - 1	e 13 56 e 14 5 e 16 14	+ 7 + 3 + 7	e 19 34	ss	e 16·8 e 23·7
Florissant De Bilt	z.	50·0 56·9	312 34	e 8 59	+_1	e 16 17 e 17 50	+ 8 + 8		=	e 24·0
Stuttgart Copenhagen Tucson Palomar		57·8 62·3 65·1 70·2	38 32 301 303	e 9 55 e 10 27 i 10 43 i 11 17	$\begin{array}{c} & 0 \\ + & 1 \\ - & 2 \\ 0 \end{array}$			e 26 0 e 13 2	Q PP	28·0 e 38·6
Mount Wilson	Z.	71.2		e 11 22	- 1	(133	: 	1 - 14	-
Pasadena Tinemaha	Z. Z.	$71.3 \\ 71.3$	303 306	e 11 23 e 11 22	- 0 1				_	e 40·6
Helwan	z.	71.7	62	1 11 27	+ 1	-	7	e 14 6	PP	

Additional readings:— Huancayo e = 7m.42s.

St. Louis iPZ = 8m.59s. Tucson i = 10m.50s.

Long waves were also recorded at Kew and Malaga.

May 21d. Readings also at 0h. (Stuttgart, Copenhagen, Tucson, Mount Wilson, Tinemaha, and St. Louis), 1h. (Tucson, Mount Wilson, Tinemaha, Palomar, Riverside, Pasadena, and Haiwee), 2h. (Bogota, New Delhi, Copenhagen, Potsdam, Stuttgart, Prague, Kew, Bergen, and Upsala), 3h. (Uccle and De Bilt), 5h. (Almeria (2)), 8h. (Scoresby Sund), 11h. (Stuttgart and Malaga), 14h. (La Paz), 16h. (near Balboa Heights), 17h. (Bogota, San Juan, Harvard, Florissant, Riverside, Palomar, Tinemaha, Mount Wilson, Tucson, and near Port au Prince), 19h. (Tucson, Tinemaha, Pasadena, Palomar, Riverside, Mount Wilson, La Plata, La Paz, and Huancayo), 21h. (near Zürich, Chur, and Basle), 22h. (near Stuttgart), 23h. (near Lick, Branner, and Berkeley).

May 22d. Readings at 2h. (Almeria), 3h. (Mizusawa), 9h. (Brisbane and Bucharest), 12h. (Riverview), 18h. (near Branner), 21h. (Mount Wilson, Pasadena, and Riverside).

May 23d. 10h. 38m. 26s. Epicentre 52°·1N. 171°·2W.

$$A = -.6096$$
, $B = -.0944$, $C = +.7871$; $\delta = +.5$; $h = -.6$; $D = -.153$, $E = +.988$; $G = -.778$, $H = -.120$, $K = -.617$.

		Δ	Az.	Р.	$\mathbf{o} - \mathbf{c}$.	s.	$\mathbf{O} - \mathbf{C}$.	Supp.	L.
costs pigal remote		0	•	m. s.	s.	m. s.	8.	m. s.	m.
College		17.5	34	e 4 6	- 1	e 7 35	+14		e 9·4
Sitka		$21 \cdot 2$	93	e 4 51	+ 2	e 8 48	+ 7		e 11·8
Saskatoon		38.5	64			e 13 25	+ 3		19.6
Tinemaha	N.	39.7	91	e 7 36	0		_		
Haiwee		40.4	91	17 40	- 1				-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

121

		Λ.	Az.	Р.	o-c.	s.	O-C.	Sup	b.	L.
			0	m. s.	8.	m. s.	8.	m. s.	#T.T.	m.
Santa Barbara	Z.	40.5	95	e 7 42	0			*****	-	
Mount Wilson	z.	41.6	93	i 7 51	Ö	1.0010	25.7			
Pasadena		41.6	93	i 7 50	- Ĩ		(direction in		e 17.6
Riverside	Z.	42.2	93	1 7 55	- 1	50				
Palomar	7-222.01	43.0	93	i 8 2k	- ī				_	_
La Jolla	z.	43.1	95	e 8 4	0			<u> </u>	253.25	-
Tucson	-	47.4	90	i 8 37	– ĭ	i 15 39	+ 7			e 26·0
Florissant	N.	55.6	69			e 17 18	- 7			6 20-0
St. Louis	57/150	55.6	69	i 9 39	- 1	e 17 21	- 4	S-12-22		e 26·1
Ottawa		58.9	55	10 4	+1	18 6	- ž		-	e 31.6
Seven Falls		60.1	50			e 18 28	+ 4	52.00	1.51	31.6
Philadelphia	-	63.0	58			e 18 54	T 7	\$100		
Tacubaya	E.	63.9	92	20 37	S	(20 37)	+85	-		e 29·7
Stuttgart	E.	79.5		e 12 9					200	
		90.3		012 0	- 1		- 7		_	
Fort de France			65	- 10 0		e 24 5	+ 8		-	
Malaga		8.06	11	e 13 6	0	e 24 0	- 2		_	48.6

Additional readings:—
College e =4m.40s.
Tinemaha eN =7m,41s.
Pasadena iZ =7m.56s.
Tucson i =8m.42s.

Philadelphia e = 20m.20s.

Long waves were also recorded at Berkeley, Chicago, De Bilt, Kew, and Uccle.

May 23d. Readings also at 2h. (near Fort de France), 3h. (Honolulu and near Mizusawa), 5h. (near La Paz), 6h. (near Lick), 7h. (near Malaga (5)), 8h. (Tucson, Mount Wilson, Pasadena, Palomar, and Riverside), 11h. (Auckland and Wellington), 14h. (Tucson and Palomar), 15h. (near Branner), 20h. (Istanbul), 22h. (Brisbane).

May 24d. 1h. 30m. 16s. Epicentre 19°.0N. 70°.0W. (as on 1942, July 5d.).

$$A = + .3236$$
, $B = -.8891$, $C = + .3236$; $\delta = -7$; $h = +5$; $D = -.940$, $E = -.342$; $G = +.111$, $H = -.304$, $K = -.946$.

		Δ	Az.	P.	O-C.	s.	0-C.	L.
		0	o	m. s.	8.	m. s.	s.	m.
Port au Prince		2.3	258	(i 0 50)	+10	(i 1 15)	+ 6	(i 1·8)
San Juan		3.7	92	e 1 22	$P_{\mathbf{g}}$	i 1 55	S.	i 2.2
Bogota		14.8	196	i 3 54	+22		~	
Philadelphia		21.3	352	i 4 52	+ 2	i 8 35	- 8	e 15·4
Harvard		23.5	359	i 4 12	-60			C 10 1
St. Louis		26.3	325	e 5 34	- 5	e 9 58	-13	e 12·0
Florissant		26.5	325	e 5 40	- ĭ	e 10 14	-0	0 12 0
Ottawa		26.8	352	5 44	õ	10 20	+ 1	13.7
Chicago		27.2	331	_		e 10 25	Ô	e 15.5
Seven Falls		28.1	0	6 29	+34	11 14	+34	13.7
Tucson		38.9	300	o 7 27	- 2	-		e 18·2
Palomar	Z.	44.1	300	e 8 11	- ī	W 200		6 10 2
Riverside	Z.	44.6	301	i 8 14	- 2	200		200
Pasadena		45.2	301	e 8 18	- ž	-	_	e 27·1
Tinemaha	Z.	45.7	304	i 8 24	õ			0 41 1

Additional readings and notes :-

Port au Prince readings have been increased by 4m.

Bogota e = 5m.58s. and 6m.57s. Harvard i = 4m.18s. and 8m.10s.

Long waves were also recorded at Bermuda and Kew.

May 24d. Readings also at 0h. (near Bogota), 1h. (Harvard), 8h. (Oaxaca), 15h. (La Paz), 16h. (Tucson, Palomar, Pasadena, Riverside, and Tinemaha), 17h. (Kew), 19h. (Balboa Heights and near Bogota), 20h. (Stuttgart).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

May 25d. 1h. 6m. 31s. Epicentre 21°.5S. 179°.0W. Depth of focus 0.080. (as on 1943, May 28d.).

A = -.9311, B = -.0163, C = -.3644; $\delta = 0$; h = +4; D = -.017, E = +1.000; G = +.364, H = +.006, K = -.931.

$\mathbf{D} = -$	$\cdot 017, \ \mathbf{E} = +1$	$\cdot 000$; $G = + \cdot 3$	64, $H = +.006$, I	$\zeta =931.$	
Ania	△ Az. 10°3 å4	P. O-C. m. s. s. i 2 29? + 7	S. O-C. m. s. s. i 4 297 +14	m. s	L. m.
Apia Auckland Arapuni Tuai New Plymouth	$ \begin{array}{r} 16.2 & 198 \\ 17.1 & 195 \\ 17.6 & 191 \\ 18.5 & 197 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 6 46 SS 13 59 ScS i 4 22 PP	<u>-</u>
Wellington Kaimata Christchurch Brisbane Riverview	$\begin{array}{ccc} 20.4 & 194 \\ 22.5 & 199 \\ 23.0 & 195 \\ 26.1 & 252 \\ 29.0 & 238 \end{array}$	3 59a - 2 4 22 + 2 4 25 0 i 4 51k - 1 i 5 18k 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 4 29 PP 14 16 ScS 14 24 ScS i 4 55 ? i 12 32 8S e	
Sydney Honolulu Perth Mera Tyosi	$ \begin{array}{cccc} 29.0 & 238 \\ 47.3 & 27 \\ 58.4 & 245 \\ 68.4 & 324 \\ 68.4 & 326 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20·9 25·4 —
Yokohama Misima Tokyo Mito Shizuoka	$68.9 \\ 69.0 \\ 324 \\ 69.0 \\ 325 \\ 69.1 \\ 326 \\ 69.2 \\ 324$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	18 30 - 4 18 27 - 8 i 18 29 - 6 18 30 - 6 18 31 - 6	12 28 PP	
Onahama Hamamatu Hunatu Kumagaya Kohu	$69 \cdot 3$ 327 $69 \cdot 4$ 324 $69 \cdot 4$ 325 $69 \cdot 5$ 326 $69 \cdot 6$ 325	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrr} 18 & 34 & - & 4 \\ 18 & 35 & - & 4 \\ 18 & 36 & - & 3 \\ 18 & 33 & - & 7 \\ 18 & 39 & - & 3 \end{array} $		
Siomisaki Maebasi Nagoya Hukusima Kameyama	$\begin{array}{ccc} 69.6 & 322 \\ 69.9 & 326 \\ 70.1 & 323 \\ 70.2 & 328 \\ 70.2 & 322 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrr} 18 & 36 & - & 6 \\ 18 & 37 & - & 8 \\ 18 & 39 & - & 8 \\ 18 & 30 & - & 18 \\ 18 & 46 & - & 2 \end{array} $	e 12 23 pP	
Gihu Muroto Sendai Hikone Nagano	$\begin{array}{ccc} 70.4 & 323 \\ 70.4 & 319 \\ 70.4 & 328 \\ 70.6 & 323 \\ 70.6 & 325 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrr} 18 & 47 & - & 4 \\ 18 & 52 & + & 1 \\ 18 & 44 & - & 7 \\ 18 & 49 & - & 4 \\ 18 & 47 & - & 6 \end{array} $	e 11 11 PP	=
Kobe Sumoto Miyako Mizusawa Koti	70.8 & 322 $70.8 & 321$ $70.9 & 330$ $70.9 & 328$ $71.1 & 319$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrr} 18 & 59 & + & 4 \\ 18 & 46 & - & 9 \\ 19 & 1 & + & 5 \\ 18 & 51 & - & 5 \\ 18 & 53 & - & 6 \end{array} $	e 11 48 pP e 13 1 PP i 10 40 PcP	=
Miyazaki Toyooka Wazima Akita Kumamoto	$\begin{array}{ccc} 71.2 & 317 \\ 71.6 & 322 \\ 71.8 & 325 \\ 71.9 & 329 \\ 72.3 & 318 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Aomori Hukuoka Tomie Mori Sapporo	$72 \cdot 4$ 330 $73 \cdot 0$ 317 $73 \cdot 4$ 316 $73 \cdot 5$ 330 $73 \cdot 9$ 332	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 21 PP = =	
Zi-ka-wei Santa Barbara Branner San Francisco Santa Clara	. 77·5 311 79·2 47 79·3 42 79·4 42 79·4 42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 14 27 PP i 13 25 pP	28·7 24·3
Berkeley Ukiah La Jolla Ferndale Pasadena	79.5 79.7 41 79.9 48 80.0 39 80.0 47	e 11 11 - 2 i 11 14 0 e 11 14 0	e 20 293 0 e 20 31 0 e 20 35 + 2 e 20 32 - 2 i 20 35 + 1	i 13 29 pP	38·0 32·5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

123

		Δ	Az.	P m.		0 – C.	s. m. s	O -C.	m. s	upp.	L. m.
Mount Wilson Palomar Riverside Haiwee Tinemaha		80 · 5 80 · 5 80 · 5 81 · 3 81 · 7	47 48 47 45 45	e 11 e 11 i 11 i 11	16 15 17 k 22 k 24 k	$\begin{array}{cccc} + & 1 & \\ - & 2 & \\ & & 0 & \\ + & 1 & \\ + & 1 & \end{array}$	i 20 30 i 20 40 i 20 30 e 20 40 e 20 5	6 + 5 6 + 5 7 + 1	i 13 29 i 13 30 i 13 31 i 13 23 i 13 33	pP pP pP	
Boulder City Tucson Victoria Seattle Sitka		83·3 84·3 85·5 85·6 86·8	47 52 34 35 22	i 11 i 11	32 37 40 13 44	$\begin{array}{c} + & 1 \\ + & 1 \\ - & 2 \\ - & 4 \end{array}$	e 21 i 21 i 21 2 e 22 4 i 21 3	3 SP	i 13 49 i 13 49 e 13 49 e 15 59 e 14	pP pP	e 37·9 33·5 e 37·0 e 38·6
Salt Lake City Logan College Vera Cruz Rapid City	E.	87 ·8 88 ·4 89 ·4 90 ·6 95 ·0	44 43 12 70 43	e 11 e 11 e 11 e 12	53 56 57 56 29	+ 1 + 1 - 3 - 9 + 3	i 21 50 i 22 5	+ 6 - 8	e 14 13 e 14 13 e 14 13	pP pP	e 35·7 e 36·9 e 39·5
Saskatoon Huancayo Lincoln Calcutta La Plata	N.	96·5 98·0 98·2	36 106 49 289 134		33 50 56 3k	+ 1 pP pP PP		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 56 i 16 56 e 16 55 i 23 1	PP PP SKKS	e 40·8 e 51·5
Florissant St. Louis La Paz Colombo Chicago	E.	$102.1 \\ 102.2 \\ 102.4 \\ 102.8 \\ 105.0$	53 53 114 272 50	e 12 i 13	58 58 3a 37 27	$^{+\ \ 0}_{+\ \ 4} \\ ^{+\ 23}_{\mathbf{pP}}$	e 23 5 e 23 5 i 22 3 17 i 24 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 15 13 i 15 13 e 28 2	pP pP	50·0 29·3 e 46·8
Bogota Kodaikanal Hyderabad Columbia New Kensington	E. N.	$105.6 \\ 106.2 \\ 107.6 \\ 108.7 \\ 110.5$	$90 \\ 275 \\ 281 \\ 59 \\ 53$	e 13 e 6 17 e 18 e 17	32 48 47 3	P PP PP [-27]	i 22 5- e 23	S [-14] [-12] [-4]	e 17 46 i 17 23 32 13 e 26 23 e 18 18	SS SP	e 49·1
Dehra Dun New Delhi Georgetown Bombay Philadelphia	N. E.	111·3 111·7 112·2 113·1 113·8	295 292 55 282 55	e 18 i 18 i 18	39? 32 25 40	[+30] PP PP PP	i 23 1 i 24 2 23 1 i 23 2	SKKS	e 32 49 i 28 19 i 20 49 i 27 39	pPP	43·5 =
Ottawa Fordham Vermont Shawinigan Falls Harvard		114 · 2 114 · 9 115 · 8 116 · 3 116 · 8	48 53 50 47 52	e 15 e 18	41	[- 2] [0]	e 23 2 i 23 3 i 23 3 i 23 3 i 22 5	[-5] $[-16]$ $[-4]$	e 18 43 i 17 40 i 18 43 e 30 3 i 18 14	PKP PP PPS	47·5 41·5
Weston San Juan Seven Falls Rio de Janeiro Tananarive	N.	117.0 117.3 117.7 118.3 119.3	$\begin{array}{r} 52 \\ 79 \\ 47 \\ 133 \\ 232 \end{array}$	e 16 e 19 e 17 i 19 19	19 3 43 7 0	PP [- 1] PP PP	e 30 8 i 23 42 i 23 33 i 27 47 26 14	[- 3] [- 8] SP	i 29 1 e 19 7	PS PP	e 46·7 36·5 49·5
Bermuda Scoresby Sund Upsala Bergen Aberdeen		$121 \cdot 2$ $129 \cdot 2$ $139 \cdot 9$ $141 \cdot 0$ $144 \cdot 3$	63 10 347 357	i 18 e 18 i 18	31 3 20 26	PP [-1] [-25] [-10] [-9]	e 23 54 32 25 24 21 e 31 29 i 32 6	PPS [-23] SP	i 28 55 i 20 21 18 17 e 32 59 i 39 49	PP PKP SSP	e 64·9 e 46·5 44·0 61·1
Copenhagen Ksara Stonyhurst Potsdam Bucharest		144·8 146·9 147·6 147·8 149·1	349 298 4 347 323	e 18 e 18 i 18	33 k 40 42 43 38	[-3] $[+0]$ $[+1]$ $[+2]$ $[-5]$	25 8 35 28 40 29 e 24 29 (24 29	PPS	21 50 21 6 22 20 i 21 9 e 22 33	PPKP PP pPKP	e 53·5 24·5
Campulung De Bilt Jena Prague Cheb		$149.2 \\ 149.3 \\ 149.5 \\ 149.6 \\ 150.1$	325 355 345 343 345	i 18 e 18	40 42k 41 48	[-3] $[-1]$ $[-2]$ $[+5]$ $[+3]$	e 28 59 e 31 53 e 24 31	9	i 21 11 e 21 9 e 21 7 i 21 22	pPKP pPKP	25·5 e 40·8 e 50·5
Kew Uccle Helwan Belgrade Stuttgart		150.1 150.6 151.3 151.8 152.0	356 293 329 348	i 18 i 18	45	[-1] $[-2]$ $[-1]$ $[-1]$ $[-2]$		SPP SS PSKS PSKS	i 21 0 21 19 e 21 17	The second secon	e 50·5 e 52·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

124

```
L.
                                         O - C.
                           Az.
                                                                      Supp.
                                                                                   m.
Strasbourg
                    152 \cdot 4
                                                                         pPKP
                                                           88
                    152 \cdot 7
                                                           SS
Paris
                           357
                           350
Basle
                    153.5
                                                                         pPKP
                    153.5
Zürich
                           349
                    153.8
Chur
                           347
Neuchatel
                    154 \cdot 1
                                                         SKKS
Milan
                    155.2
                           346
Clermont-Ferrand
                                                e 41 59
36 2
                    155.8
                           356 e 18 51
                    160.7
                            24 i 18 57a [- 1]
Lisbon
                    160.7
                            1 i 19 0 [+ 2]
Tortosa
                                                                  23 34 PP
                                                                                 e 43.5
                    163.8
San Fernando
                                                  26 7 [+54]
                                                30 40 SKKS i 19 58 pPKP
i 27 54 PPP i 19 58 pPKP
                            13 i 18 59a [- 2]
                    163.9
Granada
                                                                                   77.3
                            16 i 18 46k [-15]
Malaga
                    164.1
                                                                                  43.2
  Additional readings :-
    Auckland S = 5m.31s., P_cP_i^2 = 8m.11s., i = 9m.21s.
    Tuai i = 3m.46s.?, e = 6m.4s., i = 6m.34s.
    New Plymouth i = 5m.37s., S = 6m.26s., i = 7m.52s.
    Wellington iZ = 5m.40s., P_cP?Z = 7m.49s., S_cP? = 8m.54s.?, sP_cP? = 11m.54s.?, i = 10m.54s.?
        12m.59s., S_cS = 14m.6s., i = 15m.9s.?
    Kaimata S = 7m.8s.
    Riverview iP_cPZ = 8m.8s., iP_cPEN = 8m.12s., iN = 9m.43s., iE = 9m.57s. and 12m.19s.
    Honolulu e = 10m.7s, and 16m.38s.
    Misima S_cS = 20m.8s., SS = 22m.53s.
    Tokyo e = 11m.22s, and 13m.39s.
    Hunatu PP = 13m.1s., SP = 18m.57s.
    Kohu PPP = 11m.6s.
    Sendai SS = 22m.578.
    Hikone ePP = 13m.8s., ePS = 19m.38s., eSS = 23m.5s.
    Kobe eP_cP = 11m.8s., esP = 12m.27s., ePP = 14m.37s., epS = 19m.11s., eS_cS = 12m.11s.
        19m.35s., ePS = 20m.7s., esS = 21m.7s., eSS = 23m.42s., eSSS = 26m.21s. and
        26m.48s., eSSSS = 30m.8s.
    Sumoto S_cS = 19m.35s., eSS = 23m.12s.
    Kôti eS_cS = 19m.27s.
    Hukuoka SS = 23m.9s.
    Santa Barbara ePKP,PKP = 38m.3s., eSKP,PKPZ = 40m.32s.
    Branner iE = 12m.6s., iN = 12m.17s., iE = 13m.28s. and 14m.20s., iEN = 20m.32s.
    San Francisco eE = 14m.31s., eSE = 20m.30s., eEN = 21m.32s., eN = 25m.18s.
    Santa Clara iPPZ = 15m.25s., iE = 24m.25s.
    Ukiah e = 11m.50s. and 13m.35s., i = 20m.54s., e = 24m.17s. and 25m.7s.
    La Jolla ePKP.PKPZ = 38m.1s., eSKP.PKPZ = 40m.34s.
    Ferndale eSN = 20m.35s.
    Pasadena isPZ = 14m.28s., iZ = 16m.59s., eSZ = 19m.47s., iSPZ = 21m.16s., iE =
                  isSPEN = 24m.23s., iPKKPZ = 29m.53s., ePKP,PKPZ = 37m.56s.,
        iPKP,PKPZ = 38m.1s., ipPKP,PKPZ = 40m.4s., iSKP,PKPZ = 40m.27s.
    Palomar i = 11m.18s.k, isPZ = 14m.33s., eEN = 24m.25s., iZ = 26m.48s., iPKKPNZ =
                  iPKP.PKPZ = 38m.0s., ipPKP.PKPZ = 40m.7s., iSKP.PKPZ =
        40m.27s.
   Riverside isPZ = 14m.28s., ePKKPZ = 29m.32s., iZ = 29m.54s.,
                                                                       ePKP,PKPZ =
        37m.42s., iZ = 37m.56s. and 38m.0s., ipPKP,PKPZ = 40m.7s., iSKP,PKPZ =
        40m.28s.
    Haiwee iPKP,PKP = 37m.59s., ipPKP,PKPZ = 40m.12s., eSKP,PKPZ = 40m.28s.
    Tinemaha iPKKPZ = 29m.52s., ePKP,PKPZ = 37m.41s., iPKP,PKPZ = 37m.58s.,
        ipPKP,PKP = 40m.14s., eSKP,PKPZ = 40m.27s., ePKP,PKP,PKPZ = 57m.49s.
    Boulder City e = 20m.58s., and 29m.46s., i = 37m.45s.
    Tucson is P = 14m.42s., ePP = 15m.0s., i = 15m.31s., esPP = 18m.0s., iSP = 22m.20s.,
         iSS = 25m.29s., eSSS = 30m.38s.
    Victoria i = 21m.4s., e = 22m.29s. and 25m.21s.
    Sitka esP = 15m.3s., eSKS = 21m.16s., iSP = 22m.34s., esS = 25m.26s., i = 26m.57s.,
         esSS = 31m.0s.
    Salt Lake City iS = 21m.27s., iSP = 23m.5s., isS = 25m.53s.
    Logan i = 14m.12s., ePP? = 15m.28s., iSKS = 21m.29s., isS = 25m.52s.
    College e = 15m.21s., eS = 21m.31s., esS = 25m.49s., e = 30m.20s., 31m.33s., and
        38m.29s.
    Rapid City ePP = 16m.14s., iSKS = 22m.3s., esS = 26m.29s., e = 33m.10s.
    Saskatoon PPP = 16m.38s., S = 22m.11s., SS = 27m.16s.
    Huancayo e = 16m.2s., i = 23m.36s., eSP = 24m.55s., e = 27m.30s. and 34m.22s.
    Lincoln eSP = 24m.56s., e = 31m.37s.
    Calcutta iN = 24m.43s.
   La Plata PPPN = 18m.35s., SSE = 23m.29s.?, sSS = 25m.11s.
    Florissant isPZ = 16m.24s., iPPZ = 17m.19s., eE = 20m.23s., iSKSE = 22m.37s.,
         iSKKSE = 23m.22s., iSPE = 25m.37s., iE = 26m.30s., eSSE = 28m.1s., eSSE =
        31m.10s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

125

```
St. Louis sP = 16m.22s., PKP = 16m.50s., PP = 17m.19s., pPP = 19m.15s., pPPP =
     19m.42s., SKS = 22m.36s., SKKS = 23m.21s., SP = 25m.30s., PS = 26m.54s., sS = 25m.54s.
     27m.58s., SS = 30m.58s., SSS = 34m.55s.
La Paz iPPZ = 17m.25s., PPPZ = 19m.25s., SKKS = 24m.25s., iZ = 25m.37s., iPSZ =
     26m.17s., iSSZ = 32m.1s., iSSS = 36m.9s.
Chicago ePP=17m.39s., epPP=19m.46s., csPP=20m.32s., e=23m.40s., eSP=26m.3s., eSS=31m.27s., esSS=35m.21s., e=40m.21s.
Hyderabad iN=23m.54s., SKSN=24m.31s.
Columbia e = 24 \text{m.0s.}, eS = 24 \text{m.49s.}, ePS = 27 \text{m.37s.}, e = 28 \text{m.49s.}, eSS = 32 \text{m.36s.},
     e = 40 \text{m.} 34 \text{s.}
New Kensington e = 24m.16s., and 27m.11s., csSS = 35m.26s.
New Delhi iN =25m.6s. and 30m.50s.
Georgetown i = 18m.35s., 21m.35s., and 25m.21s., e = 26m.34s.
Bombay iPPPE = 20m.56s., SKKSE = 24m.32s., iE = 25m.18s.
Philadelphia e = 21 \text{m.} 50 \text{s.}, i = 24 \text{m.} 36 \text{s.}, iS = 25 \text{m.} 36 \text{s.}, iPS = 28 \text{m.} 34 \text{s.}, iSS = 29 \text{m.} 22 \text{s.},
     i = 31 \text{m}.14 \text{s}., eSS = 33 \text{m}.47 \text{s}., eSSS = 37 \text{m}.19 \text{s}.
Ottawa e = 27m.29s., 37m.29s., and 41m.29s.
Fordham i = 18m.55s., e = 22m.0s., i = 24m.51s., 25m.45s., 27m.31s., 28m.22s., and
     29m.52s.
Vermont i = 24 \text{m.} 41 \text{s.}, iS = 25 \text{m.} 42 \text{s.}, iSP = 27 \text{m.} 34 \text{s.}, ePS = 28 \text{m.} 39 \text{s.}, e = 29 \text{m.} 45 \text{s.},
     eSS = 33m.59s., isSS = 37m.29s., i = 41m.41s.
Shawinigan Falls e = 25m.59s. and 34m.17s.
Weston PP = 19m.4s., e = 26m.2s.
San Juan iSKS = 23m.38s., i = 24m.57s., eS = 26m.8s., esS = 29m.57s., eSS = 34m.12s.,
     eSSS = 38m.48.
Seven Falls i = 25m.4s., e = 27m.53s. and 30m.35s.
Tananarive SS = 34m.41s.
Bermuda e = 25 \text{m.} 30 \text{s.}, 31 \text{m.} 51 \text{s.}, and 36 \text{m.} 21 \text{s.}, eSSS = 38 \text{m.} 21 \text{s.}, e = 42 \text{m.} 39 \text{s.} and
     55m.49s.
Scoresby Sund 21m.29s., 22m.22s., 23m.36s., 24m.51s., 33m.42s., and 34m.59s.
39\text{m.}3\text{s.}, isSSE = 42\text{m.}51\text{s.}, eN = 43\text{m.}29\text{s.}?
Bergen eZ = 18m.59s., ePKPZ = 20m.57s., eN = 22m.3s., PPN = 23m.56s., eZ =
     24 \text{m.} 15 \text{s.}, PPSZ = 35 \text{m.} 40 \text{s.}, eE = 36 \text{m.} 56 \text{s.}, eN = 39 \text{m.} 10 \text{s.}, eE = 43 \text{m.} 12 \text{s.}
Aberdeen iN = 38m.46s., iE = 43m.36s., iN = 44m.43s.
Copenhagen 20m.53s. and 39m.59s.
Ksara PP = 22m.20s., pPP = 24m.28s.
Stonyhurst i = 18m.55s., 21m.22s., and 38m.51s., i = 44m.23s. and 49m.48s., e =
     59m.46s.
Potsdam iE = 20m.57s., ipPKPE = 21m.12s.
Bucharest eN = 18m.42s., i = 18m.45s., iZ = 18m.59s.
De Bilt iPP = 22m.12s., eSS = 40m.29s.?, eSSS = 44m.29s.?.
Jena iPZ = 18m.45s., iPE = 18m.48s., ePPN = 21m.12s., eZ = 22m.17s.
Prague eSKP = 21m.50s., e = 32m.47s. and 34m.57s., eSS = 40m.53s., e = 44m.59s.
     eSSS = 46m.29s.
Cheb ePKP = 18m.52s., iSKP = 22m.22s., e = 28m.22s., eSKSP = 32m.46s., ePS? =
     34m.39s., ePPS = 35m.58s., iSS = 40m.58s., e = 44m.41s.
Kew iPKP, =19m.3s., isPKPNZ =22m.11s., iPP?N =22m.23s., epPPN =24m.43s.,
     isPPNZ = 25m.27s., ePPPNZ = 25m.51s., ePSKS?N = 32m.27s., eSS = 40m.55s.
     esSSE = 44m.29s.7, eSSSE = 46m.29s.7.
Uccle iEN = 18m.49s., iZ = 21m.13s., iPPN = 22m.24s., isSSE = 44m.52s.
Helwan PKP<sub>2</sub> = 19 \text{m.} 28., PPZ = 22 \text{m.} 338., eEZ = 24 \text{m.} 538., PPPZ = 26 \text{m.} 88., iE =
     28m.26s.
Belgrade i = 18m.53s., ePKS = 25m.5s., eSKSP = 34m.40s., e = 41m.58s.
Stuttgart i=18m.51s., iZ=20m.25s., ipPKPZ=21m.21s., esPKP=22m.21s., iPPZ=
     22m.37s., epPP = 25m.5s. and 25m.16s., iPPPZ = 25m.51s., iZ = 26m.23s., e =
     28m.29s., epPPPZ = 28m.51s., ePSKS = 32m.55s., e = 33m.46s., ePPS = 36m.16s.,
     iSS = 41m.18s., isSS = 44m.59s., eSSS = 47m.3s., eSSSS = 51m.57s., e = 54m.41s.,
     and 58m.17s.
Strasbourg i = 18m.52s., ePP = 22m.38s., epPP = 24m.58s.
Basle e = 18m.55s, and 32m.54s.
Clermont-Ferrand e = 28m.10s.
Lisbon PKP_{2} = 19m.41s., pPKP_{2}NZ = 22m.3s., sPKPE = 22m.16s., iPPZ = 23m.26s.,
     PPPEN = 29m.16s., SSE = 42m.45s., SSN = 43m.35s., SSSZ = 47m.59s., SSSN =
     48m.11s., E = 52m.35s., NZ = 53m.17s.
Tortosa iEN = 19m.42s., PPE = 20m.50s., iN = 24m.50s., and 34m.3s.
San Fernando PPZ = 23m.25s., eSKKSE = 30m.16s., ePPSE = 36m.56s., eSSE =
     43m.58s.
Granada pPKP<sub>2</sub> = 22m.16s., iPP = 23m.42s., pPP = 26m.10s., PPP = 27m.10s., PPS =
     38m.15s., iSS = 43m.29s., sSS = 46m.27s., SSS = 51m.28s., sSSS = 56m.29s., Q =
     61 ·8m.
Malaga PP = 21 \text{m.} 50 \text{s.}, PPP = 23 \text{m.} 48 \text{s.}, S_cS = 28 \text{m.} 26 \text{s.}, PS = 28 \text{m.} 58 \text{s.}, sS = 29 \text{m.} 40 \text{s.},
     SS = 32m.56s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

126

May 25d. 12h. 58m. 7s. Epicentre 2°.5S. 152°.5E.

A = -.8862, B = +.4613, C = -.0433; $\delta = +2$; h = +7; D = +.462, E = +.887; G = +.038, H = -.020, K = -.999.

D	=+	462, E	=+	887;	$3 = + \cdot 0$	38, H = -	·020, I	$\zeta =999.$		
		· Δ	Az.	m. s.	O – C. s.	s. m. s.	0 - C. s.	m. s.	upp.	\mathbf{m} .
Brisbane Riverview Sydney Apia Shizuoka		$24.8 \\ 31.2 \\ 31.2 \\ 37.0 \\ 39.5$	179 182 182 109 343	i 6 23 a e 6 23 i 7 13	4 0 0 0	i 10 15 i 11 37 i 11 26 e 12 38 14 11	$^{+ 29}_{+ 8}_{- 3}_{- 21}_{+ 34}$	i 5 24 i 7 32 e 9 29	PP PcP	e 14·3 15·2
Miyazaki Yokohama Tokyo Auckland Kohu		$39.6 \\ 39.8 \\ 39.9 \\ 40.1$	$332 \\ 344 \\ 344 \\ 153 \\ 343$	e 7 34 7 37	$^{-6}_{PP}^{6}_{-2}$	e 13 26 20 37 14 56 13 37 13 49	$-12 \\ +74 \\ -6 \\ +3$	e 9 16 9 28	PP PP	e 23·6 21·8 19·2
Nagoya Sumoto Kobe Hikone Kumamoto		40·2 40·4 40·5 40·7	$341 \\ 339 \\ 339 \\ 341 \\ 332$	e 7 41 e 7 35 7 38 7 41 7 42	$ \begin{array}{r} + & 1 \\ - & 5 \\ - & 3 \\ - & 1 \\ - & 2 \end{array} $	$13 \ 45$ $13 \ 37$ $13 \ 41$ $13 \ 55$	$^{+}_{-}\overset{3}{\overset{3}{\overset{-}{3}}}_{-11}$	(i 17 1) 16 33	sss Q	i 17·0 e 20·0
Arapuni Toyooka New Plymouth Hamada Hukuoka		41·3 41·4 41·9 41·9	$152 \\ 339 \\ 154 \\ 334 \\ 332$	7 53 7 48 7 307 7 52 7 50k	$^{+}_{-}^{1}_{10}$ $^{-}_{-}^{20}$ $^{-}_{-}^{2}$	14 5 14 4 14 11? 14 4 14 2	$^{+}_{-}^{0}_{9}^{0}$	$(\begin{array}{c} e & 9 & 29 \\ (e & 17 & 23) \\ 9 & 41 \\ \hline & 17 & 16 \end{array})$	PP SSS PcP Q	e 17·4 19·9 20·4 18·6
Sendai Wazima Mizusawa Miyako Kaimata	E,	42.0 42.2 42.7 43.1 43.3	$347 \\ 342 \\ 348 \\ 349 \\ 160$	e 7 51 7 57 e 7 56 e 8 0 8 32	$ \begin{array}{r} -3 \\ +1 \\ -4 \\ -4 \\ +27 \end{array} $	14 5 14 23 e 14 2 14 15 14 36	$^{-\ 9}_{+\ 6}_{-\ 22}_{-\ 15}_{+\ 3}$	$\begin{array}{r} 17 & 18 \\ \hline - & 28 \\ 17 & 38 \\ 18 & 8 \end{array}$	ss ss sc	17·5 —
Morioka Akita Wellington Tuai Christchurch		43·3 43·5 43·5 43·6 44·6	$348 \\ 347 \\ 156 \\ 151 \\ 159$	i 8 1 e 8 20 8 8k 10 13 8 15	- 4 + 13 + 1 PcP - 1	14 32 15 23 14 25 14 48	$-\frac{1}{47} - \frac{1}{4}$	$\frac{-}{9}$ $\frac{24}{17}$ $\frac{53}{10}$	PP Q PP	19·9 21·9
Zi-ka-wei Perth Mori Sapporo Honolulu	N.	44.7 45.2 45.7 46.5 54.0	321 226 348 350 61	e 8 19 8 28 8 28 8 36 e 9 26	+ 3 + 8 + 4 + 5 - 2	14 55 15 18 1 14 35 15 6 1 17 1	$^{+}_{17}^{17}_{33}_{$	10 18 	PP PP	e 19·6 e 20·1 e 22·2
Calcutta Colombo Hyderabad Kodaikanal Dehra Dun	N. E.	67·3 73·1 75·6 75·7 77·9	296 278 289 282 302	i 11 29k 11 33 11 49 e 10 48 e 12 3	$^{+30}_{-1}$ $^{+1}_{-61}$ $^{+2}$	i 19 59 (21 11) 21 26 i 20 48 i 21 44	$^{+\ 5}_{+\ 10} \\ ^{-\ 3}_{-\ 42} \\ ^{-\ 10}$	i 20 31 14 27	PPS PP	21·2 36·9 i 29·6
New Delhi College Bombay Sitka Ferndale	E. E.	78·3 79·8 81·1 82·6 86·5 86·5	299 22 289 32 49 49	e 12 4 e 12 9 i 12 19 e 12 22 e 12 59 e 12 55	$\begin{array}{c} + & 1 \\ - & 3 \\ + & 1 \\ - & 4 \\ + & 13 \\ + & 9 \end{array}$	i 21 58 e 22 6 e 22 22 i 22 36 e 23 16 e 23 23	$ \begin{array}{rrr} - & 1 \\ - & 8 \\ - & 6 \\ - & 7 \\ + & 1 \end{array} $	14 53 e 27 6 i 15 46 e 15 39 e 29 10	PP SS PP SS	e 34·8 e 38·7 e 38·7
Ukiah San Francisco Berkeley	E. N. Z.	87·6 87·8 87·8 87·8	51 53 53 53 53	e 12 43 e 12 59 e 12 58 e 12 54	- 6 + 7 + 6 + 2	i 23 19 e 23 20 e 23 18 e 23 21 e 23 28	$\{-2\}$ $\{+2\}$ $\{-1\}$ $\{+2\}$ $\{+2\}$	e 24 29 — '	PS =	e 38.6 e 39.8 e 39.7
Branner Victoria Santa Clara Seattle Santa Barbara		87·8 87·9 88·6 88·6	53 42 53 42 56	$\begin{array}{c}\\ 12 & 54 \\ e & 12 & 52 \\ e & 15 & 7 \\ e & 13 & 10 \\ \end{array}$	+ 1 - 1 + 9	e 23 20 23 24 e 23 21 e 25 5	[+ 1] [+ 4] [0] PPS	i 23 52 29 24 —	ss =	e 36·2 38·9 e 39·8 e 42·0
Pasadena Mount Wilson Tinemaha Haiwee La Jolla	z. z. z.	90·8 90·9 90·9 91·1 91·5	56 56 54 54 57	i 13 4k i 13 5k e 13 6 e 13 12 e 13 13	$ \begin{array}{rrr} - & 2 \\ - & 2 \\ - & 1 \\ + & 4 \\ + & 3 \end{array} $	i 23 37	[- 1] = =	i 16 46	`PP = =	e 36·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	Р.	O – C.	s.	o – c.		pp.	L.
Riverside Palomar Boulder City Logan Salt Lake City	z.	91·5 91·9 93·6 95·9	56 57 54 48 49	e 13 7 e 13 10 e 13 16 e 13 31 e 13 31	s. - 3 - 1 - 3 + 1 + 1	e 23 47 e 23 44 e 24 51 e 24 6	s. [+ 3] [- 9] + 5 [0]	i 16 47 i 13 22 e 17 19 e 25 56	PP PeP PP	e 43·3 e 42·0
Tucson Saskatoon Rapid City Tananarive Lincoln		$97.0 \\ 98.6 \\ 102.0 \\ 102.3 \\ 107.3$	$\begin{array}{r} 58 \\ 38 \\ 45 \\ 250 \\ 48 \end{array}$	e 13 30 14 0 e 14 1 e 22 10 e 18 41	- 5 + 18 + 4 SKP PP	e 25 1 24 18 c 24 34 e 24 53	$ \begin{bmatrix} $	e 17 26 17 53 e 18 6 27 33 e 34 9	PP PP PS SSP	e 39·9 40·9 e 48·1 53·0 e 50·9
Tacubaya Scoresby Sund St. Louis Upsala Ksara	N.	$108.1 \\ 112.0 \\ 112.7 \\ 113.2 \\ 113.4$	$\begin{array}{r} 70 \\ 358 \\ 49 \\ 337 \\ 306 \end{array}$	e 19 4 19 41 i 19 23 i 19 30 e 18 38	PP PP PP PP [- 2]	i 25 23 e 25 29	[+ 0]	i 28 54 e 34 51	PS SS	e 46·9
Chicago Bergen Bucharest Copenhagen Helwan		113·7 117·0 117·1 118·0 118·1	$\begin{array}{r} 45 \\ 342 \\ 320 \\ 336 \\ 302 \end{array}$	e 14 54 19 55 e 19 23 i 19 23 e 18 52	P PP [+36] [+34] [+3]	e 25 16 e 29 26 e 29 19 e 26 9 e 27 38	$\begin{bmatrix} -11 \\ PS \\ PS \\ [+26] \\ \{+37\} \end{bmatrix}$	e 19 38 22 53? e 19 57 20 3 20 21	PP PP PP PP	e 50·5 e 51·9 40·9 49·9
New Kensington Ottawa Potsdam Belgrade Prague		$119.7 \\ 120.0 \\ 120.0 \\ 120.4 \\ 120.8$	43 37 333 322 330	e 20 11 e 20 40 e 19 5 e 20 23	PP [+ 8] PP [+11] PP	e 25 53 25 53 e 36 59 27 29 e 25 53	[+ 4] [+ 3] SSP {+13} [- 1]	e 29 49 20 13 e 23 28 e 30 35 e 30 34	PS PS PS	e 58·5 55·9 e 55·9 e 59·9 e 50·9
Shawinigan Falls Columbia Jena Cheb Aberdeen		$121.1 \\ 121.2 \\ 121.6 \\ 121.8 \\ 121.9$	33 51 331 331 344	e 20 21 e 20 28 e 20 36 i 19 20	[+10] PP PP PP -[+23]	e 25 55 i 37 30	PS [+1] SSP	20 35 e 30 14 e 36 59 e 41 34 i 20 45	PP PS SSS PP	6 56.9 e 57.3 e 56.9 57.4
Seven Falls Vermont Philadelphia Fordham De Bilt		121.9 122.0 123.0 123.4 123.6	33 37 42 40 337	20 36 e 20 0 e 19 25 e 19 1 e 19 13	PP [+26] [+2] [+13]	26 0 i 27 11 i 26 0 e 26 10	$[+4] \\ \{-16\} \\ [-9] \\ [+9]$	30 30 e 20 32 e 20 35 e 20 36 e 37 53?	PS PP PP SSP	47.9 51.2 i 52.0 i 58.3 e 52.9
Harvard Stuttgart Stonyhurst Uccle Strasbourg		124.1 124.2 124.8 124.9 125.0	37 331 342 337 332	i 18 19 e 15 41 e 21 2 e 18 53 e 21 1	PP 91	e 27 53 31 0 i 38 16 e 27 54	{+11} PS SSP {+7}	i 19 57 i 20 53 38 26 e 21 5	PP SSP PP	e 59·9 e 63·4 57·9 e 53·9 58·9
Chur Zürich Basle Kew Milan		125·4 125·5 125·9 126·1 126·5	$330 \\ 331 \\ 339 \\ 328$	e 19 3 e 19 3 e 19 5 i 19 21 19 14	$[& 0] \\ [& 0] \\ [+ 1] \\ [+ 17] \\ [+ 9]$	e 27 55	{ 0 }	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP PP	e 58·6 e 57·9 59·4
Neuchatel Paris Halifax Balboa Heights Clermont-Ferrance	d	$126.5 \\ 127.2 \\ 127.3 \\ 127.9 \\ 129.3$	331 335 31 80 332	e 19 5 e 21 5 e 21 5 e 20 53 e 19 12	[0] PP PP PP [+ 1]	e 22 39	SKP	e 38 35 e 38 53?	SSP SSP	54·9 49·9
Huancayo Montezuma La Plata Bermuda Tortosa		$130.3 \\ 132.6 \\ 133.1 \\ 134.2 \\ 134.2$	$107 \\ 124 \\ 145 \\ 45 \\ 329$	The state of the s	[+14] $[+11]$ $[+18]$	e 39 5 	SKP (+ 7) SKP	e 21 34 e 22 56 e 25 5 e 21 57 39 23	PP SKP PPP PP SS	e 56·7 e 63·5 e 65·9 e 62·6 e 53·9
La Paz San Juan Granada Malaga Lisbon		135.7 139.0 139.1 139.8 140.2	116 62 331 331 337		a [+ 3] a [0]	i 28 23 e 26 48 26 14 26 26 23 23	{-32} [+11] [-24] [-13] SKP	i 22 9 e 23 8 i 22 30 20 20 22 33	PP SKP PP PPKP PP	67.9 61.4 74.7 62.9 64.5
San Fernando Fort de France Rio de Janeiro		$140.9 \\ 144.6 \\ 150.5$	$\frac{332}{66} \\ 149$		[+ 3] $[+ 1]$ $[+ 5]$	26_40 	[-1]	22 40 i 23 24	$\frac{PP}{PP}$	65·9 i 41·9

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

128

```
NOTES TO MAY 25d. 12h. 58m. 7s.
Additional readings :--
  Riverview iN = 6m.28s., PPPN = 7m.45s., iN = 11m.58s., iSSE = 13m.36s., iSSE =
      14m.4s.
  Tokyo eSS = 17m.45s.
  Auckland SS = 16m.32s., Q? = 17m.12s.
  Arapuni e = 8m.35s.
New Plymouth i = 8m.18s., Q = 17.9m.
  Mizusawa eSN = 14m.5s.
  Miyako PP = 8m.20s.
  Wellington i = 8m.50s., P_eP? = 10m.23s., i = 11m.58s.?, i = 15m.27s., SS = 17m.3s.,
      S_cS_1 = 17m.58s., Q = 19m.1s.
  Christchurch P_cPEN = 13m.53s., SSEN = 18m.18s., QEN = 18.9m.
  Honolulu ePPP = 12m.41s., eS = 16m.35s., eSS = 20m.38s.
  Hyderabad PSE = 22m.11s., SSN = 26m.7s.
  New Delhi P_cPEN = 12m.17s., PPPN = 16m.37s., SKSN = 22m.17s., S_cSN = 22m.24s.
      PSN = 22m.27s., SSN = 26m.51s.
 College e = 18m.17s, and 30m.57s.
  Bombay iE = 12m.36s., 12m.48s., and 22m.37s., SSTE = 27m.11s., iE = 28m.0s.
  Sitka ePPP=17m.47s., e=18m.48s., i=23m.50s. and 24m.28s., iSS=27m.40s., i=
      29m.49s. and 29m.53s., iSSS = 31m.33s.
  Ukiah eSS = 29m.15s.
  Branner eE = 29m.11s.
  Victoria SSS = 32m.58s.
  Seattle e = 26m.17s. and 32m.36s.
  Pasadena iEZ = 13m.11s., iZ = 13m.35s., iEN = 25m.9s., iSSN = 30m.13s.
  Palomar iNZ = 13m.17s., iEZ = 13m.25s.
 Logan e = 20 \text{m}.25 \text{s}., iSKS = 24 \text{m}.8 \text{s}., ePS = 26 \text{m}.3 \text{s}., eSS = 31 \text{m}.33 \text{s}., eSSS = 34 \text{m}.36 \text{s}.,
       e = 37m.8s.
 Salt Lake City e = 14m.8s., 16m.34s., and 17m.56s., eSS = 31m.37s.
 Tucson e = 14m.25s. and 21m.6s., eSKS = 24m.8s., ePS = 26m.8s., e = 26m.30s. and
      30\text{m}.22\text{s.}, eSS = 31\text{m}.39\text{s.}, iSSS = 35\text{m}.22\text{s.}
 Saskatoon PS = 26 \text{m.} 35 \text{s.}, SS = 31 \text{m.} 38 \text{s.}
 Rapid City e = 19m.2s., ePS = 27m.10s., eSS = 33m.49s., e = 37m.36s.
  Tananarive SKS = 24m.54s., SS = 33m.21s.
 Lincoln eSSS = 37m.368., e = 41m.208.
 St. Louis iZ = 19m.46s., eE = 20m.4s., iPPPE = 21m.51s., iSKKSE = 26m.25s., iSE = 26m.25s.
      27m.21s., iE = 28m.11s.
 Upsala eE = 34m.55s.?.
 Ksara e = 20 \text{m.4s.} and 27 \text{m.23s.}
 Chicago e = 18m.15s., ePS = 29m.13s., e = 33m.46s., eSS = 35m.27s., eSSS = 39m.37s.
 Bergen PPE = 20m.14s., eN = 27m.42s., SSN = 35m.53s.?, eEN = 39m.47s.
 Bucharest eN = 19m.31s., eE = 27m.37s., eSSE = 34m.31s.
 Copenhagen e = 15m.35s., 20m.30s., 27m.7s., PS = 30m.0s., 32m.23s., and 35m.23s.,
      SS = 36m.16s., 38m.5s., and 39m.41s.
 Helwan eSN = 28m.23s., eN = 32m.32s., 34m.17s., and 36m.35s.
 New Kensington eSS = 37m.5s.
 Ottawa SKKS = 27m.15s., PS = 30m.13s., SS = 36m.53s., SSS = 40m.29s.
 Belgrade e = 20m.52s., 36m.53s., and 45m.37s.
 Prague ePPP = 23\text{m.}23\text{s.}, ePPP(\triangle > 180^{\circ}) = 35\text{m.}1\text{s.}, eSS = 36\text{m.}57\text{s.}, eSSS = 41\text{m.}35\text{s.}
 Shawinigan Falls SS = 37m.17s.
 Columbia e = 27m.27s., eSS = 37m.15s.
 Jena eN = 36m.33s. and 36m.56s.
 Cheb e = 34m.39s.
 Aberdeen iSEN = 28m.35s., iE = 50m.23s.
 Seven Falls SKKS = 27m.26s., PPS = 31m.47s., SS = 37m.6s.
 Vermont e = 20m.18s., i = 25m.35s., 30m.2s., and 32m.58s., eSS = 36m.21s., e = 25m.21s.
      36m.28s., i = 40m.19s. and 44m.52s.
 Philadelphia c = 22m.1s., i = 27m.31s., 30m.6s., and 32m.22s., iSS = 36m.53s., iSSS =
      41m.49s., e = 44m.4s., and 48m.51s.
 Fordham i = 20 \text{m.} 54 \text{s.}, eSKKS = 27 \text{m.} 39 \text{s.}, ePS = 30 \text{m.} 49 \text{s.}, eSS = 37 \text{m.} 39 \text{s.}
 Stuttgart ePKP = 19m.1s., ePPPZ = 23m.35s., eS = 28m.32s., eSS = 37m.27s. and
      37m.32s., eSSS = 42m.1s., eQ = 57.7m.
 Stonyhurst 27m.12s., i = 28m.54s., 30m.20s., and 36m.58s., Q = 51m.23s.
 Uccle ePP = 20m.36s. ePPSN = 32m.53s.?
 Zürich ePPP = 23m.47s.
 Kew ePPPZ = 23m.53s., ePS = 30m.59s., eSSNZ = 37m.39s., eQNZ = 50.9m.
```

Bermuda i = 22m.51s., e = 38m.17s., eSS = 39m.55s., e = 51m.14s.

31m.5s., iPSKS = 31m.59s., iSSN = 40m.13s., SSSN = 45m.6s.

Tortosa SKPE? = 23m.19s., iN = 23m.44s., PPP?E = 24m.5s.

La Plata SKSPN = 31m.47s., SKSPE = 32m.5s., Z = 34m.29s., SKKSE = 34m.53s.?

La Paz iP?Z = 19m.19s., iSKP = 23m.5s., iZ = 23m.25s., iSKSZ = 25m.53s., iS?Z =

SSE = 38m.53s., SSN = 39m.26s., PSSE = 41m.47s., SSSTE = 44m.5s., QEN =

Milan SSE = 36m.9s.

55.9m.

Paris e = 21m.21s. and 37m.53s.?.

Huancayo e = 20m.15s., 29m.37s., and 43m.55s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

129

San Juan e = 25m.19s., 29m.10s., 32m.15s., and 36m.10s., eSS = 41m.17s.Granada iPPP = 24m.59s., PS = 32m.44s., Q = 63.0m.Malaga PPE = 22m.28s., PKS = 23m.2s., PPP = 25m.4s., SKKS = 28m.52s., PS = 32m.24s., SS = 39m.23s.Lisbon PKPN = 19m.41s., Z = 20m.0s., PPE = 22m.39s., PKSN = 23m.35s., N = 28m.35s., QEN = 59.6m.San Fernando ePPPE = 25m.33s., SE = 31m.2s., PSE = 33m.14s., SSE = 40m.45s.Long waves were also recorded at Johannesburg and Butte.

May 25d. 16h. 33m. 11s. Epicentre 48° 2N. 9° 0E. (as on 1944, February 8d.).

Intensity V in the Jura-Souabe, district of Balingen-Ebingen (Zürich). Macroseismic epicentre 48°·1N. 8°·9E.

Annales de l'Institut de Physique du Globe de Strasbourg, 2e partie, Séismologie, tome IX 1944, p. 10, Strasbourg, 1951.

$$A = + .6609$$
, $B = + .1046$, $C = + .7432$; $\delta = + 8$; $h = -5$; $D = + .156$, $E = -.988$; $G = + .734$, $H = + .116$, $K = -.670$. \triangle Az. P. O-C. S. O-C.

	4.5	A.L.		o - c.	ο.	0-0.
	a		m. s.	8.	m. s.	s.
Ebingen	0.0		-	·	i 0 3	s•
Ravensburg	0.6	135	 		e 0 24	- 2
Stuttgart	0.6	13	i 0 11a	- 4	i 0 18	S.
Strasbourg	0.9	295		_	i 0 30	S.
Zürich	0.9	198	e 0 19	- 1	e 0 33	- 1
Basle	1.2	235	i 0 24	0	e 0 41	0
Chur	1.4	165	e 0 29	+ 2	e 0 48	+ 2
Neuchatel	1.8	229	e 0 36	+ 4	13 2.22 1	

Stuttgart gives also iZ = 0m.16s.

May 25d. Readings also at 1h. (Tucson, Tinemaha, Palomar, Riverside, Pasadena, Mount Wilson, and La Paz), 4h. (Mount Wilson, Pasadena, Riverside, Tinemaha, Palomar, Wellington, and Auckland), 5h. (Mount Wilson, Riverside, and Tinemaha), 7h. (Pasadena and Auckland), 8h. (Bogota), 10h. (near Berkeley), 12h. (Pehpei and near Mizusawa), 13h. (Pasadena (2), Mount Wilson (2), Riverside (2), Tinemaha (2), Santa Barbara, Haiwee, La Jolla, Palomar (2), Tucson (2), and Stuttgart (2)), 14h. (Helwan, Stuttgart, Clermont-Ferrand, Zi-ka-wei, Pehpei, Tucson, Pasadena (2), Mount Wilson (2), Riverside (2), Tinemaha (2), Palomar (2), and near Ottawa), 15h. (Auckland and Alicante), 17h. (Wellington and Auckland), 18h. (near Branner), 19h. (La Paz, Istanbul, and Alicante), 20h. (Istanbul), 23h. (Bucharest and near Sofia).

May 26d. Readings at 6h. (near Mizusawa), 7h. (La Paz, Tucson, Mount Wilson, Riverside, and Tinemaha), 8h. (Tucson, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 15h. (Riverview), 19h. (Mount Wilson, Pasadena, Riverside, and Tinemaha).

May 27d. 23h. 52m. 25s. Epicentre 37°-2N. 28°-3E. (as on 1943, January 11d.).

$$A = + .7031$$
, $B = + .3786$, $C = + .6020$; $\delta = + 9$; $h = -1$; $D = + .474$, $E = - .880$; $G = + .530$, $H = + .285$, $K = - .799$.

		Δ	Az.	P.	O-C.	s.	O-C.	Sur	p.	L.
		. 0	0	m. s.	8.	m. s.	S.	m. s.	ALCOHOL: 1	m.
Istanbul		3.9	6	(0.57)	- 5	(1 54)	+ 4	(257)	SS	
Ksara		7.0	116	e 1 55	+ 9	e 3 18	+10			_
Bucharest		$7 \cdot 4$	347	e 2 8	\mathbf{PP}	e 3 59	S.	e 4 10	SS	
Helwan		$7 \cdot 7$	160	1 47	- 9	3 19	- 6	1 56	P	i 4 · 4
Belgrade		$9 \cdot 6$	325	e 2 36	+15	e 5 33	5		-	_
Prague		16.3	327	e 4 2k	+10	e 7 7	+14		-	e 9·3
Milan	E.	16.5	306	i 3 56	+ 2	7 7	+ 9			
Chur		16.9	311	e 4 0	+ 1	e 7 1	- 6			
Cheb	- 2	$17 \cdot 2$	324	e 4 9	+ 6	e 7 28	+14	e 7 41	SS	e 10·1
Zürich		17.7	311	e 4 9	- 1	e 7 29	+ 3	300 - 100 -		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	Ρ.	O -C.	s.	o –c.	Sup	p.	L.
Stuttgart Jena Basle Potsdam Neuchatel		18·1 18·2 18·4 18·6 18·6	$315 \\ 326 \\ 312 \\ 330 \\ 310$	m. s. e 4 14 e 4 17 e 4 17 e 4 27 e 4 18	8. 0 + 1 - 1 + 6 - 3	e 7 35 e 7 44 i 8 6	$+\frac{3}{+20}$	m. s. e 9 41 =	Q =	e 10·9 e 10·6
Strasbourg Copenhagen Uccle Tortosa De Bilt	N.	18·8 21·4 21·8 21·9 22·1	$314 \\ 335 \\ 316 \\ 289 \\ 322$	e 4 23 e 4 54 4 55a i 4 53 e 4 59	+ 3 - 1 - 4 0	e 8 7 8 54 8 55 8 41 e 9 14	$^{+17}_{+9}_{+3}_{-13}_{+16}$	$\frac{\overline{9}}{5}$ 11	ss PP	11.6 11.1 e 11.6
Upsala Kew Granada Malaga Stonyhurst		$23.7 \\ 24.7 \\ 25.3 \\ 26.1 \\ 26.9$	$345 \\ 315 \\ 280 \\ 280 \\ 319$	5 20 e 5 26 i 5 25k i 5 29a	+ 6 + 2 - 5 - 8	i 10 3 i 9 46 i 9 51 i 10 45	$ \begin{array}{r} $	e 8 35? e 6 3 5 40 e 11 27	PeP PP PP SS	e 13.6 e 12.6 12.2 12.6
Bergen San Fernando Aberdeen St. Louis Tucson	E. Z.	27·4 27·5 28·4 85·7 101·1	336 280 325 317 326	i 12 39 c 22 2	- 3	e 10 24 e 10 28 i 10 55	- 4 - 2 + 10 -	e 15 35? i 19 42	7 7	17·6 =
Mount Wilson Palomar	z.	$102.3 \\ 102.7$	$\frac{332}{330}$	i 21 59 i 21 42a	?	2413 3 271 2		_	_	_

Additional readings :-

Istanbul readings decreased by 1 minute.

Bucharest eZ = 3m.2s., eE = 4m.16s.Helwan PPPZ = 1m.59s., jE = 3m.4s., SSE = 3m.42s.

Belgrade e = 3m.15s., 5m.17s., and 6m.15s.

Potsdam ePN =4m.30s.

Tortosa PPPN = 5m.18s., SSN = 9m.39s.

Kew eSSEZ = 10m.50s.?

Granada sP = 5m.57s., $iP_eP = 9m.20s.$, sS = 10m.3s., SS = 10m.52s.

Malaga $P_cP = 8m.33s$.

Stonyhurst 10m.53s., e = 13m.9s., 16m.58s., and 18m.38s.

Long waves were also recorded at Paris.

May 27d. Readings also at 1h. (near La Paz), 4h. (near Mizusawa), 5h. (Tucson, Tinemaha, Palomar, Mount Wilson, Riverside, and Pasadena), 7h. (near Mizusawa), 9h. (Pasadena, Riverside, Mount Wilson, Palomar, Tinemaha, Santa Barbara, La Jolla, Haiwee, Tucson, Riverview, and Stuttgart), 11h. (Stuttgart (5)), 14h. (near Mizusawa), 23h. (Zürich, Stuttgart, Tucson, Mount Wilson, Riverside, Pasadena, Strasbourg, and Istanbul).

May 28d. Readings at 4h. (Riverview and Jena), 5h. (Tucson, Tinemaha, and Palomar), 7h. (Mizusawa), 11h. (Tucson and Palomar), 12h. (Oaxaca), 13h. (near Mizusawa and near Bucharest), 14h. and 15h. (La Paz).

May 29d. 2h. 43m. 16s. Epicentre 5°.0N. 82°.5W. (as on 1943, September 26d.).

$$A = +.1300$$
, $B = -.9877$, $C = +.0866$; $\delta = -5$; $h = +7$; $D = -.991$, $E = -.131$; $G = +.011$, $H = -.086$, $K = -.996$.

		Δ	Az.	Ρ.	0 - C.	s.	O-C.	Su	pp.	L.
		0	o	m. s.	8.	m. s.	8.	m. s.	nete kon	m.
Balboa Heights		4.9	35	i 1 16	- 1	e 2 11	- 4			
Bogota		8.4	90	i 2 7	+ 1	i 3 42	- 1	i 2 52	$\mathbf{P}_{\mathbf{z}}$	
Huancayo		18.7	157	e 4 28	+ 6	e 8 4	+16			e 9·0
San Juan		20.8	48	e 4 40	- 5	e 8 39	+ 6		_	e 9.5
La Paz	Z.	25.7	146	e 5 34	+ 1	10 57	+56	-	_	15.2
St. Louis		34.2	350	i 6 46	- 3	e 12 12	- 4	e 14 26	SS	
Chicago		36.9	353			e 12 43	15			e 15.3
Tucson		37.9	319	i 7 20	0	e 15 1	SS	e 8 54	\mathbf{PP}	e 32·7
Ottawa		40.7	7	e 7 42	- 2	e 13 44	-11	_	_	19.7
La Jolla		42.6	315	e 7 59	0			-	_	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

131

		Δ	Αz.	Р.	0 - C.	s.	O -C.	Su	pp.	L.
and the second of the second o		0	.0	m. s.	8.	m. s.	s.	m. s.		m.
Palomar		42.6	316	i 8 0 a	+ 1			-	-	, —
Riverside	Z.	43.3	316	i 8 5	0			-		_
Mount Wilson	34	43.9	316	i 8 10 a	0	_	-	-	*****	
Pasadena	Z.	44.0	316	i 8 10 a	1	-		_		e 21.9
Haiwee	5-E-17	45.0	319	i 8 17	- 2		-			
Santa Barbara	Z.	45.2	315	i 8 20	0	-		-		-
Tinemaha		45.7	319	i 8 24 a	0	25.0	-			-
Rio de Janeiro	N.	47.3	127	e 19 7	SS	-		-		_
Berkeley		48.8	318		-	i 15 49	- 3	-	-	i 24 · 4
Malaga		77.5	54	i 11 57k	- 2	A 11 (20) (17) 200		12 37	pP	
Granada		78.2	54	10 30 a	9	19 56	?			33.9
Stuttgart		87.4	42	e 11 51	-59		-			e 44·7

Additional readings:—
Bogota iS* = 4m.9s.
San Juan e = 5m.34s.
St. Louis eSSSE = 15m.4s.
Pasadena eZ = 8m.58s.
Berkeley iE = 15m.52s.

Granada PP = 12m.54s., SS = 24m.26s., SSS = 27m.53s., readings anomalous.

Long waves were also recorded at Kew and Uccle.

May 29d. Readings also at 2h. (La Paz, St. Louis, Tucson, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 3h. (Huancayo (2), Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Stuttgart, Granada, Christchurch, Wellington (2), and Riverview), 7h. (Brisbane), 8h. (Strasbourg, Jena, near Basle, Chur, Zürich, Ravensburg, Ebingen, and Stuttgart), 11h. (near Apia), 15h. (La Paz, La Plata, Huancayo, St. Louis, Tucson, Mount Wilson, Palomar, Riverside, Tinemaha, Basle, Chur, Stuttgart, Kew, Uccle, Copenhagen, Bucharest, and Helwan), 16h. (Uccle), 20h. (Berkeley and Branner), 22h. (Berkeley), 23h. (near Ottawa, Shawinigan Falls, and Seven Falls).

May 30d. 9h. 56m. 2s. Epicentre 12°.4N. 92°.5E. (as on 1942, October 30d.).

A = -.0426, B = +.9761, C = +.2134; $\delta = +13$; h = +6; D = +.999, E = +.044; G = -.009, H = +.213, K = -977.

		Δ	Az.	_ F	the state of the s	0 - C.	s.	O – C.	Su	pp.	L.
32000 A		0	٥	m.	s.	8.	m. s.	8.	m. s.		m.
Calcutta	N.	10.8	339	e 2	45	+ 6	i 4 41	- 1		-	
Hyderabad		14.4	292	3	31	+ 4	6 0	- 9	-	New	7 · 1
	E.	14.9	264	e 3	39	+ 5		-	74 07 1010	2	7.7
Bombay		20.0	292	i 4	38	+ 1	e 8 19	+ 2	i 4 55	\mathbf{PP}	-
New Delhi	N.	21.5	322	e 4	50	- 2	i 8 45	- 2	5 9	\mathbf{PP}	_
Ksara		55.5	302	е 9	35	- 4	e 18 3	+39			
	Z.	70.8	125	i 11	3	-17	100 100 100 100 100 100 100 100 100 100	112	-		
	E.	73.8	322	e 11	54	+16	e 21 4?	- 5	-	_	
Copenhagen	10000	$74 \cdot 2$	325	i 11	33	- 7	i 21 1	-13			_
Chur		76.3	316	e 11	43k	- 9	e 21 22	-15			-
Stuttgart		76.4	318	e 11	45	- 8	e 21 23	-15	i 12 6	\mathbf{pP}	
Zürich		76.9	316	e 11	51	- 8 - 5	e 21 26	-17	1 12 0	PA	
Strasbourg		77.3	317	e 12	14	+16	0 21 20			10,000	-
Basle		77.5	316	e 11		- 1	e 21 37	-13	7.50		
De Bilt		78.7	321	e 12		+14	0 21 01		e 15 23	PP	e 42.0
De Dite		101	021	0.2	20	1.44	Constant		C 10 20	1.	6 42 0
Kew	Z.,	82.2	321	i 12	16	- 8	e 22 12	-27	e 15 17	PP	e 46.0
Scoresby Sund		86.2	342				22 53	[-16]		-	
	Z.	122.9	29	e 18	51	[-7]	(1) = 1	_			
	Z.	123.8	29	i 18	51	[-9]	· -	-			
Mount Wilson	z.	125.3	31	e 18	52	[-11]		_	e 20 54	\mathbf{PP}	-
Pasadena	z.	125.3	31	i 19	19	[+16]		-	1 21 24	\mathbf{PP}	
Riverside	Z.	125.8	31	i 18	54	[-10]	7 	_			-
Palomar	Z.	126.6	31	e 18	56	[- 9]					
La Jolla	z.	126.8	32	e 19	22	[+16]					
St. Louis	Z.	129.2	3	e 18	59	[-11]	_	-	e 21 29	PP	-
DU, LIVILIO	### C		1986	M M		25 25-54		1550	U 21 20		H77235
Tucson		130-7	26	i 19	2	[-11]		2.		100000	· ·
La Paz		160.8	256	e 20	13	[+11]					

For Notes see next page,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

132

NOTES TO MAY 30d. 9h. 56m. 2s.

```
Additional readings :-
  Hyderabad SN = 6m.6s.
  Bombay iPPPE =5m.6s., iPPPN =5m.11s., iE =8m.29s., iSSN =8m.35s., iSSSN =
      9m.2s., iE = 9m.10s.
  New Delhi PPPN =5m.22s., SSN =9m.23s.
  Potsdam eN = 11m.58s.?, eE = 12m.7s.
  Copenhagen i = 11m.55s.
  Chur i = 12m.78.
  Stuttgart ePPZ = 14m.37s., esS = 21m.58s.
  Strasbourg e = 13m.47s.
  Basle e = 12m.14s.
  Kew iPPZ = 12m.38s., ePPPZ = 15m.17s., eSSS?Z = 33m.58s.?; phases wrongly identi-
      fied.
  Tinemaha iZ = 19m.15s.
  Haiwee iZ = 19m.15s.
  Mount Wilson iZ = 19m.18s.
  Riverside iZ = 19m.19s.
  Palomar eZ = 19m.18s.
  Tucson i = 19m.32s, and 19m.40s.
```

May 30d. Readings also at 3h. (Haiwee, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and St. Louis), 5h. (Christchurch, Kaimata, Auckland, near Wellington, New Plymouth, and Tuai), 9h. (near Ksara), 12h. (near Mizusawa), 13h. (Tucson, Mount Wilson, Palomar, and Tinemaha), 14h. (Wellington), 18h. (Cheb, De Bilt, Stuttgart, Kew, Helwan, and Ksara).

May 31d. Readings at 3h. (Stuttgart), 5h. (near La Paz), 9h. (Wellington), 10h. (La Paz, La Plata, and Wellington), 11h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, St. Louis, and near Mizusawa), 13h. (Ksara), 15h. (La Plata, Kew, Jena, and Stuttgart), 17h. (New Delhi and near Istanbul), 23h. (near Berkeley).

June 1d. Readings at 7h. (La Paz), 15h. (Christchurch, Kaimata, Wellington, and Riverview), 20h. (La Paz), 21h. (near Bogota), 23h. (Tananarive).

June 2d. 2h. 26m. 36s. Epicentre 40°.9N. 142°.7E. Focus at base of superficial layers.

(as on 1944, March 10d.).

Intensity V at Kadobetsu, Urehoro, and Hokkaido; IV at Obihiro, Hatinohe, and Miyako. Epicentre 40°.9N. 147°.6E. Depth 50km. Macroseismic radius 200-300km. Seismological Bulletin of Central Meteorological Observatory, Japan, 1944. Tokyo, 1951, with isoseismic chart.

$$A = -.6030$$
, $B = +.4594$, $C = +.6522$; $\delta = +2$; $h = -2$; $D = +.606$, $E = +.795$; $G = -.519$, $H = +.395$, $K = -.758$.

	Δ	Az.	Ρ.	O-C.	s.	o-c.	Suj	pp.	L.
		0	m. s.	8.	m. s.	8.	m. s.		m,
Hatinohe	0.9	247	0 15k	- 1	0 26	- 2	4		
Miyako	1.4	203	0 22	- i	0 38	- 3			-
Morioka	1.7	224	0 29k	+ 1	0 49	0	11 Town 1 Co. 10 Co.		
Mizusawa	2.1	214	i 0 37	+ 4	i 1 •1	+ 2	0 40	$\mathbf{P}_{\mathbf{z}}$	
Akita	2.3	239	0 33	- 3	1 6	+ 2		1 m	-
Sapporo	2.4	235	0 37 k	- 1	1 3	- 3			-
Sendai	3.0	208	0 45	- 1	1 19	- 3			
Nemuro	3.2	41	0 50	+ 1	1 21	- 6		-	-
Hukusima	3.6	209	0 56	+ 1	1 31	- 6	-	-	
Onahama	4 · 2	200	1 21	+18	2 6	+14			-
Mito	4.8	202	1 13	+ 1	_	-		-	
Utunomiya	4.9	208	1 14	+ 1	_	****	-		
Kakioka	5.1	204	1 14	- 2	2 25	+10	_	•	-
Tukubasan	5.1	204	1 17	+ 1	2 13	- 2	***	7	-
Maebasi	5.3	214	1 22	+ 3	2 39	+19		-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944	133
1077	

		Λ	Az.	Р.	0 - C.	S.	O-C.	Sur	p.	L.
		-	D	m. s.	8.	m. s.	8.	m. s.		m.
Nagano		5.5	221	1 24	+ 2	2 54	+29	- 1000 -	-	
Tokyo		5.7	205	2 24	+60	-			-	-
Wazima		5.7	234	1 25	+ 1	2 34	+ 4		-	_
Yokohama		5.9	204	1 49	+22	2 55	+20	-	2-3-3	
Hunatu		6.2	211	1 38	+ 6	2 58	+16			-
Misima		6.5	208	1 39	$^{+}_{+}$ $^{3}_{9}$	3 23	+33		-	
Shizuoka		6.8	211	1 49	+ 9	3 6	+ 9	_	2 - 1	
Gihu		7.2	222	1 45	- 1	3 16	+ 9			
Kobe		8.6	226	2 13	+ 8	3 45	+ 3		-	
Sumoto		9.0	226	2 24	+13	-	-	-	1	-
Hukuoka		12.2	237	2 57	+ 3	4=-	-	-	8	
Kumamoto		12.5	234	2 57	- 1		annua.		-	-
Brisbane	N.	68.7	170		-	e 28 32	3	e 29 6	Q	-
Mount Wilson	Z.	74.7	58	e 11 36	- 2		-	-	-	_
Pasadena	z.	74.7	58	e 11 36	- 2	_	-	-	1)	-
Riverview		74.8	173		-	-	-	e 31 44	3	i 34.5
Copenhagen		74.9	334	e 11 36	- 3	-	=			
Riverside	Z.	75.3	58	e 11 40	- 2				-	-
Palomar	z.	76.0	58	i 11 59	+13	-	(200	-	
Tucson	2233	80.5	56	e 12 9	- 1	_	_		_	
Stuttgart		81.7	331	e 12 13a	- 4	e 23 6	+41	_	-	e 43·4
St. Louis	E.	87.3	39		0-2-2	e 23 18	- 3		_	
Granada		96.4	333	17 34 k	\mathbf{PP}	28 0	3		_	52.3

Additional readings:— Mount Wilson iZ = 11m.52s., eZ = 12m.8s.

Pasadena eZ = 11m.51s. Riverview iE = 32m.22s. Copenhagen e = 11m.51s. Riverside eZ = 11m.53s.

Tucson i = 12m.25s, and 12m.29s.

Stuttgart eZ = 12m.29s.

Long waves were also recorded at De Bilt, Uccle, and Kew.

June 2d. Readings also at 0h. (Bombay, Stuttgart, Granada, Palomar, and Tucson), 2h. (Ksara and near Berkeley), 3h. (Stuttgart), 4h. (Stuttgart, Scoresby Sund, and near Reykjavik), 5h. (Granada and Reykjavik), 6h. (Mount Wilson, Pasadena, Palomar, Riverside, and Tucson), 8h. (Mount Wilson (2), Pasadena (2), Palomar, Riverside, Tucson (2) and Stuttgart (2)), 9h. (Granada and Kew), 12h. (Bogota), 18h. (near Branner), 23h. (Clermont-Ferrand, De Bilt, Kew, Uccle, San Fernando, Granada, and Tortosa).

June 3d. 4h. 10m. 31s. Epicentre 30 ·6N. 139°·7E. Depth of focus 0·060.

(as on 1941, October 30d.).

Intensity II-III at Osima, Tukubasan, Kakioka. Macroseismic radius greater than 300km. Depth 330km.

Epicentre 30°·2N., 139°·6E. See Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1944, p. 10. Tokyo, 1951. Isoseismic chart, p. 10.

A = -.6576, B = +.5577, C = +.5065; $\delta = +1$; h = +1; D = +.647, E = +.763; G = -386, H = +.328, K = -.862.

	Δ	Az.	Р.	O - C.	s.	O-C.	Supp.	L.
	o o	0	m. s.	8.	m, s.	s.	m. s.	m.
Osima	4.2	357	1 15a	0	2 14	0		
Omaesaki	4.2	342	1 16	+ 1	2 15	+ 1		
Mera	4.3	2	1 16	0	2 18	+ 2		
Siomisaki	4.4	311	1 15	- 2	2 12	- 6		-
Hamamatu	4.4	339	1 16	1	2 18	0		_
Shizuoka	4.5	344	1 18	0	2 19	- 1		
Misima	4.6	352	1 19	0	2 20	- 2		-
Owase	4.6	320	1 18	- 1	2 17	- 5		(500)
Yokohama	4.8	359	1 24	+ 3	2 31	+ 6		-
Hunatu	4.9	351	1 2a	-20	2 6	-21		•

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

134

		Δ	Az,	Р.	O – C.	_s.	0 - C.		pp.	L.
Kameyama Tokyo Nagoya Wakayama Muroto		5.0 5.1 5.3 5.4	328 1 334 315 301	m. s. 1 47 1 24 1 25 1 24 a 1 23	**************************************	m. s. 2 31 2 30 2 31 2 29 2 26	*** 1	m. s.		nı.
Gihu Hikone Sumoto Kumagaya Tukubasan		5·4 5·5 5·5 5·6	334 329 314 357 4	1 28 a 1 28 a 1 26 1 56 a 1 29	$^{+}_{-}^{1}_{28}^{0}_{-}^{28}_{1}$	2 38 2 37 2 32 3 2 40	$^{+}_{-}^{2}_{0}^{1}$			=
Kobe Kakioka Maebasi Mito Utunomiya		5·6 5·8 5·8 5·9	318 4 355 6 2	1 27 a 1 35 1 39 1 32 1 31 k	- 3 + 5 + 7 - 2	2 44 2 45 2 46 2 44	- 4 + 4 + 1 + 2			
Koti Nagano Toyooka Toyama Miyazaki		6·0 6·2 6·4 6·4 7·2	$301 \\ 349 \\ 322 \\ 342 \\ 283$	1 31 a 1 35 a 1 35 1 17 1 42	$ \begin{array}{r} $	2 41 2 52 2 41 2 59 3 4	$^{-6}_{+14}^{-14}_{-8}$			
Wazima Aikawa Hamada Sendai Kagosima		7·3 7·5 7·5 7·7 7·9	$341 \\ 350 \\ 305 \\ 7 \\ 279$	1 45 1 49 1 46 1 53 1 48	$ \begin{array}{rrr} $	3 11 3 15 3 17 3 23 3 19	- 3 - 3 - 1 + 1 - 7			
Hukuoka Mizusawa Tomie Sapporo New Delhi	E.	$ \begin{array}{r} 8 \cdot 4 \\ 8 \cdot 6 \\ 9 \cdot 6 \\ 12 \cdot 5 \\ 53 \cdot 8 \end{array} $	293 8 285 7 284	$\begin{array}{c} & 1 & 56 \\ & 1 & 2 & 5 \\ & 2 & 5 \\ & 2 & 48 \\ & 2 & 48 \\ & 10 & 43 \end{array}$	- 5 + 2 - 9 + 1 PP	$\begin{array}{c} 3 & 31 \\ 1 & 3 & 42 \\ 3 & 46 \\ 5 & 4 \\ 21 & 35 \end{array}$	- 5 + 2 -15 + 3 SSS	i 18 4	=	
Brisbane Riverview Berkeley Scoresby Sund Tinemaha	z. z.	59·1 65·0 77·6 78·3 80·8	165 169 54 354 53	i 9 18 i 10 0 i 11 16 11 19 i 11 35	$ \begin{array}{rrr} & 3 \\ & 1 \\ & + & 3 \\ & + & 2 \\ & + & 5 \end{array} $	i 20 31 20 43 e 21 11	+ 2 + 6 + 8	12 47 i 13 7	- pP	
Haiwee Mount Wilson Pasadena Riverside Copenhagen	z.	81·5 82·4 82·4 83·0 83·0	53 55 55 55 333	i 11 39 i 11 43k i 11 42 i 11 45 e 11 41	+ 5 + 5 + 4 + 4	i 21 26 i 21 24	+ 7 - 1	i 13 14 e 13 15 i 13 14	pP pP	
Palomar Tucson De Bilt Stuttgart Uccle	N.	83·7 88·5 88·5 89·5	54 53 334 329 334	i 11 49 e 12 12 i 12 7 e 12 10k	+ 4 + 4 - 1 - 2	e 21 32 e 22 6 e 23 23 e 22 24 e 22 5	$^{-11}_{+66} \\ ^{-2}_{-24}$	e 13 16 e 13 45 e 25 3 e 13 43 e 28 38	pP pP PPS pP SS	e 47·9 e 44·5
Kew Florissant St. Louis Ottawa Granada La Paz	E.	91.0 96.7 96.9 97.8 104.3 151.0	36 37 37 24 330 66	i 16 52 e 14 27 e 29 59 19 19	PP PS [+21]	i 23 51 i 22 47 i 22 47 (22 49) 35 29	[+ 6] [+ 4] [+ 2] SS	e 26 32 e 18 10	PPS	e 45·5

```
Additional readings :-
  Berkeley iSE = 20m.39s.
  Tinemaha ePKPPKPZ = 38m.45s.
```

Mount Wilson iZ = 11m.51s., iPPZ = 14m.32s.Pasadena ePPZ = 14m.33s., eZ = 41m.53s.Palomar esPZ = 13m.49s.Tucson ePP = 15m.50s., e = 23m.35s.Stuttgart eSKS = 22m.2s., eS = 22m.29s., eSPZ = 23m.29s., e = 25m.5s., eSS = 28m.29s.Florissant eSE = 23m.36s., eE = 25m.43s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

135

June 3d. 7h. 12m. 15s. Epicentre 20°-2N. 63°-3W.

 $A = + \cdot 4220$, $B = - \cdot 8391$, $C = + \cdot 3432$; $\delta = -4$; h = +5; $D = - \cdot 893$, $E = - \cdot 449$; $G = + \cdot 154$, $H = - \cdot 307$, $K = - \cdot 939$.

		Δ	Az.	P.	0 - C.	S.	0-C.	Su	pp.	L.
		0	۰	m. s	8.	m. s.	8.	m. s.	B-08-05-1	m.
San Juan		3.2	237	i 0 49	- 3	i 1 23	- 9		-	i 2.0
Bermuda		12.2	353	e 2 45		-				e 5·1
Bogota		18.7	217	e 4 18		17 54	+ 6	e 8 22	SSS	~ ~ _
Philadelphia		22.2	337	15 2		e 8 59	- ĭ	e 9 52	SSS	e 11.0
Fordham		$22 \cdot 5$	339	e 5	+ 1	i 9 12	+ 7	i 5 13	PP	G 11 0
Weston		23.1	346	e 5 \$	+ 1	e 9 15	- 1	2=2	2000	19-97
Ottawa		$27 \cdot \hat{1}$	341	e 5 46		(e 10 33)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			e 10.6
Chicago		29.4	322			e 11 6	1 5			e 15.0
St. Louis		29.6	315	e 6 9	0	· - <u>-</u> ·	· •	e 6 53	\overline{PP}	e 14·1
Tueson		44.0	297	i 8 11		(12.5V)			$\vec{P}\vec{P}$	
AUCOUL		** 0	~.			100.5		e 10 2	IF	e 24·6
Palomar		49-1	298	1 8 50	k - 1	_			-	-
Riverside	Z.	49.5	299	18 54	k 0			i 10 17	P_cP	
Mount Wilson	Z.	50.1	299	18 58		-		i 10 17	Pop	
Pasadena	000		299	1 8 59	- i			e 10 17	P.P	e 36·3
Tinemaha		50·2 50·4	302	i 9	- Õ	Private C	-	1 10 18	PeP PeP	0 00 0
						81,6050		1 10 10	T CT	
Basle		62.5	47	e 10 35	+ 7		-	-	-	
Stuttgart	Z.	63.6	45	e 10 34	- 1	(<u>4</u>		e 11 7	P_cP	-
Chur	\$-030	63.9	47	e 10 33	- 4	•	-		- 0-	

Additional readings :-

Bogota i = 4m.22s., e = 7m.39s.Philadelphia eS = 9m.2s.

Tucson e = 8m.25s.

Long waves were also recorded at Florissant and De Bilt.

June 3d. 11h. 41m. 19s. Epicentre 31°·6N. 141°·7E. Depth of focus 0·010.

(as on 1942 Dec. 27d.).

$$A = -.6696$$
, $B = +.5289$, $C = +.5214$; $\delta = -4$; $h = +1$; $D = +.620$, $E = +.785$; $G = -.409$, $H = +.323$, $K = -.853$.

Mera Osima Misima Yokohama Shizuoka		∆ 3.7 3.7 4.2 4.3	AZ. 335 329 327 337 321	P. m. s. 1 20 0 58 e 1 5 1 10 e 0 45	O-C. s. +24 + 2 + 2 + 7 -20	S. s. 2 2 1 59 2 3 2 2	O-C. +23 + 8 +12 + 8	L. m.
Tokyo Hunatu Tukubasan Siomisaki Onahama		4·4 4·6 4·8 5·3 5·4	339 328 344 291 353	e 1 4 0 45 e 1 6 e 1 13 e 1 37	- 2 - 24 - 5 - 5 + 17	= = 2 41	+20	
Gihu Nagano Hikone Hukusima Kobe		5.6 5.8 5.8 6.2 6.3	314 331 311 351 301	e 1 17 1 28 e 1 19 1 34 1 29	- 5 + 3 - 6 + 4 - 3	2 51 2 41	+ \frac{-0}{0}	=
Toyama Mizusawa Morioka Tinemaha Mount Wilson	E. Z. Z.	6·3 7·5 8·1 78·8 80·4	325 357 357 53 55	e 1 47 e 1 57 e 11 54 e 12 2	+ 2 - 1 0 0	2 55 3 8 3 30	+12 + 3 - 4	
Pasadena Riverside Palomar Tucson Stuttgart Helwan	z. z. n.	80·4 81·7 86·6 89·4 89·9	55 55 53 330 305	e 12 4 e 12 6 e 12 9 e 12 33 e 12 46	+ 2 0 - 1 - 1	e 24 20 e 23 37 e 23 47	PS +10 +16	e 41·0 — e 44·9 —

Additional readings:— Mizusaawa SN = 3m.3s.

Long waves were also recorded at New Delhi, De Bilt, Uccle, Kew, and Granada.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

136

June 3d. Readings also at 1h. (Riverside, Mount Wilson, Pasadena, Tucson (2), Florissant, and St. Louis), 2h. (Pasadena), 3h. (La Paz), 8h. (Riverside, Mount Wilson, Pasadena, Christchurch, Wellington, Sydney, Riverview, and Brisbane (2)), 9h. (Stuttgart), 10h. (Stuttgart, Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, and Tucson), 11h. and 13h. (Kodaikanal), 14h. (near Reykjavik), 15h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, Bogota, near La Paz, Huancayo, and near Alicante), 16h. (Kodaikanal and St. Louis), 18h. (Reykjavik), 19h. (near Apia), 20h. (New Delhi and Stuttgart), 22h. (Berkeley), 23h. (near Lick and Branner).

June 4d. 13h. Undetermined shock.

Pasadena suggests deep focus. Tinemaha ePZ = 35m.32s., iZ = 35m.53s. and 36m.25s.Mount Wilson ePZ = 35m.45s. Pasadena ePZ = 35m.45s., iZ = 35m.53s. and 36m.2s.Riverside eP?Z = 35m.56s., iZ = 36m.6s.Palomar iPZ = 36m.3s., iZ = 36m.11s.Tucson eP = 36m.24s., i = 36m.44s.College eS = 36m.42s., eL = 39m.33s.Copenhagen eP = 36m.51s., S = 46m., L = 64m.Stuttgart eP?Z = 37m.32s., eS? = 47m.24s., eQ = 65m.48s.?, eR = 69m.48s.Kew eZ = 37m.35s.?, 45m.55s.?, and 57m.0s., eLNZ = 66m.Helwan ePZ = 38m.28s., eN = 49m.6s.St. Louis iSE = 46m.20s., eL?E = 59m. Granada i = 49m.38s., e = 57m.42s., L = 75m.New Delhi eN = 60m.56s. Prague e = 62m.12s. and 65m.6s., eL = 68m. Upsala eE = 63m.?, eN = 64m.?, eE = 67m.?. Long waves were also recorded at De Bilt, Potsdam, Clermont-Ferrand, San Fernando, Florissant, and Bombay.

June 4d. 19h. Undetermined shock.

Mizusawa ePE = 40m.44s., SE = 44m.50s. Sitka e = 44m.12s. and 49m.34s., eL = 57m.33s. Tinemaha ePZ = 46m.20s., i = 46m.38s., iZ = 47m.2s.Scoresby Sund P = 46m.25s., 53m.54s. Mount Wilson ePZ = 46m.39s., iZ = 46m.44s.Pasadena ePZ = 46m.41s., eLZ = 64.5m.Riverside eP?Z = 46m.47s. Palomar iPNZ =47m.0s., iZ =47m.34s. Tucson ePZ = 47m.12s., i = 47m.20s.Copenhagen eP = 47m.398., L = 72m.Kew $\epsilon Z = 48 \text{m.} 16 \text{s.}$, $\epsilon LNZ = 79 \text{m.}$ Stuttgart ePZ = 48m.20s., eS?Z = 58m.12s.?, eL = 77m.0s.Chur e = 48m.30s. Granada ePP = 51m.118.a, iS = 60m.29s., SS = 69m.36s., L = 84.8m. Columbia e = 54m.4s., eL = 64m.52s.New Delhi eN = 55m.36s., e = 71m.41s.Florissant iSE = 57m.6s., eL?E = 70m. St. Louis iSE = 57m.8s., eL?E = 69.5m. Uccle e = 58m., eL = 77m. Prague e = 58m.36s, and 71m.12s., eL = 75m. Long waves were also recorded at Wellington, Bombay, Calcutta, and at other European stations.

- June 4d. Readings also at 0h. (Tinemaha, Riverside, Mount Wilson, Palomar, Tucson, Granada, and Stuttgart), 2h. (near Harvard), 6h. (Stuttgart), 7h. (Kew and Stuttgart), 8h. (Palomar, Tinemaha, Riverside, Mount Wilson, Pasadena, Tucson, and Stuttgart), 9h. (Stuttgart, Palomar, Tinemaha, Tucson, Riverside, Mount Wilson, Pasadena, Auckland, Wellington, and Riverview), 10h. (Granada), 12h. (Ksara, Bogota, and near La Paz), 16h. (Stuttgart), 17h. (Stuttgart, Chur, Copenhagen, Pasadena, Tucson, Mount Wilson, Riverside, Tinemaha, and Palomar), 19h. (College), 20h. (Stuttgart, Chur, Copenhagen, Pasadena, Tinemaha, Mount Wilson, Riverside, Tucson, and Palomar), 21h. (near Berkeley), 22h. (Palomar, Riverside, Tinemaha, Tucson, and Pasadena).
- June 5d. Readings at 0h. (Mount Wilson, Tucson, Pasadena, Palomar, Riverside, Tinemaha, Copenhagen, and Stuttgart), 1h. (Granada, De Bilt, Uccle, Kew, Prague, St. Louis, Mount Wilson, Pasadena, Palomar, Tucson, Riverside, Tinemaha, Tacubaya, Bogota, and La Paz), 2h. (Stuttgart), 5h. (Mount Wilson, Palomar, Tucson, and Tinemaha), 6h. (Mount Wilson, Tinemaha, Tucson, and near Mizusawa), 7h. (Harvard, Mount Wilson, Palomar, Tucson, Tinemaha, and Mizusawa), 8h. (Mizusawa), 11h. (Bucharest), 12h. (Palomar and Tucson), 14h. (Palomar, Tucson, Riverside, and Tinemaha), 16h. (Tinemaha, Tucson, near Balboa Heights, and near Branner), 19h. (La Plata), 23h, (near Fort de France).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

137

```
June 6d. 3h. Undetermined shock.
```

```
Brisbane iPN =49m.11s., ePN =49m.14s., iN =49m.26s., iSN =53m.11s. and 53m.16s.,
    1LN = 55m.15s.
Riverview iPNZ = 50m.31s.k,
                              iPPNZ = 51m.12s., iSN = 54m.55s., iSZ = 54m.59s.
    iN = 55m.23s., iE = 57m.41s., eLZ = 58.3m.
Wellington PPZ = 54m.4s., PcS = 58m.10s., S = 58m.35s., SS = 60m.50s., Q = 61m.48s.,
    RZ = 64m.
Berkeley iPE = 57m.11s., iLE = 84.8m.
Santa Barbara ePZ = 57m.20s.
Pasadena iPZ = 57m.24s.a, iLEZ = 86.3m.
Mount Wilson iP = 57m.25s.a, iZ = 57m.48s.
Tinemaha iP = 57m.26s.a. iZ = 57m.59s.
Riverside iPZ = 57m.27s.a, iZ = 57m.43s., and 58m.22s., eZ = 61m.13s.
Palomar iPEZ = 57m.29s. s.
Tucson eP = 57m.53s., e = 58m.31s., ePP = 61m.48s., eL = 89m.35s.
Arapuni P_cS? = 58m.0s.
Christchurch SEZ = 61m.59s., Q = 63m.30s., RZ = 65m.42s.
Stuttgart eP?Z=63m.22s., eZ=65m.11s., ePP?Z=68m.6s., eS?=75m.0s., eSP?Z=
    76m.48s.?, eSS? = 83m.0s.
Granada iPKP = 63m.43s.k, SKP = 67m.17s., PP = 67m.41s., PPS = 80m.35s., cSS =
    107m.52s., L = 117m.0s.
Sitka eS = 67m.8s., eL = 79m.22s.
New Delhi eN = 67m.17s.
St. Louis eSKKSE = 70m.55s., eSE = 71m.41s., ePSE = 73m.32s., eSE = 98m.
Scoresby Sund 73m.49s., L = 99m.
Long waves were also recorded at Auckland, Sydney, Bermuda, and other European
    stations.
```

June 6d. 11h. 48m. 10s. Epicentre 41°·1N. 142°·2E. Depth of focus 0·005. (as on 1942 Feb. 23d.).

Scale V at Hatinohe; IV at Morioka; II-III at Hakodate, and Ohihiro. Epicentre 41°·3N. 142°·2E., depth 60 km. Radius of macroseismic area greater than 300 km. Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1944, Tokyo 1951, p. 11, with isoseismic chart.

$$A = -.5972$$
, $B = +.4632$, $C = +.6548$; $\delta = -3$; $h = -2$; $D = +.613$, $E = +.790$; $G = -.517$, $H = +.401$, $K = -.756$.

		Δ	Az.	P. m. s.	O – C. s.	S. m. s.	O – C.	m. s.	р.	L. m.
Hatinohe		0.8	222	0 14k	- 3	0 24	- 5		-	
Morioka		1.6	209	0 281		0 48	+ 1			
Sapporo Akita		1·8 2·1	$\frac{342}{229}$	0 34 k 0 38	9 16 37	1 1	+ 9			-
Mizusawa	E.	$2 \cdot 1$	203	0 38 i 0 34	+ 4	1 5 i 0 59	+ 6		-	-
Sendai		3.0	199	0 44	- 3	1 19	- 3		_	
Nemuro		3-3	48	0 18	-33	0 53	-36			
Hukusima		3.6	203	0 53	- 2	1 30	- 7			-
Onahama		4.3	194	1 54	+49	2 52	+58		1	
Aikawa		4.4	226	1 6	0	1 56	- 1		-	_
Mito		4.9	207	1 10	- 3	2 14	+ 5	-	-	
Kakioka		5.1	198	1 14	- 2	_		-		
Tukubasan		5.2	200	1 15	- 2	2 13	- 4	-	_	
Maebasi	1722	5 3	209	1 16	- 3	_	_	6		·
Kumagaya	•	$5 \cdot 4$	205	1 19	- 1	2 28	+ 6	-	-	-
Nagano		5.4	217	1 22	+ 2	2 44	+22			_
Tyosi		5.5	191	1 20	1	2 13	-11	1 m	-	
Wazima		5.6	230	1 25 a	+ 2	2 34	+ 7	-	-	
Tokyo		5.7	200	1 23	1	2 36	+ 7	•	-	-
Toyama		5.9	223	1 29	+ 2	2 27	- 7	•	1.50	
Yokohama		6.0	201	1 33	+ 5	2 59	+22		S=====	-
Hunatu		$6 \cdot 2$	207	1 34	+ 3	2 42	+ 1		200	
Mera		6.4	198	1 32	- 2	3 7	+21			-
Misima		6.5	205	1 34	- 1	2 49	0			-
Osima		6.7	200	1 39	+ 1	2 51	- 3	*****		-
Shizuoka		6.8	207	1 43	+ 4	2 56	0	, 	_	-
Gihu		7.1	219	1 46	+ 2	3 16	+12	-	_	_
Hamamatu		7.3	210	1 49	+ 3	3 37	+28	-		$\overline{}$
Hikone		7·5 7·7	221	1 49	0	3 21 3 36	+ 7	-	-	-
Kameyama		7.7	219	1 55	+ 3	3 36	+17	-	-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	P		$\mathbf{o} - \mathbf{c}$.	s.	0 - C.	Sup	p.	L.
		0	0	m.		s.	m. s.	s.	m. s.	-E-111	m.
Kyoto		7.9	222	1	57	+ 2	*****			-	
Toyooka		8.0	229	1	58	+ 2	3 34	+ 8			
Owase		8-4	216	2	14	+12	F-04757A		_	-	_
Kobe		8.5	223	2	1	- 2	3 43	+ 5	-		_
Wakayama		8.8	221	2	8	+ 1	-				
Sumoto		8.9	223	2	9	+ 1	4 5	+17	-	-	122004
Koti		10.2	225	2	25	- 1	5 7	L			(5.1)
Kumamoto		12.3	232	2	58	+ 4		_		-	1
Miyazaki		12.6	227	3	5	+ 7	6 0	\mathbf{L}	-	-	(6.0)
Kagosima		13.4	228	3	9 k	0	-	_	-	-	
Tinemaha	z.	73.0	55	i 11	25	0			i 11 39	pP	-
Haiwee	Z.	73.7	56	e 11	29	0			100 100 100 100 100 100 100 100 100 100		-
Copenhagen Mount Wilson		74.6	334	11	34	0			i 11 49	$_{\mathbf{pP}}^{\mathbf{pP}}$	35.8
Mount Wilson	Z.	74.9	58	e 11	35	- 1	****		i 11 50	$\mathbf{p}\mathbf{P}$	1
Pasadena	Z,	74.9	58	e 11	37	+ î			i 11 50	\mathbf{pP}	e 34·4
Riverside	Z.	75.5	58	e 11	38	- 1	-		e 11 53	pP	 0
Palomar		76.2	57	i 11	44	+ 1	_	_	i 11 58	pP	
Tucson		80.7	55	i 12	8	0	=	_	i 12 24	pP pP	
Uccle	N.	81.3	335	e 12	12	+ 1	-		e 17 50?	$\mathbf{p}\mathbf{p}$	e 47.8
Stuttgart		81.4	331	i 12	12a	+ 1		_	i 12 27	\mathbf{pP}	e 48·8
Chur		82.8	330	e 12	9	- 9			-	(===)	_
Zürich		82.8	331	e 12	16	- 2	****	-	-	-	
Basle		83.0	331	e 12	20	0			e 14 18	3	
Neuchatel		83.7	331	e 12	23	0	-	 0			
Helwan	Z.	84.8	305	i 12	29 k	0			i 12 44	\mathbf{pP}	100
Granada		96.0	333	i 17	18k	PP	30 42	88	17 33	pPP	$53 \cdot 2$

Granada gives also SS = 35m.0s., true SS reading being given as PS, phases wrongly identified.

Long waves were also recorded at Cheb, De Bilt, and Kew.

June 6d. Readings also at 0h. (Palomar, Pasadena, Riverside, Tinemaha, and near Berkeley), 2h. (near Lick), 7h. (Bucharest), 9h. (Tacubaya), 12h. (near Mizusawa), 13h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and Tinemaha), 15h. (Mount Wilson (2), Tucson (2), Pasadena, Palomar, Riverside, Tinemaha (2), La Paz, and Stuttgart), 18h. (Mount Wilson, Tucson, and Palomar), 19h. (Ksara), 21h. (near Ottawa), 22h. (near Mizusawa), 23h. (Mount Wilson (2), Pasadena (2), Palomar (2), Riverside (2), Tucson (2), Bermuda, San Juan, Bogota, Huancayo La Paz, and Granada).

June 7d. 10h. 15m. 3s. Epicentre 33°·3N. 132°·1E. Depth of focus 0·005.

(as on 1942 Oct. 26d.).

Intensity VI at Oita; V at Izuka, Tokusima, Kôti; IV at Okayama, Matsue, and Hamada. Epicentre 33°·5N. 131°·9E. Macroseismic radius greater than 300 km. Shallow. Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1944, Tokyo 1951, p. 12, Isoseismic chart p.12.

A = -.5615, B = +.6214, C = +.5464; $\delta = -3$; h = +1; D = +.742, E = +.670; G = -.366, H = +.405, K = -.838.

	Δ	Az.	P.	O-C.	s.	$\mathbf{O} - \mathbf{C}$.	Supp).	L.
	0	0	m. s.	В.	m. s.	s.	m. s.	24.5	m.
Simidu	0.9	125	0 17	- 1	0 27	- 4	-	_	-
Hirosima	1.1	15	0 20	0			-		
Izuka	1.2	287	0 17k	- 5	0 32	- 6	-		
Kôti	1.2	78	0 23 a	+ 1	0 40	+ 2		-	-
Hukuoka	1.4	281	0 22	- 2	0 45	+ 2	-	-	
Miyazaki	1.5	202	0 22	- 4	0 42	- 3	1		-
Hamada	1.6	359	0 26k	- 1	0 47	0	-	-	
Muroto	1.7	91	0 28a	0	0 50	0	-	-	_
Unzendake	1.7	250	0 25 a	- 3	0 44	- 6	-		·
Kagosima	2.2	217	0 31 k	- 4	1 12	+10	_		_

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

139

		Δ	Az		O-C	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 - C.	0.33513.73 (577.00	ıpp.	L.
Ituhara Sumoto Wakayama Kobe Siomisaki		2·5 2·5 2·7 2·9 3·1	291 66 70 62 87	0 41a 0 43a 0 45a	8. - 5 + 2 + 1 - 2	m. s. 0 55 1 10 1 15 1 18 1 22	8. -14 + 1 + 1 - 1 - 2	m. s.	=	m. ====================================
Toyooka Kyoto Owase Hikone Kameyama		3·2 3·5 3·5 4·0 4·0	44 59 76 58 66	0 53k 0 54a 1 2a	- 1 + 1 0	1 41 1 48 1 27 1 50 1 45	$^{+14}_{-14}$ $^{-7}_{-3}$		Ξ	<u> </u>
Gihu Nagoya Hamamatu Omaesaki Toyama		4·4 4·4 5·2 5·4	60 64 71 74 49	1 9 a 1 14	+ 1 + 3 + 1 + 2 + 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 3 + 2 + 15 + 6			
Shizuoka Wazima Hunatu Misima Nagano		5·5 5·6 5·9 6·0	70 42 66 70 54	1 21 1 26k 1 29 1 28 1 32	$^{+}_{+}^{0}_{2}^{0}$ $^{+}_{4}$	2 35 2 26 2 38 2 36 2 49	$^{+11}_{-1}$ $^{+4}_{-1}$ $^{+12}$			
Osima Maebasi Kumagaya Mera Yokohama		6·2 6·6 6·6 6·6	74 59 62 73 69	1 32 1 37 1 39 a 1 38 1 40	$\begin{array}{c} + & 1 \\ + & 2 \\ + & 2 \\ + & 1 \\ + & 3 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+25}_{+33}_{+47}_{-47}$			
Tokyo Aikawa Kakioka Mito Sendai		6·8 6·9 7·2 7·5 8·7	67 45 64 63 53	1 45 1 41 1 49 1 48 2 8	+ 6 + 4 - 1 + 2	3 2 - 3 50	+ 3 + 7			
Akita Mizusawa Hatinohe Sapporo New Delhi	N.	$9.1 \\ 9.3 \\ 10.4 \\ 12.2 \\ 46.9$	42 49 44 34 280	e 2 32 2 32 2 32 2 58	$^{+21}_{+6}_{+3}_{+5}$	e 4 6 4 30 5 1 e 15 3	- 1 + 8 + 5 - 8	i 15 38	PPS	=
College Brisbane Upsala Bergen Copenhagen		56·2 63·6 72·7 77·0 77·5	$\begin{array}{r} 30 \\ 159 \\ 332 \\ 337 \\ 330 \end{array}$	i 10 23 a i 11 47	- 3	e 17 20 e 28 571 e 21 31 21 32	+ 2 SSS + 2 - 3	e 17 50 i 10 39 e 30 577 e 39 27	PPS pP L (e	39.4)
Stuttgart Tinemaha Uccle Santa Barbara Haiwee	z. z.	83·8 84·1 84·4 84·7 84·9	326 50 331 52 50	e 12 19 a e 12 26 e 10 573 i 12 50 i 12 28	- 5 + 1 pP - 1	e 22 31	- 9 = =	e 12 38 e 12 46 i 12 47	\mathbf{pP}	42·7 21·0
Pasadena Mount Wilson Riverside La Jolla Palomar Tucson Granada	Z. Z. Z.	85.9 86.6 86.6 87.3 91.9 98.6	52 52 53 52 49 326	e 12 33 i 12 33 e 12 37 e 12 59 i 12 40 i 13 3 i 17 10 a	- 1 - 2 pP - 1 + 1		=	i 12 53 i 12 51 e 12 55 i 12 59 e 13 21 17 28	pP pP pP pP	50.6

Additional readings:— New Delhi iN = 18m.4s.

College e = 29m.15s. Stuttgart ePPZ=15m.34s., epPP7Z=15m.52s. Pasadena ePPZ=16m.9s.

Palomar ePPEZ=16m.21s.

Tucson e = 16m.39s, and 17m.2s.

Granada ePP = 21m.29s., ePS = 29m.34s., readings wrongly identified. Long waves were also recorded at other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

I San Francisco

11

140

June 7d. 12h. 35m. 36s. I Epicentre 36°-6N. 121°-3W. (as given by Berkeley) 12h. 38m. 24s. II 12h. 49m. 34s. III A = -.4181, B = -.6876, C = +.5936; D = -.855, E = +.519; G = -.308, H = -.507, K = -.805. L. Supp. O-C. m. s. i 0 18 339 I Lick i 0.6 0.8 339 i 0 17 11 e 0 18 i 0 20 i 0 29 i 0.6 339 0.8 ш i 0 32 I Santa Clara 0.9325 i 0 30 e 0 19 0.9 325 п i 0 26 319 I Branner i 0 23 319 п e 0 23 319 \mathbf{III} i 0 28 329 I Berkeley e 0 30 i 0 27 1.5 329 п 10 51 1.5 i 0 20 329 ш

June 7d. Readings also at 0h. (Stuttgart and Kew (2)), 5h. (Mount Wilson, Tucson, Riverside, Pasadena, and Palomar), 6h. (Palomar, Pasadena, Riverside, Mount Wilson, Florissant, Tucson, St. Louis, Weston, Fordham, Bermuda, Bogota, near San Juan, and near Port au Prince), 15h. (Belgrade), 21h. (Tucson), 22h. (Palomar, Tucson, and Riverside).

i 0 49

i 0 49

0

0

i 0 57

June 8d. 2h. 38m. 7s. Epicentre 9°.0S. 71°.0W. Depth of focus 0.080.

e 0 29

e 0 30

322

322

1.5

1.5

A = +.3216, B = -.9341, C = -.1554; $\delta = +12$; h = +7; D = -.945, E = -.326; G = -.050, H = +.147, K = -.988.

		Λ	AZ.	Р.	0-C.	s.	O-C.	Suj	pp.	L.
			0	m. s.	8.	m. s.	s.	m. s.	1000	m.
Huancayo		5.2	235	e 1 30	- 2	i 2 43	- 1	i 2 11	pP	i 2.8
La Paz	z.	8.0	160	e 1 51	- 7	(3 20)	-12		1	3.3
Bogota		13.9	347	i 3 9	+11	e 5 47	SS	e 3 54	pP	
San Juan		27.6	10			e 9 14	+ 4	200 (200 (200 (200 (200 (200 (200 (200		e 12.4
St. Louis		50.7	341	i 8 12	0	i 14 46	0	e 10 4	pP	_
Florissant		50.9	341	i 8 16	+ 3	i 14 51	+ 2	e 17 1	S_cS	_
Tucson		55.9	319	i 8 49	$^{+}_{+}$ $^{3}_{1}$	7		i 10 44	pP	
Palomar		60.6	317	i 9 20	0			i 11 18	pP	
Riverside	z.	61.3	317	i 9 25	0	-	-	i 11 23	pP	
Mount Wilson	z.	61.9	317	i 9 30 k	+ 1			i 11 28	pP	10-20 F
Pasadena		62-0	317	i 9 29	0	e 17 13	+ 1	e 11 27	\mathbf{pP}	
Tinemaha.		63.7	319	e 9 42	+ 2				123	
Granada		77.9	49	i 11 4 a	+ 1	21 13	+61	13 6	\mathbf{pP}	-

Additional readings :-

Huancayo i = 2m.18s. St. Louis $iP_cPZ = 9m.16s$., $eS_cSN = 16m.59s$., eE = 18m.32s.

Tucson $iP_cP = 9m.36s.$, i = 10m.10s.

Palomar iPcP = 9m.55s.

Riverside $iP_cPZ = 9m.57s.$, iZ = 10m.40s.

Mount Wilson iPcPZ = 10m.0s.

Pasadena $iP_cPZ = 10m.1s.$, $eS_cSE = 18m.19s.$

June 8d. Readings also at 1h. (near Branner and Lick (2)), 3h. (Granada), 7h. (Riverview), 8h. (Huancayo, near Branner, Berkeley, and Lick), 10h. (Granada), 11h. (Kew, De Bilt, Potsdam, Strasbourg, Stuttgart, Cheb, Bucharest, Belgrade, and near Mizusawa), 14h. (Brisbane), 15h. (La Plata, Palomar, Riverside, Tucson, Mount Wilson, Pasadena, and St. Louis), 16h. (near Alicante), 17h. (near Ottawa), 18h. (near Branner), 21h. (Stuttgart (3), Riverview (2), Christehurch, near Apia and near Berkeley (2)), 22h. (Granada and Tananarive).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

June 9d. 20h. 34m. 39s. Epicentre 3°-2S. 143°-7E. (as on 1940 Sept. 19d.).

A = -.8047, B = +.5911, C = -.0555; $\delta = +2$; h = +7; D = +.592, E = +.806; G = +.045, H = -.033, K = -.998.

ъ.	7.3	592, E	- 1	000; V	J - + 0	±0, H	033, E	000.		
Riverview Sydney Miyazaki Muroto Mera		∆ 31·3 31·3 36·8 37·2 38·1	AZ. 168 168 343 347 356	P. m. s. (i 6 24) e 7 17 e 6 53 7 21	0 - C. $- 0$ $- 6$ $- 22$ $- 1$	S. m. s. (i 11 19) e 11 15 e 13 2	O - C. 8. -12 -16 + 6	m. s. Sup	ss =	L. m. e 14·6 19·4
Shizuoka Kobe Yokohama Hukuoka Hunatu		$38.3 \\ 38.6 \\ 38.6 \\ 38.7 \\ 38.8$	$354 \\ 350 \\ 355 \\ 342 \\ 354$	e 6 39 7 31 7 42 e 7 22 e 7 24	$^{-45}_{+16}^{+5}_{-5}$	$13 & 21 \\ 13 & 9 \\ 13 & 23 \\ \hline 13 & 20$	$^{+}_{-14}^{2}_{0}$ $^{-}_{6}$	(e 15 3)	= = =	21·4 e 15·0
Tokyo Perth Gihu Hikone Kumagaya		$38.8 \\ 38.9 \\ 38.9 \\ 39.3$	$355 \\ 219 \\ 352 \\ 352 \\ 355$	e 7 45 e 7 34 e 6 55 7 27	$+\frac{17}{5} \\ -\frac{34}{5} \\ -\frac{5}{5}$	i 13 31 13 33 13 16	$ \begin{array}{r} $		=	e 16·9
Toyooka Nagano Sendai Aikawa Mizusawa	E. N.	39.4 40.0 41.3 41.8 42.2 42.2	350 354 358 358 358	e 6 16 7 39 e 7 44 e 7 48 e 7 56 e 7 51	+ 1 - 5 - 5 - 5	13 59 (14 6) e 14 14 14 17	- 5 - 5 - 3 0	1 7 9	ss —	14·1 —
Auckland Arapuni Sapporo Wellington Christchurch		44.0 45.4 46.1 47.1 47.6	143 144 358 148 152	e 8 30 8 26	$^{+10}_{-\ 9}$	$\begin{array}{cccc} 14 & 51 \\ 15 & 21 \\ 15 & 19 \\ 15 & 6 \\ 15 & 14 \\ \end{array}$	$^{+\ 8}_{+\ 17} \ ^{+\ 5}_{-\ 22} \ ^{-\ 21}$	$\begin{array}{r} 17 & 21 \\ - \\ 10 & 16 \\ 19 & 4 \end{array}$	SS PP SS	$21.0 \\ 20.4 \\ \hline 21.4 \\ 22.8$
Honolulu Colombo Kodaikanal Hyderabad New Delhi	E. N. N.	$62 \cdot 2 \\ 64 \cdot 5 \\ 67 \cdot 3 \\ 67 \cdot 5 \\ 71 \cdot 1$	$\begin{array}{r} 64 \\ 279 \\ 283 \\ 291 \\ 302 \end{array}$	e 10 28 10 42 e 11 6 e 11 26	$^{+}_{+}$ $^{2}_{+}$ $^{+}_{7}$ $^{+}_{+}$ 4	e 18 39 19 26 i 20 16 20 10 i 20 51	$^{-12}_{+\ 7}_{+22}\\ ^{+14}_{+13}$	$\begin{array}{r} \mathbf{e} \ 19 \ 59 \\ 24 \ 31 \\ 21 \ 23 \end{array}$	$\frac{\text{PPS}}{\text{SS}}$	e 25·8
Bombay College Sitka Victoria Ukiah		$73.0 \\ 83.9 \\ 87.7 \\ 94.3 \\ 94.4$	291 24 32 42 50		$^{+6}_{+13}_{+1}$	i 21 9 e 22 47 e 23 16 e 24 33 e 25 43	$^{+\ 9}_{-\ 9}_{[-\ 3]}_{+\ 1}^{[-\ 3]}$	21 48 28 8 e 24 52 e 39 217 e 30 23	PS SS PS SS	e 42.6
Berkeley Santa Clara Tinemaha Pasadena Mount Wilson	z. z.	95·1 95·4 98·3 98·5 98·6	52 52 53 56 56	i 12 41 i 25 23 e 13 44 e 13 42 e 13 37	$^{-45}_{+\ \ 0}_{-\ 5}$	(i 23 57 (i 25 23)	$\begin{bmatrix} -5 \\ +41 \\ - \end{bmatrix}$	i 25 45 e 31 22 =	PS SS	e 42·4 e 43·4 e 43·2
Riverside Palomar Salt Lake City Saskatoon Tucson	z. z.	99.2 99.6 103.0 104.5 104.8	56 57 48 37 58	e 13 39 e 13 42 e 31 4 e 14 36	$-{6\atop -}{4\atop 4}$	e 33 5 e 25 27 e 27 34	SS {+ 1} PS	e 18 18	Q PP	e 46·7 e 46·7
Ksara Rapid City Upsala Helwan Bucharest	N,	106.6 108.7 110.2 110.9 111.7	303 44 334 300 317		PP PP	e 28 8	[+10] PS {+15} PPS [+ 6]	_	SS	e 55·0 e 50·4 60·4
Scoresby Sund Copenhagen Bergen Potsdam Prague		112·2 114·7 114·8 116·7 116·7	355 332 338 329 326	19 43 —	PP PP —	35 46 e 26 21 8 e 29 33 e 22 51	SS {-18} PS PKS	e 29 33	PS	53·8 e 57·4 e 47·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

142

```
0 - C.
                             Az.
                        Δ
                                                              O - C.
                                                                             Supp.
                                                                                           L.
                                    m. s.
                                                                                          m.
Cheb
                      117 \cdot 9
                             326
                                              \mathbf{PP}
                                                               PKS
                                                                      e 31
                                                                                 PPS
Florissant
                     119.5
                                              PP
                              46
                                                     e 35
                                                                      e 31
                                                                ss
                                                                                 PPS
St. Louis
                     119.7
                              46
                                              \mathbf{P}\mathbf{P}
                                                     c 25
                                                                                  SS
Aberdeen
                     119.8
                             338
                                                                                         63.7
Chicago
                     120 \cdot 2
                              42
                                                              \{+16\}
                                                                                       e 57.6
                                                                                 SSS
De Bilt
                     120 \cdot 3
                             331
                                                                PS
Stuttgart
                     120.3
                             326
                                             [+18]
                                                     e 30
                                                                PS
                                                                                       e 64·8
Uccle
                      121-6
                             331
                                  e 20 32
                                                               PPP
                                                     e 23
Stonyhurst
                     122.4
                             336
                                                                      e 48 21?
                                                                                       c 59·4
Kew
                     123.3
                             333
                                                                _{\rm PS}
                                                                        20 46
                                                                                pPP
                                                                                       e 56.4
Clermont-Ferrand
                     125.4
                             327
                                                               -23
                                                                                       e 57·4
Ottawa
                     125.7
                              32
                                  e 20 51
                                              \mathbf{P}\mathbf{P}
                                                     e 27
                                                          9
                                                                      e 37 51
                                                                                  ss
                                                              \{-43\}
                                                                                         55.4
Seven Falls
                     127.0
                              27
                                  e 24 3
                                             PPP
                                                                                         56.4
Vermont
                     127.6
                              33
                                                     e 26 49
                                                              [+36]
                                                                                       e 56.5
Columbia
                     128.3
                              47
                                                     e 28 19
                                                                      e 37 53
                                                                                  ss
                                                              \{+10\}
                                                                                       e 50.6
Philadelphia
                     129.3
                                  e 19 35
                                            [+24]
                                                    e 31 17
                                                                PS
                                                                      e 38
                                                                                 SS
                                                                                         54.0
Fordham
                     129.5
                              35
                                 e 21
                                              _{\rm PP}
                                                                                 SS
                                                                      e 38 54
                                                                                       e 62·4
Weston
                     130.0
                              32
                                                    e 38 37
                                                                SS
Tortosa
                     130.0
                             323
                                              PP
                                  e 21 29
                                                                      e 23
                                                                                PKS
                                                                                       e 69.4
Granada
                     134.8
                             322
                                  i 24 9
                                             PPP
                                                      44 11
                                                               SSS
                                                                        67
                                                                                         75.8
                                                                                  Q
Lisbon
                     136.8
                             328
                                                      45 40
                                                               SSS
                                                                        63 21?
                                                                                         76.6
San Fernando
                     136.8
                             323
                                 e 19 26
                                            [+1]
                                                                        23 44
                                                                                PKS
                                                                                         63.4
Huancayo
                                  e 23 16
                     138.6
                             111
                                             PKS
                                                                      e 40 59
                                                                                 88
                                                                                       e 63·1
Bermuda
                     140.6
                              39
                                 e 20 46
                                                    e 27 1 [+21]
                                                                      e 22 21
                                                                                 \mathbf{PP}
                                                                                       e 59.6
La Paz
                 z. 143·0
                             123
                                    19 51
                                            [+15]
                                                                        23
                                                                                 \mathbf{PP}
                                                                                         66.4
San Juan
                     147.1
                              60
                                 e 19 40
                                                3]
                                                                      c 23 19
                                            [ –
                                                                                 PP
                                                                                       c 67.6
  Additional readings :-
    Riverview iZ = 11m.49s., iN = 14m.39s.; phases wrongly identified and confused with
         earlier shock.
    Sydney e = 16m.39s.
    Auckland i = 15m.6s., i = 19m.41s.
    Wellington pPP?Z = 10m.41s., iZ = 11m.53s., S_cP?Z = 13m.21s., iZ = 16m.24s., Q =
         19m.3s.
    Christchurch QN = 20 \text{m.4s.}
    New Delhi SSN = 25m.26s.
    Bombay eSN = 21m.15s., SSN = 25m.48s.
    College e = 23m.33s., eSSS = 31m.46s.
    Sitka e = 14 \text{m.} 3s., eSS = 28 \text{m.} 54s., e = 29 \text{m.} 32s.
    Ukiah e = 31m.26s.
    Berkeley iE = 25m.49s. and 30m.57s.
    Helwan eN = 32m.24s. and 33m.41s.
    Prague e = 21m.47s., 32m.9s., and 34m.33s.
    St. Louis ePPS?E = 31m.14s.
    Chicago e = 32m.48s. and 34m.55s.
    Stuttgart eQ = 60m.57s.
    Kew esPP?Z = 21m.6s., eZ = 21m.51s., ePKPZ = 22m.24s., epPKP?Z = 23m.38s.,
        esPKPZ = 23m.46s., eSKKSZ = 32m.31s., ePPS? = 37m.38s., eSSN = 42m.6s.?
        phases wrongly identified.
    Columbia e = 46m.15s.
    Philadelphia e = 32m.34s. and 49m.37s.
    Granada PPS? = 38m.18s.
    Bermuda e = 31m.43s. and 34m.54s.
    San Juan e = 30m.39s., 40m.13s., and 54m.26s.
```

June 9d. Readings also at 10h. (Branner and near Lick), 14h. (near Almeria), 15h. (near Ottawa and Seven Falls), 20h. (Brisbane (2), Riverview, Perth, La Paz, Stuttgart, and near Berkeley), 22h. (Basle).

Long waves were also recorded at Jena and Paris.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

143

June 10d. 11h. 11m. 47s. Epicentre 33°-9N. 116°-7W. (as on 1943, November 17d.).

Intensity V at Banning, Cabazon, and Keen Camp; IV at Elsinore, Indio, and Wildmar. Epicentre 33° 58'N. 116° 48'W.

R. R. Bodle. United States Earthquakes, 1944, Washington, 1946, p. 16.

$$A = -.3737$$
, $B = -.7431$, $C = +.5552$; $\delta = +10$; $h = +1$; $D = -.893$, $E = +.449$; $G = -.249$, $H = -.496$, $K = -.832$.

	Δ	Az.	Р.	0 - C.	s.	0-c.	Su	pp.	L.
	٥	0	m. s.	s.	m. s.	s.	m. s.		m.
Riverside	0.5	280	i 0 13a	- I	i 0 20	- 3	- -		
Palomar	0.6	194	i 0 16	+ 1		·	*****		_
La Jolla	1.1	204	i 0 25k	+ 3	i 0 40	+ 1		-	
Mount Wilson	1.2	287	i 0 23a	- 1	i 0 37	- 4	_		
Pasadena	1 · 3	282	i 0 24 a	- 1	i 0 40	- 4	-	-	
Haiwee	2.5	335	10 41a	- 2	i 1 16	+ 2	_		-
Tinemaha	3.4	339	1 0 55	0	i 1 48	+11			7-4
Tucson	5.2	107	e 1 20	- 1	e 2 30	+ 8	i 1 44	$\mathbf{P}_{\mathbf{r}}$	1 2 . 8
Lick	5.3	312	e 1 25	+ 3	e 2 46	s•	-		
Branner	5.7	310	e 1 57	P_g	i 3 7	S		-	19 (1997)

Tucson gives also e = 1m.40s.

June 10d. 14h. 23m. 52s. Epicentre 1°-2N. 28°-4W. (as on 1937, August 24d.).

$$A = +.8795$$
, $B = -.4755$, $C = +.0208$; $\delta = +5$; $\hbar = +7$; $D = -.476$, $E = -.880$; $G = +.018$, $H = -.010$, $K = -1.000$.

		Δ	Az.	Ρ.	O-C.	s.	0 - C.	Sup	p.	L.
		c	o:	m. s.	8.	m. s.	8.	m. s.		m.
San Fernando	E.	40.7	27	e 10 18	PPP					
San Juan	525	40.8	297	e 7 42	- 3	(e 13 50)	- 6	e 9 16	PP	e 13.8
La Paz	Z.	43.0	244	18 4k	+ 1	14 24	- 5	9 42	\mathbf{PP}	21.1
La Plata	N.	45.3	215			14 44	-18			21.4
Huancayo	52.5	48-4	253	e 10 31	PP	e 15 26	-20		_	e 19·2
Clermont-Ferra	nd	52.3	28			e 16 57	+17			_
Kew		55.4	21	(e 9 43)	+ 5	(e 17 33?	+11	(c 11 25)	PP	
Stuttgart		57.3	29	e 9 53	+ 1	e 17 55	+ 8	e 21 44	SS	e 26·1
De Bilt		58.0	23		-	i 18 8	+11		_	e 25·1
Seven Falls		58.7	327		-	c 18 14	+ 8	_		24.1
Ottawa		60.5	323		· ·	e 18 28	- 1	-		25.1
Copenhagen		63.6	23	_		19 16	+ 8		-	28-1
Florissant	E.	$67 \cdot 7$	311			e 20 17	+19		-	e 32·1
Tucson	555	83.0	302	e 12 20	- 8		-			
Palomar	Z.	88.1	303	e 12 52	- 2	-	-			
Tinemaha	Z.	89.2	307	e 13 21	+22	-	8.00	_		-
Victoria		$92 \cdot 4$	318		_	c 24 8?	- 8		-	41 -1

Additional readings :-

Huancayo e = 15m.31s. Kew eSS?Z = 14m.12s., eL?E = 19.6m.; all phases wrongly identified.

Palomar eZ = 13m.15s.

Long waves were also recorded at Bermuda, Pasadena, Tortosa, Granada, Uccle, Bergen, and New Delhi.

June 10d. Readings also at 1h. (Riverview), 2h. (De Bilt, Kew, and near Harvard), 6h. (Campulung and Bucharest), 7h. (near Berkeley, Branner, and Lick), 8h. (Mount Wilson, Pasadena, Palomar, Tucson, Riverside, and Tinemaha), 11h. (New Delhi and Tucson), 14h. (near Toledo), 17h. (Tinemaha), 22h. (near Branner), 23h. (near Berkeley).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

June 11d. 19h. 18m. 57s. Epicentre 1°-4N. 85°-3W. (as on 1943, March 31d.).

A = +.0819, B = -.9963, C = +.0243; $\delta = -9$; h = +7; D = -.997, E = -.082; G = +.002, H = -.024, K = -1.000.

		Δ	Az.	P.	O - C.	S.	0-C.	Su	pp.	L.
		0	- 0	m. s.	S.	m. s.	s.	m. s.		m.
Balboa Heights		9.4	37	i 2 26	+ 8	e 4 10	+ 3	-		-
Bogota		11.7	74	e 3 0	$^{+}_{+}$ $^{8}_{9}$ $^{-}_{5}$	-	-	****	_	10.0
Huancayo		16.6	144	e 3 51	+ 9 - 5	e 7 23	+23	i 4 38	\mathbf{PP}	e 8 · 2
La Paz	Z.	24.6	137	5 17	- 6	i 9 53	+11			13.7
San Juan	2555744	25.3	48	e 5 33	+13	c 10 0	+ 6	i 6 1	\mathbf{PP}	e 11·2
Columbia		32.7	6	7 48	\mathbf{PP}	e 11 35	-17	_	1	e 13·6
Bermuda		36.4	30	e 7 12	+ 4	e 12 53	+ 3	e 8 40	PP	e 15.4
Florissant		37.4	354	e 7 17	+ 1	i 13 10	+ 5	e 15 38	88	
St. Louis	E.	37.6	354		· · · · · ·	e 13 4	- 4	e 15 34	SS	10000
Tucson		39.0	325	e 7 29	- 1	e 13 40	+11	e 9 9	$\widetilde{\mathbf{PP}}$	e 19·5
Philadelphia		39.5	13	e 6 53	-41	e 13 20	-17	e 8 19	$\mathbf{p}\mathbf{p}$	e 15·6
Chicago		40.3	357	e 7 38	- 2	e 13 43	- 6	1.5 mg 2.5 mg 1		e 16.7
Palomar		43.4	321	e 8 6	0	_		****	-	
Riverside	Z.	$44 \cdot 2$	321	e 8 12	0	<u> </u>				
Ottawa		44.6	10	-		e 14 51	- 1	e 18 3	SS	e 20·0
Mount Wilson	z.	44.8	321	e 8 16	- 1		-	-	_	-
Pasadena	- 210-6	44.8	321	e 8 17	0	e 15 1	+ 6		423	e 21.7
Tinemaha		46.7	324	e 8 45	+13				-	
Seven Falls		47.3	13			e 15 34	+ 3	-		20.0
Rio de Janeiro	N.	47.6	123	e 20 3	SSS			-		e 25·0
Berkeley		49.7	322	i 8 53	- 3	i 16 3	- 1	_	-	e 24·2
Sitka		68.5	333		-	e 20 6	- 2			e 36·4
Granada		82.5	53	i 12 26k	0	i 22 48	$+$ $\ddot{6}$	28 40	SS	42.2
Kew		85.8	39	e 21 23	3	e 23 10	- 5	e 28 18	SS	e 35·0
Stuttgart		91.9	42	e 13 33	+22	e 24 15	+ 4	e 25 21	PS	e 43.6

Additional readings:— San Juan e = 9m.41s.

Tucson e = 16m.31s.

Philadelphia e = 7m.36s. Berkeley iSE = 16m.6s., iSZ = 16m.13s.

Kew phases wrongly identified.

Stuttgart eSS? = 30m.39s.

Long waves also recorded at Riverview and other European stations.

June 11d. Readings also at 7h. (Riverview), 11h. (Palomar, Pasadena, Tucson, Riverside, and Tinemaha), 16h. (Auckland, near Berkeley, Branner, and Lick), 17h. (Tinemaha and Tucson), 19h. (Berkeley and Riverview), 23h. (Stuttgart, near Basle, and Zürich).

June 12d. 10h. 45m. 31s. Epicentre 33°-9N. 116°-7W. (as on 10d.).

Intensity V at Pasadena and Los Angeles; IV at Long Beach, San Diego, and Warner Springs. Epicentre 33° 58'N. 116° 45'W. Macroseismic area 16,000 sq. miles. R. R. Bodle.
United States Earthquakes, 1944, Washington, 1946, p. 16, with isoseismic chart.

240		△ Az.		Р.	O-C.	s.	O-C.	Su	Supp. 3.	L.
		0	0	m. s.	s.	m. s.	8.	m. s.	155 N	m.
Riverside		0.5	280	i 0 14a	0	i 0 21	- 2	-		
Palqmar		0.6	194	i 0 16 a	+ 1		- -			
La Jolla		1.1	204	i 0 25k	+ 3	i 0 41	+ 2		-	-
Mount Wilson		1.2	287	i 0 24 a	0	i 0 39	- 2		_	
Pasadena		1.3	282	i 0 25 a	0	i 0 41	- 3	-	-	
Haiwee		2.5	335	i 0 42a	- 1	i 1 17	+ 3		-	-
Santa Barbara	Z.	2.6	282	i 0 44 a	0				_	
Tinemaha	42000	3.4	339	i 0 56 a	+ 1	i 1 52	S.	/= 5		
Tucson		5.2	107	i 1 20	- 1	i 2 14	"8	i 1 46	P_{π}	i 2.7
Lick		$5 \cdot 3$	312	e 1 21	- 1	i 2 6	-19	i 2 41	Sg	i 2 · 7

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	Р.	O-C.	s.	O-C.	Suj	op.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.	7700	m.
Santa Clara		5.5	310	e 2 57	Sr	_	_		-	-
Branner	E.	5.7	310	e 1 28	0	e 2 38	+ 3		_	
Berkeley		6.0	312	i 1 30	- 2	i 3 54	+71		-	_
San Francisco	E.	6.1	311	e 1 36	+ 2	e 2 19	-26	e 2 0	$\mathbf{P}_{\mathbf{z}}$	
Florissant	E.	21.7	70	e 5 1	+ 6		1000	525.7 <u>7.</u> - 7.0	*** <u>****</u>	· ·
St. Louis		21.8	70	e 5 3	+ 7					e 11.7

145

Additional readings :---

Branner iPN = 1m.31s., eE = 3m.5s., iN = 3m.28s., iE = 3m.32s.

Berkeley iPZ = 2m.0s.

Long waves were recorded at Philadelphia and Salt Lake City.

June 12d. 11h. 16m. 33s. Epicentre 33°.9N. 116°.7W. (as at 10h.).

		Δ	Az.	Ρ.	O -C.	s.	0 - C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Riverside		0.5	280	i 0 13a	- 1	i 0 21	- 2	1941		
Palomar		0.6	194	i 0 15k	0	24/19/20 Exp. 2		-		_
La Jolla		1.1	204	i 0 25k	+ 3	i 0 41	+ 2			
Mount Wilson		1.2	287	10 24	Ō	i 0 39	- 2	<u></u>		
Pasadena		1.3	282	i 0 25a	ŏ	i 0 41	- 3		-	_
Haiwee		2.5	335	i 0 41	_ 9	i 1 19	+ 5		[1]	
Santa Barbara	-	2.6	282		ñ	1 1 10		72	-	
	z.		The Control of the Control		×					
Tinemaha		3.4	339	i 0 55k	v					
Tucson		5.2	107	i 1 20	- 1			i 1 43	$\mathbf{P}_{\mathbf{g}}$	i 2.9
Lick		$5 \cdot 3$	312	e 1 21	- 1	i 2 17	- 8	e 1 33	P*	_
Santa Clara	E.	5.5	310	e 1 40	$\mathbf{p} \bullet$	i 2 58	Sz		2-32	_
Branner	50,000	5.7	310	e 1 27	- 1	i 2 39	+ 4	i 1 57	$\mathbf{P}_{\mathbf{c}}$	-
Berkeley		6.0	312	i 1 30	2	i 2 49	+ 6	i 1 53	P.	71:
San Francisco		6.1	311	e 1 46	P*	e 3 17	Sg	e 1 57		
		7.9	28	e 2 6	÷ 7	0011	N/g	2 35	Pr	i 4.2
Salt Lake City			20	64 0	T .			2 33	T E	1 4.2
Saskatoon		19.6	18			e 7 45	-23	_		e 10.8
Florissant		21.7	70	e 4 56	+ 1	e 9 7	+16			e 11.5
St. Louis		21.8	70	e 4 57	+ 1 + 1	e 9 9	+17			i 11.7
Philadelphia		33.5	68	e 10 15	8	e 12 6	+ 1		-	e 15 6
T TATALOGIA DI TATALOGIA		100,000	355		7.1		1. N.T.			

Additional readings :-Lick iSEN = 2m.40s.

Branner ePN = 1m.32s., iE = 1m.49s., iN = 2m.58s., iE = 3m.4s., iEN = 3m.27s.

Berkeley ePE = 1m.46s., iPN = 1m.49s., iSN = 2m.52s., iSEZ = 2m.55s., eSE =3m.2s., eN = 3m.27s.

San Francisco iN =3m.21s.

Florissant iPE =5m.0s.

St. Louis iPE = 5m.1s.

Long waves were also recorded at Kew, De Bilt, Granada, and other American stations.

June 12d. Readings also at 1h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Auckland, Wellington, and near Apia), 2h. (Riverview and Stuttgart), 3h. (Granada), 4h. (La Plata), 5h. (Brisbane and Riverview), 9h. (near Tortosa), 11h. (Tucson (2)), 12h. (near Malaga), 13h. (Tucson), 16h. (Auckland. Christchurch, Wellington, and Riverview), 20h. (Tucson), 22h. (Mount Wilson, Pasadena, Riverside, and Tucson), 23h. (Reykjavik (3)).

June 13d. 8h. 27m. 31s. Epicentre 34° 7N. 120° 5W.

Intensity VI at Los Alamos and Santa Maria.

R. R. Bodle. United States Earthquakes 1944, Washington 1946, p. 17. Epicentre 34° 40'N. 120° 30'W.

$$A = -.4182$$
, $B = -.7099$, $C = +.5667$; $\delta = 0$; $h = 0$; $D = -.862$, $E = +.508$; $G = -.288$, $H = -.488$, $K = -.824$.

		Δ	AZ.	Р.	o - c.	s.	o-c.	Supp.	L.
CORUM DE CORP. DECO		0	0	m. s.	8.	m. s.	8.	m. s.	m.
Santa Barbara		0.7	112	i 0 16a	- 1	i 0 25	- 3		-
Pasadena		2.0	106	10 35	0	i 0 56	- 6		_
Haiwee		2.5	55	i 0 44k	+ 1	i 1 12	- 2		_
Lick	N.	2.8	341	e 0 47	0	i 1 17	- 5	-	-
Santa Clara	N.	2.9	336	e 1 3	Pg	i 1 52	3		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	P.	O-C.	s.	0-c.	Sur	p.	I
		0	0	m. s.	8.	m. s.	s.	m. s.	H73340	m.
Branner		3.0	336	e 0 50	0	i 1 23	- 4	i 1 1	P_{π}	i 1.8
Tinemaha	N.	3.0	37	10 51	+ 1	i 1 28	+ 1			
Palomar	6375	3.3	114	i 0 53a	0	i 1 29	- 6	0.00	1.0	-
San Francisco		3.4	335	e 1 5	$\mathbf{P}_{\mathbf{z}}$	e 1 51	S.			-
Berkeley		3.5	337	0 55	- 2	i 1 43	+ 3	i 1 57	S,	
Tucson		8.4	104	e 2 3	- 3	e 3 44	+ 1	e 2 21	\mathbf{P}^*	e 4 · 2

146

Additional readings:— Lick iEN = 1m.4s.

San Francisco iE =1m.13s., iEN =1m.19s.Berkeley eN =2m.2s., iZ =2m.29s., iEN =2m.33s.

June 13d. Readings also at 0h. and 1h. (3) (near Reykjavik), 4h. (near Bogota), 7h. (San Juan), 8h. (Branner and Tucson), 9h. (College), 10h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Florissant, St. Louis, Granada, and Stuttgart), 11h. (Berkeley, near Branner, Lick, Santa Clara, and Tucson), 13h. (near Almeria), 14h. (near Mizusawa), 15h. (Kew), 17h. (Tucson), 18h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Florissant, St. Louis, Tucson, La Paz, and near Stuttgart), 20h. (Granada), 22h. (near Ottawa), 23h. (near Mizusawa).

June 14d. Readings at 0h. (Tucson), 1h. (Helwan, Tucson, and near Mizusawa), 9h. (Tucson), 12h. (Kew), 16h. (Mount Wilson, Pasadena, Tucson, Riverside, Tinemaha, near La Paz, and near San Francisco), 20h. (near Berkeley), 23h. (Jena, Strasbourg, Zürich, and near Stuttgart).

June 15d. Readings at 1h. (Ksara, Belgrade, Basle, Chur, Neuchatel, Zürich, Prague, Cheb, Strasbourg, Stuttgart, Potsdam, De Bilt, Uccle, Copenhagen, and Kew), 2h. (near Mizusawa), 3h. (near La Paz), 4h. (Auckland), 6h. (near Tananarive), 9h. (Jena), 13h. (Cheb, Stuttgart, Mount Wilson, Riverside, Tinemaha, Tucson, and near Mizusawa), 16h. (Oaxaca, Mount Wilson, Palomar, Riverside, Tinemaha, Tucson, St. Louis, and near Malaga), 17h. (Brisbane, Riverview, Sydney, and near Bogota), 18h. (Berkeley and Granada), 19h. (near Basle, Neuchatel, Zürich, and Stuttgart), 20h. (Tucson and near Almeria), 22h. (near Berkeley, Branner, Lick, and San Francisco), 23h. (near Fort de France).

June 16d. 4h. 17m. 13s. Epicentre 35°.9N. 140°.3E. (as on 1938 June 5d.).

Scale VII-VIII at Hiraishi, Tochigi, Prefecture, and Naruto, Chiba prefecture; VI at Kakioka and Tukubasan; V at Mito, Tokyo, and Osima; IV at Tyosi, Kohu, and Hukusima. Epicentre 36°·0N, 140°·5E. Macroseismic radius exceeding 300 km. Seismological Bulletin of the Central Meteorological Observatory of Japan for 1944, Tokyo 1951, p. 14, with isoseismic chart.

A = -.6241, B = +.5181, C = +.5850; $\delta = +15$; h = 0; D = +.639, E = +.769; G = -.450, H = +.374, K = -.811.

	Δ	Az.	P.	O-C.	s. c	-с.	Sur	p.	L.
SHA SHARK BURNES	•		m. s.	s.	m. s.	8.	m. s.		m.
Kakioka	0.3	344	0 16a	+ 5	0 24	+ 6		-	_
Tukubasan	0.3	333	0 17 a		0 24	+ 6			
Mito	0.4	16	0 0a	-13	A CAMPAGE AND A STATE OF THE ST	-12		-	
Tokyo	0.5	245	0 17k	+ 3	0 26	+ 3			
Tyosi	0.5	110	0 21	+ 7			-	250	_
Kumagaya	0.8	289	0 19k	+ 1.	0 30	- 1		551152	,
Yokohama	0.8	229	0 20k		0 00	- 1	-		-
Maebasi	1.1	297	0 24		0 37	- 2			_
Mera	1.1	201	0 25	+ 3	0 39	0			
Onahama	1.1	25	0 21 a		0 37	- 2		-	(1
Hunatu	1.4	252	0 28k	+ 1	0 44	- 2	-		_
Misima	1.4	235	0 27k		0 43	– 3			
Osima	1.4	213	0 28	+ 1	0 43	- 3	-	-	-
Shizuoka	1.8	239	0 33k		0 54	- 2		-	
Hukusima	1.9	4	0 35	+ 1	0 50	- 9	-		-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

147

		Δ	Az.	Control of the second s	0 - C.		0 - C.		pp.	L.
Nagano Omaesaki Sendai Hamamatu Aikawa		1·9 2·2 2·4 2·5 2·6	294 233 11 241 322	m. s. 0 34k 0 38k 0 43k 0 42k 0 45	8. 0 + 2 - 1 + 1	m. s. 0 57 1 21 1 11 1 7 1 27	S. 2 S. 1 - 1 - 7 S.	m. s.	=	m. = =
Toyama Nagoya Gihu Wazima Kameyama		2·6 2·8 3·0 3·1 3·2	$\begin{array}{c} 287 \\ 255 \\ 260 \\ 299 \\ 251 \end{array}$	0 45k 0 48k 0 49 0 51k 0 55k	+ 1 - 1	1 35 1 23 1 23 1 46 1 51	S. 4 S. S.			
Mizusawa Hikone Morioka Kyoto Miyako		3·2 3·4 3·8 3·9	$^{12}_{259}\\^{11}_{256}\\^{20}$	0 55k 1 0k	- 1	i 1 33 1 47 1 43 2 10 2 45	S.			
Owase Kobe Siomisaki Toyooka Hatinohe		3·9 4·4 4·5 4·5 4·6	$\begin{array}{r} 241 \\ 255 \\ 237 \\ 266 \\ 12 \end{array}$	1 0 1 8k 1 10k 1 9k 1 14k	- 2 - 2 - 1 - 2 + 2	$ \begin{array}{r} 1 & 29 \\ \hline 2 & 37 \\ 2 & 12 \\ 2 & 6 \end{array} $	P. S. + 7 - 1			
Sumoto Muroto Kôti Hirosima Hamada		4·7 5·7 6·1 6·6 6·8	$\begin{array}{c} 252 \\ 243 \\ 248 \\ 258 \\ 263 \end{array}$	1 14k 1 28 1 31 1 40 1 41	- 3 - 3 - 3	2 22 2 56 2 54 3 35	S* + 9 			
Sapporo Izuka Miyazaki Hukuoka Kumamoto		7·1 8·3 8·4 8·5	255 244 256 251	1 47 1 59 2 3k 2 5 2 7	- 1 - 5 - 3 - 2	3 22 4 12 3 47 4 35 2 50	+12 S• + 4 Sg Pg			
Ituhara Kagosima Scoresby Sund Branner Tinemaha	z.	$\begin{array}{c} 9 \cdot 2 \\ 9 \cdot 3 \\ 73 \cdot 1 \\ 74 \cdot 4 \\ 77 \cdot 1 \end{array}$	258 244 355 56 55	2 15 2 16 11 29 e 11 44 i 11 55	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	4 35 4 59 20 56 —	S. S. - 5		=	
Santa Barbara Haiwee Copenhagen Mount Wilson Pasadena	Z. Z. Z.	77·7 77·9 78·4 78·9 78·9	57 54 334 56 56	e 12 4 i 12 3 i 11 59 a i 12 3 i 12 3	+ 4 + 2 - 5 - 4 - 4	21 47 —	- <u>13</u>	-	=	38·8 e 35·5
Riverside La Jolla Palomar Ksara Tucson	Z. Z.	79·5 80·3 80·3 81·0 84·9	56 56 305 54	i 12 6 e 12 17 i 12 10 e 12 14 i 12 34	- 4 + 3 - 4 - 4	e 22 24 e 23 0		e 15 50	 PP	e 41·3
Stuttgart Strasbourg Kew Zürich Basle		85·8 86·3 86·4 86·7	330 331 337 330 330	i 12 32a e 13 12 i 12 38 e 12 43 e 12 38	- 7 + 30 - 7 - 2 - 9	e 22 55 e 23 9	-13 [-1]	e 16 17 e 16 2? e 17 14	PP PP	e 40·1 e 44·8
Chicago Florissant St. Louis Granada La Paz	Е.	91.0 92.1 92.3 99.9 148.1	35 38 38 332 60	e 14 6 1 13 8 19 50	$+\frac{59}{5}$ $[+\frac{61}{6}]$	e 22 24 e 23 34 e 23 35 i 28 21	[-11] [-11] PPS	e 20 13 e 24 6 i 13 27	sSKS pP	52.7

```
Additional readings:—
Santa Barbara iZ = 12m.16s.
Mount Wilson iZ = 12m.19s.
Pasadena iZ = 12m.20s.
Riverside iZ = 12m.21s. and 12m.30s.
La Jolla eZ = 12m.40s.
Palomar iZ = 12m.28s., iN = 12m.38s.
Tucson i = 12m.52s., e = 15m.21s.
Kew ePPPZ = 19m.7s.?, eS = 23m.39s., ePS = 24m.32s.?.
St. Louis esSE = 24m.7s.
Long waves were also recorded at Cheb and De Bilt.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

June 16d. 21h. 51m. 31s. Epicentre 19°·1N. 105°·7W.

Slight at Cihuatlan and Acatlan de Juarez, Mexico. Universidad nacional de Mexico.

"Instituto de Geologia, Catalogue compendiado de tremblores durante el periodo Enero 1941, Diciembre 1944." Mexico 1945, p. 59. Epicentre as adopted, near borders of Colima.

A = -.2559, B = -.9104, C = +.3252; $\delta = +7$; h = +5; D = -.963, E = +.271; G = -.088, H = -.313, K = -.946.

D =963, $E = +.271$; $G =088$, $H =313$, $K =946$.												
		Δ.	Az.	m.	s.	O – C. s.	m. s.	O – C. s.	m. s.	рр. 	L. m.	
Manzanillo Guadalajara Tacubaya Oaxaca Vera Cruz	E. E. N.	1·3 2·7 6·2 8·7 9·0	92 55 86 102 88	e 1 :	21 40 33 5 11	- \$ - 5 - 2 - 5 - 2						
Tucson La Jolla Palomar Riverside Pasadena		13.9 17.2 17.3 18.1 18.6	$342 \\ 327 \\ 328 \\ 327 \\ 327$	e 4 i 4 i 4	24 10 11 21 a 27 a	+ 3 + 7 + 7 + 6	i 6 9 e 7 43 i 8 5	$+\frac{12}{+29} + \overline{19}$	i <u>3</u> 55	PP = =	1 7·0 — i 9·0	
Boulder City Mount Wilson Mobile Santa Barbara Haiwee		18.6 18.7 19.6 19.7 20.1	$339 \\ 327 \\ 50 \\ 325 \\ 332$	i 4 i 4 i 4	25 26 a 32 38 41 a	+ 4 + 4 + 4 + 3	e 8 12 i 8 14 e 8 38	$+\frac{26}{6} + \frac{19}{19}$	i 4 29	PP = =	i 10·4	
Tinemaha Salt Lake City Lick Santa Clara Branner		$\begin{array}{c} 21 \cdot 0 \\ 22 \cdot 2 \\ 22 \cdot 9 \\ 23 \cdot 1 \\ 23 \cdot 2 \end{array}$	$332 \\ 329 \\ 326 \\ 326 \\ 326$		3 13 16	+ 4 + 3 + 7 + 8 + 8	e 8 57 e 9 12 e 9 24 e 9 35 i 9 47	$^{+20}_{+12}_{+11}_{+19}_{+29}$	= i 5 51	 PP	e 11·5 e 12·3 e 11·6 e 12·9	
Berkeley San Francisco Florissant St. Louis Rapid City		23·6 23·7 23·7 23·7 25·0	326 326 32 32 5	e 5 i 5 i 5	18 21 11 10 31	$^{+}$ 5 $^{+}$ 7 $^{-}$ 4 $^{+}$	e 9 41 e 9 55 i 9 28 i 9 24 e 10 0	$^{+16}_{+28}$ $^{+1}_{-3}$ $^{+11}$	i 10 22 e 6 9	SS PP	e 13.0 e 12.9 e 11.5 e 11.2 i 13.1	
Ukiah Columbia Ferndale Chicago New Kensington		$25.1 \\ 26.5 \\ 26.7 \\ 27.4 \\ 30.9$	327 50 328 30 40	e 5 e 5 e 7		+ 5 - 6 - 4 PP	e 9 59 e 10 6 e 10 34 e 10 41 e 11 36	$^{+\ 8}_{-\ 8}$ $^{+17}_{+13}$ $^{+12}$	e 6 34 e 6 29 e 6 36	PP PP — PP	e 11.9 e 12.5 e 14.5 e 12.2 e 17.6	
Seattle Georgetown Victoria Saskatoon Philadelphia		$31.5 \\ 31.7 \\ 32.7 \\ 33.0 \\ 33.5$	339 46 338 358 46	6	6 23 39 41 34	- 4 + 3 + 2 - 9	i 11 44 12 1 12 5 i 12 5	+ 7 + 9 + 8	i 7 15 14 41 7 59 e 7 24	PP SSS PP PP	e 13.8 16.5 16.5 15.5 i 14.4	
Bogota Fordham Ottawa Harvard Vermont		$34.0 \\ 34.8 \\ 36.1 \\ 37.1 \\ 37.1$	111 44 37 43 40	The second second second second	44 53 0 9 6	- 4 - 1 - 5 - 5 - 8	e 12 41 e 12 39 e 13 2	$+\frac{16}{5} + \frac{1}{1}$	e 7 59 8 13 i 8 35	PP PP	i 19·2 19·0 e 20·0 15·5	
San Juan Shawinigan Falls Bermuda Seven Falls Huancayo		$37.4 \\ 38.5 \\ 39.0 \\ 39.9 \\ 43.0$	$\begin{array}{r} 84 \\ 37 \\ 62 \\ 37 \\ 134 \end{array}$	e 7 e 7	15 23 25 32 6	- 1 - 3 - 5 - 5 + 3	e 13 35 e 13 30 e 14 38	$^{+}_{-6}^{2}$ $^{+}_{-13}^{6}$	e 8 55 e 8 50 9 20	PP PP PPP	e 14·9 16·5 e 15·8 20·5 e 18·0	
Sitka Honolulu La Paz College Scoresby Sund		44.2 48.8 51.1 53.6 70.1	337 283 131 339 21	e 9	14 19 12 3 14	+ 2 PP + 6 - 22 - 2	e 14 48 e 15 45 e 16 57 20 59	$^{+}_{-}^{2}_{7\atop +32}$	e 9 31 e 18 52 e 11 33	PP ScS PP	e 21·0 e 20·9	
Rio de Janeiro Aberdeen Stonyhurst Lisbon Bergen	N.	73.9 81.3 82.3 83.2 83.5	121 32 35 51 27	e 18 12 12	29 29 ? 18 24 34	S - 7 - 5 + 3	(e 20 29) i 22 36 e 22 39 22 53	$ \begin{array}{r} -41 \\ +6 \\ -1 \\ +1 \end{array} $	$\frac{-}{12}$ $\frac{12}{17}$ $\frac{25}{42}$	P _c P PPP	46·9 46·9 38·9	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

149

1944

```
Supp.
                             Az.
                                                                         m. s.
                                                                                           m.
                                                                       e 15 49
                                                                                  PP
Kew
San Fernando
                              53
                                    12
                                       50
                                                                       e 16 9
                       87.2
                              35
                                                                                  PP
                                  i 12 51 a
De Bilt
                                                                                          43.5
                       87 \cdot 2
                              39
Paris
                                                                                          41.5
                                                                       e 16 19
                                                                                  _{\rm PP}
                       87.4
                                  e 12 50 a
                                                                                          42.5
Uccle
                                   i 12 55 a
                       87.9
                                                                         13
                                                                                  P_{c}P
Granada
                                                                                          48.6
                              51
                              42
Clermont-Ferrand
                       88.9
                                                                                          42.5
                              25
                                                                                  SS
                       88.9
Upsala
                                                                                          49.5
                                                       23 35 [+ 8]
                       89.1
                              30 e 12 59
                                                                         16 26
Copenhagen
                                                       23 35 [+ 7]
                              47
                      89.3
                                                                                        e 50·5
Tortosa
                  E.
                                  e 13 8
                                                     e 23 36
                                                              [-3]
                                                                       e 16 36
                                                                                  \mathbf{PP}
                       91 \cdot 1
                                                                                        e 49.0
Stuttgart
                                                     e 23 47
                              33
                       91 \cdot 3
                                                              [+7]
                                                                                        e 48.5
Potsdam
                                                     e 23 15 [-27]
                              38 e 13 9
                       91.5
Zürich
                                                                                  \mathbf{PP}
                       92 \cdot 2
                              34
                                                     e 25 33
                                                                PS
                                                                       e 19 55
                                                                                        e 45.5
Cheb
                              38 e 13 11
                       92.3
                                                                                        e 52·4
Chur
                       93.3
                              33 e 16 34
                                                     e 23 57 [+ 5]
                                                                       e 31 29
                                                                                  ss
Prague
                                                              PS
                                                     e 28 59
                     111.0
                             240
                                                                                        e 51.5
Riverview
                                                     e 25 45 [+10]
                              36 e 19 41
                                               \mathbf{PP}
                     115.9
Ksara
                              41
                                                     e 25 41
                                                                       e 29 33
                                                                                  PS
                  N. 116·1
                                                              [+5]
Helwan
                                               \mathbf{PP}
                                                                       i 22 44
                                                              [+ 9]
                                                       26 35
                                                                                 PKS
                  N. 132.5
                             357 e 21 44
New Delhi
```

```
Additional readings :-
  Boulder City e = 8m.8s.
  Salt Lake City iP = 5m.9s., e = 5m.49s.
  Branner eN = 10m.54s.
  Berkeley eSN = 9m.48s., iN = 7m.19s.
  San Francisco eN =5m.30s., iE =5m.37s.
  Florissant iE =5m.43s. and 6m.2s.
  St. Louis iZ = 5m.45s. and 6m.0s., eSN = 9m.18s., iE = 9m.43s.
  Ferndale eSN = 10m.45s.
  Chicago i = 11m.21s.
  Georgetown iSS = 13m.52s.
  Philadelphia iP = 6m.39s., iP<sub>c</sub>P = 8m.58s.
  Bogota e = 6m.51s.
  Ottawa PPP = 8m.29s.
  Vermont e = 14m.51s.
  Seven Falls SS = 16m.19s.
  Huancayo e = 17m.11s.
  Sitka iS = 14m.52s., eSS = 18m.1s.
  Stonyhurst PPP = 17m.14s., S_cS = 22m.44s., PS = 23m.33s., PPS = 23m.56s., i = 30m.4s.,
      PKKP = 30m.44s., PKP,PKP = 39m.1s., i = 44m.32s., PKP,SKS = 46m.29s.
  Lisbon PE = 12m.28s.
  Bergen eE = 15m.16s., eSN = 22m.59s., SSN = 28m.6s.
  Kew iP<sub>c</sub>P = 12m.39s., eZ = 17m.14s.7, eSKS = 22m.53s., ePSZ = 23m.53s., eZ = 26m.29s..
      eSSEZ = 29m.33s., eSSS = 32m.29s.
  De Bilt eSS = 28m.29s.?, eSSS = 32m.59s.
  Uccle ePPPE = 18m.4s., eSKSEN = 23m.9s., eSS = 29m.29s.?, eSSS = 32m.29s.?
  Granada PS = 24m.45s., SS = 27m.34s.
  Upsala eN = 36m.29s.?
  Copenhagen 24m.53s.
  Stuttgart eSP = 25m.5s., eSS = 30m.11s., eQ = 43m.59s.
  Prague ePP = 17m.13s., ePS = 25m.44s.
  Helwan eN = 26m.56s.
  New Delhi PPPN = 24m.44s., SKKSN = 28m.23s., PPSN = 33m.38s.
  Long waves were also recorded at Puebla, Auckland, Wellington, Christchurch, and
      Bombay.
```

June 16d. Readings also at 0h. (Auckland, Wellington, Christchurch, Riverview, Kew, St. Louis, Florissant, Mount Wilson, Pasadena, Palomar, Riverside, Tucson, and near Berkeley (2)), 1h. (Kew, Granada, and Bucharest), 5h. (near Lick and near Reykjavik), 6h. (Kew), 14h. (Bucharest, near Istanbul, and near Apia), 15h. (Bogota), 17h. (Brisbane), 18h. (near Bogota), 19h. (Bucharest), 22h. (Granada, and near La Paz), 23h. (Stuttgart, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside (2), Tinemaha, Tucson (2), Guadalajara, Manzanillo, Tacubaya, and Vera Cruz).

June 17d. Readings at 1h. (Tacubaya), 12h. (near Lick), 16h. (near Branner), 17h. (Ksara), 18h. (Stuttgart, Pasadena, Mount Wilson, Tucson, Riverside, Tinemaha, Palomar, and near Branner), 22h. (Bucharest and near Lick), 23h. (Tucson).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

June 18d. Readings at 1h. (Jena, Stuttgart, near Basle, Zürich, and Chur). 2h. (Clermont-Ferrand, Copenhagen, St. Louis, Tucson, Tinemaha, Palomar, Riverside, Mount Wilson, Pasadena, Brisbane, Riverview, Christchurch, Wellington, Auckland, and Arapuni). 3h. (Stuttgart, Granada, and Kew). 9h. (San Juan). 11h. (Scoresby Sund). 12h. (Ksara). 14h. (Pasadena, Mount Wilson, Tucson, Riverside, Tinemaha, Haiwee, Santa Barbara, and Palomar). 16h. (Riverside, Tinemaha, Tucson, and San Juan). 17h. (Pasadena, Tucson, Mount Wilson, Riverside, Tinemaha, Palomar, and Scoresby Sund). 19h. (Apia). 21h. (near Bogota). 22h. (Chicago, St. Louis, Berkeley, Mount Wilson, Pasadena, Riverside, Palomar, La Jolla, and Tucson).

150

June 19d. 0h. 3m. 32s. Epicentre 33°·8N. 118°·1W. (as on 1941, November 14d.).

Intensity VI at Compton, Hollywood, and Southgate; V at Long Beach and Los Angeles IV at Montebello and San Pedro.

Epicentre 33° 52'N. 118° 13'W. Macroseismic area 12,000 square miles.

R. R. Bodle. United States Earthquakes, 1944, Washington, 1946, p. 17. Macroseismic chart, p. 18.

S. T. Martner.
The Dominquez Hills, Ca., Earthquake of June 18, 1944, Bull. Seismolog. Soc. of America, vol. 38, No. 2, 1948, pp. 105-119.
Much damage in the region of Compton and Gardena. Destruction to the borings in the petrol-bearing country of Roseirans, on the Roseirans fault-line.
Epicentre 33° 51'N. 118° 14'W.

$$A = -.3922$$
, $B = -.7345$, $C = +.5537$; $\delta = -11$; $h = +1$; $D = -.882$, $E = +.471$; $G = -.261$, $H = -.488$, $K = -.833$.

		Δ	Az.	P.	0-C.	S.	O-C.	Sup	op.	L.
		0	0	m. s.	8.	m. s.	s.	m. s.		m.
Pasadena		0.3	350	i 0 8k	P.	i 0 12	S*	_	-	-
Mount Wilson		0.4	5	i 0 10k			S		-	-
Riverside		0.6	72	i 0 16a	+ 1	i 0 27	+ 1			
Palomar		1.1	114	i 0 25	+ 3		W. 		-	-
La Jolla	Z.	$1\cdot 2$	143	e 0 26	+ 2				-	
Lick		4.6	322	e 2 15	S	(e 2 15)	+ 8		1	-
Branner		4.9	319	e 1 22	+ 5	1 2 18	+ 3	i 2 34	S*	
Berkeley	E.	5.3	321	e 1 45	+ 5 P.	e 2 23	- 2	i 3 2	Sg	i 3·9
	N.	$5 \cdot 3$	321	e 1 38	P*	e 2 17	- 8	i 3 34	3	i 4·1
	Z.	$5 \cdot 3$	321	e 1 42	P_g	e 2 20	- 5	i 3 18	3	i 4.2
Tueson		6.3	102	i 1 26	0	· .		i 1 53	P*	i 3.6
Salt Lake City		8.5	33	7==		e 3 35	10	====		e 4 · 6

Additional readings:—
Branner iSE = 2m.2s., iN = 2m.23s., iE = 2m.51s.Tucson i = 2m.10s.

Long waves were also recorded at Chicago.

June 19d. 3h. 6m. 2s. Epicentre 33°-8N. 118°-1W. (as at 0h.).

Intensity VI at Gardena, Maywood, and South Gate; V at Long Beach and Los Angeles. Epicentre 33° 52'N. 118° 13'W.

R. R. Bodle.

United States Earthquakes, 1944, Washington, 1946, p. 19. Isoseismic chart, p. 19.

		Δ	Az.	P.	O - C.	"S.	O – C.	Sup	p.	L.
			O	m. s.	8.	m. s.	8.	m. s.		m.
Pasadena		0.3	350	i 0 11k	0	i 0 15	- 3	_	-	-
Riverside		0.6	72	i 0 20 a	+ 5	i 0 31	+ 5	_	-	_
Lick		4.6	322	e 1 21	P.	-	-	-	_	-
Santa Clara	E.	4.8	319		T 4	c 2 14	+ 2			c 2.9
Branner		4.9	319	e 1 17	0	i 2 18	+ 3	i 2 26	S*	-
Berkeley	N.	5.3	321	e 1 42	$\mathbf{P}_{\mathbf{z}}$	c 2 21	- 4			-
***************************************	7	5.3	321	e 1 22	0	e 2 31	+ 6	-	-	
Tucson	377	6.3	102	e 1 45	+ 9	e 2 35	-15	e 2 2	$\mathbf{P}_{\mathbf{z}}$	e 3.8

Additional readings:—
Branner iE = 2m.44s.
Berkeley ePE = 1m.53s.
Tucson e = 3m.27s.

Long waves were also recorded at Salt Lake City and Chicago.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

151

June 19d. Readings also at 0h. (near Mizusawa), 1h. (Tucson, Palomar, Tinemaha, Haiwee, Riverside, Mount Wilson, Pasadena, Wellington, Christchurch, and Auckland), 2h. (Strasbourg, Stuttgart, Kew (2), Granada, Riverview, and near Apia), 4h. (Tinemaha and Tucson), 5h. (Granada and near Apia), 9h. (Wellington), 13h. (Clermont-Ferrand and Stuttgart), 16h. (Tinemaha and Tucson), 18h. (near Malaga), 19h. (Helwan, New Delhi, Bombay, Calcutta, Stuttgart, and Copenhagen), 20h. (Granada, De Bilt, Uccle, Kew, and Cheb), 22h. (near Berkeley).

June 20d. 12h. 16m. 33s. Epicentre 41°.4N. 143°.9E. Depth of focus 0.005.

Intensity V at Honbetsu, Hokkaido; II-III at Hatinohe and Miyako.

Epicentre as adopted. Depth 40 km. Macroseismic radius between 200-300 km.

Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1944, Tokyo 1951, p. 15, isoseismic chart p. 15.

A = -.6079, B = +.4433, C = +.6588; $\delta = +.7$; h = -2; D = +.589, E = +.808; G = -.532, H = +.388, K = -.752.

		Δ	Az.	P. m. s.	O – C. s.	S. m. s.	O – C.	m. s.	pp.	L. m.
Hatinohe Miyako Sapporo Morioka Mizusawa	N.	2·0 2·3 2·5 2·7 3·1	234 220 312 231 225	0 31 a 0 33 a 0 34 a 0 48 a e 0 48	- 1 - 4 - 5 + 6	0 55 1 1 1 7 1 23 e 1 27	- 2 - 3 - 2 + 9 + 3			——————————————————————————————————————
Akita Sendai Hukusima Aikawa Mito		3·3 3·9 4·5 5·6	240 218 217 234 209	$egin{smallmatrix} 0 & 51 \\ 0 & 58 \\ 1 & 7 \\ 1 & 21 \\ 1 & 31 \\ \end{matrix}$	- 1 0 + 8	$\begin{array}{r} 1 & 40 \\ \hline -1 & 54 \\ 2 & 24 \\ 2 & 29 \end{array}$	+11 -5 $+2$			
Utunomiya Kakioka Tukubasan Maebasi Nagano		5·8 5·9 6·0 6·3	$\begin{array}{c} 214 \\ 210 \\ 211 \\ 219 \\ 225 \end{array}$	1 26 1 39 1 26 2 6 1 43	$^{+1}_{+12}$ $^{-2}$ $^{+34}$ $^{+8}$	$\begin{array}{r} 2 & 34 \\ 2 & 46 \\ 2 & 31 \\ \hline 3 & 35 \end{array}$	$+12 \\ -6 \\ \hline -7$			
Wazima Yokohama Toyama Hunatu Misima		6·7 6·8 7·0 7·1 7·4	236 210 230 216 214	1 38 2 5 1 50 1 47 1 51	$^{+26}_{+8} \\ ^{+3}_{+3}$	$ \begin{array}{r} 3 & 24 \\ 2 & 57 \\ \hline 3 & 9 \\ 3 & 10 \end{array} $	$+30 \\ +1 \\ -5 \\ -1$			
Shizuoka Gihu Hikone Kameyama Kyoto		7·7 8·2 8·6 8·8 9·0	215 226 227 224 228	$ \begin{array}{cccc} 1 & 59 \\ 2 & 12 \\ 2 & 0 \\ 2 & 36 \\ 2 & 11 \end{array} $	$^{+\ 7}_{+\ 13}$ $^{-\ 4}_{+\ 29}$ $^{+\ 1}$	3 21 4 46 —	+ 75 + 75 —			
Toyooka Wakayama Sumoto College Sitka		9·9 9·9 10·0 44·4 51·7	234 227 228 35 44	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$^{-61}_{+52}$	e 14 36 e 15 8	+ 1 - 70		=	e 21·1 e 26·1
New Delhi Tinemaha Haiwee Mount Wilson Pasadena	N. Z. Z.	54·9 71·7 72·5 73·6 73·6	279 57 57 59	i 11 19 e 11 24 e 11 30 e 11 26	+ 2 + 2 + 2 - 2	e 17 7	+ <u>6</u> =			e 34·0
Riverside Copenhagen Palomar Prague Tucson	z. z.	74·2 74·9 75·0 78·7 79·5	59 334 59 330 56	e 11 33 i 11 35k i 11 37 e 12 56 e 12 3	$^{+}_{-}^{1}_{1}$ $^{+}_{+}^{1}_{59}$ $^{+}_{+}^{2}$	e 21 45	- <u>3</u>	i 11 48	P _e P	36·5 e 40·5 e 40·3
Stuttgart Florissant St. Louis	E.	81·7 86·1 86·3	332 40 40	e 12 11 e 12 35	- <u>2</u> - 1	e 23 5 e 23 3	+ 2 - 1	=	\equiv	e 40·0

Palomar gives also eZ = 12m.15s. Long waves were also recorded at other European stations,

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

152

4 40

June 20d. Readings also at 1h. (Manzanillo, Guadalajara, Tacubaya, and New Delhi), 2h. (Vera Cruz, Tucson, Pasadena, Mount Wilson, Riverside, Tinemaha, Rapid City, Salt Lake City, St. Louis, and Florissant), 3h. (near Lick), 4h. (Stuttgart and Strasbourg), 9h. (Tinemaha, Mount Wilson, Tucson, and Palomar), 10h. (Kew and Stuttgart), 11h. (Tinemaha, Palomar, Tucson, Bergen, Stuttgart, Hyderabad, New Delhi, Bombay, Calcutta, and near Pehpei), 12h. (La Paz, Cheb, Prague, Granada, De Bilt, Kew, and Upsala), 13h. (Granada and Tucson), 14h. (Harvard and near Mizusawa), 15h. (Prague).

June 21d. 10h. 58m. 15s. Epicentre 21°-4S. 169°-3E.

A = -.9157, B = +.1730, C = -.3628; $\delta = +6$; $\hbar = +4$; D = +.186, E = +.983; G = +.356, H = -.067, K = -.932.

\mathbf{D}	=+	·186, E	=+	-983;	$G = + \cdot 3$	56, H = -	- 067, I	$\zeta =932$	•	
Brisbane Auckland Arapuni New Plymouth Tuai		∆ 16·0 16·1 17·5 18·1 18·6	AZ. 244 164 163 168 162	P. m. s. i 3 46 3 50 4 45? 4 45?	O-C. s. - 2 + 1 PPP PPP	S. m. s. i 7 44 7 9 7 15	O-C. 8. +58 +20 - 2	m. s. i 4 13 i 4 10 4 45?	PP PP PP	L. m. i 8·3 8·2 9·4
Apia Riverview Sydney Wellington Christchurch		$\begin{array}{r} 19.5 \\ 20.2 \\ 20.2 \\ 20.4 \\ 22.2 \end{array}$	$\begin{array}{c} 72 \\ 229 \\ 229 \\ 169 \\ 173 \end{array}$	i 4 30 i 4 40 i 4 36k 4 39 5 0	- 1 + 1 - 3 - 2	(8 10) i 8 21 i 8 27 8 20 9 1	+ 4 + 6 - 5 + 1	i 4 50 5 4	pP PP	e 9·4 9·4 9·8 11·1
Honolulu Mizusawa Branner Santa Clara Berkeley	N. E. N.	$53 \cdot 2 \\ 65 \cdot 7 \\ 87 \cdot 0 \\ 87 \cdot 1 \\ 87 \cdot 2 \\ 87 \cdot 2$	39 337 48 48 48	e 8 54 10 11 e 12 58 e 13 1 i 12 54 i 13 1	$^{-28}_{-37} \ ^{+10}_{+12} \ ^{+5}_{+12}$	e 16 59 19 47 i 23 18 e 22 58 i 23 23 i 23 30	$^{+}_{-13}$ $^{-}_{-30}$ $^{-}_{-5}$	e 12 14 = e 24 40 =	PPP	e 21.0 28.9 e 41.2 e 40.8 e 36.2 e 36.6
Ukiah Lick Santa Barbara Pasadena Mount Wilson	z. z.	$87.2 \\ 87.3 \\ 87.3 \\ 88.3 \\ 88.4$	46 48 52 52 52	e 12 48 e 12 53 e 12 52 i 12 55 a e 12 54	$ \begin{array}{r} - & 1 \\ + & 3 \\ + & 2 \\ - & 0 \\ - & 1 \end{array} $	e 23 20 e 23 19	- 8 [- 3]	e 15 50 e 29 19	PP SS	e 36.6 e 40.4 e 37.2
La Jolla Riverside Palomar Haiwee Tinemaha	z.	88·4 88·8 88·9 89·4 89·6	54 52 53 51 50	e 12 52 e 12 56 i 12 57 e 13 1 i 13 0	- 3 - 1 - 1 + 1 - 1	i 23 32	[+ <u>6</u>]			
Calcutta Sitka Boulder City Victoria Colombo	n.	$90.2 \\ 91.2 \\ 91.6 \\ 91.8 \\ 92.0$	$294 \\ 26 \\ 51 \\ 38 \\ 276$	e 19 45 e 13 7 e 13 10 13 5 17 3	- 1 - 6 PP	e 24 33 e 23 41 e 23 44 23 35	$\begin{bmatrix} +37 \\ +1 \\ [+2] \\ [-9] \end{bmatrix}$	e 16 57 30 15	PP SS	e 38·2 37·8 50·6
College Tucson Salt Lake City Hyderabad New Delhi	N.	$92.1 \\ 93.1 \\ 95.7 \\ 97.0 \\ 101.7$	$^{16}_{57}_{48}_{286}$	e 16 11 e 13 17 e 13 10 e 13 49	PP 0 - 19 + 14	e 23 35 e 24 0 e 24 8 24 19 i 25 38	[-10] $[+9]$ $[+3]$ $[+7]$ $+3$	e 25 21 e 17 20 e 18 23 17 13 i 24 38	PS PP PP SKS	e 37.6 e 43.0 e 41.1 47.1
Bombay Rapid City Saskatoon Huancayo Florissant		$102.5 \\ 102.8 \\ 103.1 \\ 108.4 \\ 110.9$	285 47 38 111 56	18 26 	PP PP	e 24 44 e 24 42 e 24 45 e 26 2 e 25 22	[+ 5] $[+ 2]$ $[+ 3]$ $[+ 6]$	e 27 37 e 27 30 e 27 25 e 33 3 e 19 14	PS PS PS PP	e 51·3 47·8 e 45·3
St. Louis Chicago Ottawa Philadelphia Fordham	E.	$\begin{array}{c} 111 \cdot 0 \\ 113 \cdot 5 \\ 122 \cdot 3 \\ 122 \cdot 7 \\ 123 \cdot 7 \end{array}$	56 53 49 56 55	e 14 43 e 19 33 e 19 6 e 20 37	PP PP PP	e 25 22 e 25 1 e 26 5 e 25 45 e 25 10	[+6] [-25] [+8] [-14] [-52]	e 19 14 e 35 12 20 34 e 36 52 e 37 12	PP SS PP SS	e 49·9 45·8 e 49·5
Vermont Seven Falls Rio de Janeiro San Juan Scoresby Sund	N.	$\begin{array}{c} 124 \cdot 2 \\ 125 \cdot 6 \\ 125 \cdot 8 \\ 128 \cdot 0 \\ 130 \cdot 5 \end{array}$	50 47 142 83 5	e 20 56 e 20 45 e 19 41 19 16	PP PP [+33] [+3]	e 26 8 9 e 22 19 22 40	[+ 5] [+ 1] PKS PKS	e 37 54 9 9 e 39 11 21 33	$\frac{ss}{ss}$	65·1 58·8 e 75·8 61·8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

153

ACAMA 25	Δ	Az.	P. m. s.	O –C.	S. m. s.	0 – C.	ın. s.	pp.	L. m.
Halifax Bermuda Upsala Ksara Bergen	131.0 131.1 136.7 137.2 139.4	340	e 21 30 e 18 0 e 19 33	PP [+ 8]	e 26 45 8 e 22 41 e 22 25 e 27 43	[+23] PKS PKS [+65]	e 31 51 e 40 9 e 22 41 e 58 11	PS SS PP Q	64·8
Helwan Copenhagen Bucharest Aberdeen Potsdam E.	$141.7 \\ 142.0 \\ 143.7$	$\frac{339}{316}$	e 19 36 e 19 39 e 19 45? e 19 45? e 19 45?	[+ 3] $[+ 6]$ $[+ 11]$ $[+ 20]$ $[+ 8]$	23 9 22 38 i 41 31	PKS	41 9 31 45 i 60 56	SS PS Q	63·8 77·8 e 79·8 e 59·8
Prague Belgrade Jena Cheb De Bilt	$145.2 \\ 145.3 \\ 145.7 \\ 146.1 \\ 147.0$	319 334 334	e 20 3 i 19 43 e 19 48 i 20 18 e 19 45	[+24] $[+3]$ $[+8]$ $[+37]$ $[+2]$	e 26 53 e 27 10 e 42 12	$\frac{[+\frac{6}{1}]}{88}$	e 23 30 e 25 11 e 23 24 e 42 35	PKS PPP PP SS	e 58.8 e 82.2 e 67.8 e 61.8
Stonyhurst Stuttgart Uccle Kew Strasbourg	147·0 148·4 148·4 148·9 149·1	335 (343 (347 (e 19 1 e 19 47 e 19 467 e 19 47k e 19 45	[-42] $[+2]$ $[+1]$ $[+1]$ $[-1]$	e 42 35 e 42 35 e 42 45	ss ss	e 22 48 e 23 47	PKP PP	e 67.8 e 74.2 e 70.8 e 68.8
Chur Zürich Basle Neuchatel Paris	$149.8 \\ 149.8 \\ 150.0 \\ 150.7 \\ 150.7$	334 6 335 6	0 19 49 0 19 49 0 19 50 0 19 58 0 19 45?	[+ 2] $[+ 2]$ $[+ 3]$ $[+ 10]$ $[- 3]$					e 61·8
Milan N. Clermont-Ferrand Tortosa Lisbon Granada San Fernando	150.9 153.2 158.4 162.7 163.1 164.5	336 357	19 46 20 15 20 14 20 6 i 20 8 a 20 12	[+ 3] $[+ 23]$ $[+ 15]$ $[+ 2]$ $[+ 4]$ $[+ 7]$	e 35 12	SS [-14] PS {- 6} {-41}	e 24 5 24 15 23 35 i 24 44 25 14	PP PP PP PP	e 74·8 76·2 83·6
Additional reading Brisbane iZ = 4 Auckland i = 6n Apia iS = 7m.13 Riverview iPP 8m.48s., iF Wellington i = 9m.5s., Q = Honolulu e = 18 Branner cPN = Berkeley iE = 1 Pasadena iZ = 1 Tinemaha iZ = Sitka e = 15m.3 Boulder City iF College eSS = 30 Tucson c = 20m Salt Lake City Hyderabad SN = Bombay SKSE Rapid City eSS Saskatoon e = 3 Huancayo e = 2 Florissant eSKI St. Louis iSKK Chicago ePS = 2 Ottawa PS = 30n Philadelphia e = Vermont e = 55n Seven Falls SKI Scoresby Sund 3 Bermuda e = 33 Upsala eN = 36n Helwan eN = 200 Jena eE = 19m. Cheb eSKSP = 3 De Bilt iPKP =	m.27s. n.40s., 1 ls., true EN = 5 cPN = 8 5m.30s., 9m.21s 3m.28s. 3m.28s. 3m.28s. 3m.38s. 13m.9s. 8s., ePs 13m.9s. 8s., ePs 13m. 9s., ePs 13m. 13m.9s. 8s., ePs 13m. 13m.9s. 8s., ePs 13m. 13m.9s. 13m	S is gi n.2s., in.55s. iz = 5 in. 12 = 5 in. 17 = 5 in. 18 = 25 in. 19 = 3 in. 10 = 3 in	ven as Q iEN = 5n iEN = 5n iEN = 5n iSSE = 5n.43s., (com.43s., (com.43s., (com.18s., com.18s., com.18s., com.23s., (com.23s., com.23s., (com.23s., com.23s., com.17s., (com.17s., com.17s., com.	21s., 9m.4s., 9m.15s., iZ = 23 29m.11s eSS = 30 s. 30s. = 28m.4 8m.43s., SSS = 37 m.53s., 5s., SSS 38m.51 34m.27s. 7s.?.	iN =9m.2 6m.40s., m.38s. m.38s. m.52s., e8 e8SE = 3 m.18s. and 37m.4 =42m.9s. s.	28. 7m.45s. 5m.13s. 10s.	sss = 34m	1.478.,	STATISTICS OF
		950			2=				

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

154

Stonyhurst PKP = 20m.12s., 21m.23s.

Stuttgart iPKP, 7Z = 20m.12s., eSS = 42m.45s., eQ = 67m.3s.

Uccle PKP₃N = 19m.52s.

Kew iPKPNZ = 19m.53s., iZ = 22m.57s., eEZ = 25m.0s.?, ePSS?Z = 36m.19s., eEZ = 38m.9s., eQN = 48.8m.Tortosa PKP₂N = 20m.45s., iE = 21m.18s., SKKSN = 31m.1s., PSE = 35m.13s., SSE = 44m.22s.

Lisbon N = 28m.31s.

Granada SKSP = 35m.13s., iSS = 45m.13s., SSS = 51m.29s.

San Fernando PKP₂Z = 20m.40s., PPPZ = 28m.55s., PPSE = 39m.5s., SSE = 45m.39s., SSSE = 51m.2s.

Long waves were also recorded at La Plata and Tananarive.

- June 21d. Readings also at 1h. (near Apia), 2h. (near Fort de France), 4h. (near Berkeley, Branner, Lick, and San Francisco), 7h. (Clermont-Ferrand and Kew), 13h. (near Mizusawa), 15h. (Haiwee, Mount Wilson, Tucson, Pasadena, Palomar, Riverside, and Tinemaha), 17h. (Florissant, St. Louis, Tucson, and Tinemaha), 18h. (Berkeley), 22h. (Kew).
- June 22d. Readings at 0h. (Bogota, St. Louis, Tucson, Palomar, Tinemaha, and near Berkeley), 2h. (Wellington), 4h. (Palomar, Tucson, and Tinemaha), 5h. (near Berkeley, Branner, Lick, and San Francisco), 6h. (Lick and Wellington), 9h. (Palomar, Riverside, Tinemaha, Tucson, Pasadena, and near Mizusawa), 12h. (La Paz), 18h. (Kew, Pasadena, Palomar, and Riverside).
- June 23d. Readings at 1h. (near Granada), 2h. (Brisbane, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 6h. (St. Louis, Ottawa, near Seven Falls, and Shawinigan Falls), 7h. (St. Louis, Tucson, Riverside, and Tinemaha), 10h. (Helwan and Ksara), 12h. (Palomar, Riverside, Tinemaha, and Tucson), 16h. (Auckland, Wellington, Christchurch, Brisbane, Riverview, Tucson, Palomar, Riverside, Tinemaha (2), and Stuttgart), 21h. (Tucson).
- June 24d. Readings at 5h. (Bogota and new Mizusawa), 7h. (near Berkeley (2), Branner (2), Lick (2), and San Francisco), 9h. (Ksara), 16h. (New Delhi), 22h. (near Berkeley), 23h. (near Ottawa, Seven Falls, and Shawinigan Falls).

June 25d. 1h. 8m. 12s. Epicentre 13°.8N. 93°.1W. (as on 1941 Sept. 3d.).

A = -.0525, B = -.9701, C = +.2370; $\delta = +2$; h = +6; D = -.999, E = +.054; G = -.013, H = -.237, K = -.972.

Oaxaca E. 4.7 313 1 13 - 1 - <t< th=""><th></th></t<>	
Vera Cruz N. 6·1 333 1 32 - 2 -	
Tacubaya E. 8·1 315	
Mobile Bogota 17.4 14 e 4 12 + 6 i 7 48 + 29 i 4 22 PP — — — — — — — — — — — — — — — — —	5
Bogota 20.9 114 i 4 51 + 5 — — — — —	£
	E
2000년 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 - 2005 	Ē
Columbia 22.9 26 e 5 4 - 2 e 9 9 - 4 - e 12.3	
Tucson 24.5 322 1523 + 1 1952 + 12 16 2 PP e 13.1	
St. Louis 24.9 5 e 5 23 - 3 e 9 48 + 1 i 5 32 ? -	i i
Florissant 25.0 5 e 5 23 - 4 e 9 57 + 9 e 10 7 S e 17.6	ķ.
Florissant 25.0 5 e 5 23 - 4 e 9 57 + 9 e 10 7 S e 17.6 San Juan 26.3 76 e 6 10 PP e 10 32 + 21 e 11 37 SS e 14.4	
Chicago 28.4 7 e 6 11 +13 e 10 25 -20 e 8 38 PcP e 10.9	
Chicago 28.4 7 e 6 11 +13 e 10 25 -20 e 8 38 PcP e 10 9 Palomar z. 29.1 316 i 6 6a + 2 - i 9 0 PcP -	
Riverside z. 29.8 317 i 6 11 0 — — — — — — —	ì
Riverside z. 29.8 317 i 6 11 0 — — — — — — — — — — — — — — — — —	
Pasadena 30.4 317 16 17a + 1 — 19 18 PcP e 14.6	ĺ
Lapanona over to vea i v	
Philadelphia 30.4 28 e 6 36 +20 e 11 12 - 4 e 7 15 PP e 11 5	j
Huancayo 31·1 144 — e 11 47 +19 — e 15·3	
Salt Lake City 31.5 333 e 6 26 0 e 11 35 + 1 — e 17:3	
Haiwee z. 31.5 320 i 6 26 0 — — — — —	-
Fordham 31.7 29 e 7 29 PP — — — — —	-
Bermuda 31.9 50 e 6 26 - 3 e 11 49 + 9 e 10 44 ? e 13.3	į
Tinemaha 32.3 320 16 34 a + 1 — i 9 24 PcP —	
Weston 34·1 30 — (e 12 26) +12 — e 12·4	
Ottawa 34.8 21 651 - 3 12 18 - 7 8 18 PPP 16.8	
Berkeley 35.3 318 i 6 56 - 3 - 8 18 PP e 17 (

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

155 1944

	Δ	Az.	Р.	O-C.	s.	O – C.	Su	pp.	L.
	0	0	m. s.	8.	m. s.	s.	m. s.		m.
Seven Falls	38.1	24	-		e 13 24	+ 8	e 8 24	PP	20.8
Saskatoon	39.8	347	-	-		-	e 17 48	3	25.8
Victoria	42.7	331	e 7 48	-12	-	-			22.8
Stonyhurst	79.4	37	-		-	- 	36 15	SKKS ₂	e 39·8
Kew	81.1	39	e 12 16	- 2	e 24 1?	PPS	e 31 18	SS	e 37·8
Granada	81.4	54	e 12 48k	+28	e 22 58	+27	-	***	41.1
Uccle	84.1	39		-	e 22 48?	-10			e 39·8
De Bilt	84.2	38	i 12 39	+ 5		-	i 12 51	P	c 39·8
Stuttgart	87 - 7	40	e 12 51	- 1	e 23 30	- 3	e 24 36	$_{\mathrm{PS}}$	e 45.2
Cheb	89.2	38		-	e 23 48?	+ 1			e 48.8

Additional readings :-Berkeley eZ = 7m.2s., iZ = 8m.21s., iE = 8m.32s., 9m.5s., and 12m.21s., iN = 10m.35s.Florissant eSZ = 10m.0s. Long waves were also recorded at Puebla, Ukiah, La Paz, College, Aberdeen, Clermont-

June 25d. 4h. 16m. 19s. Epicentre 38°.9N. 29°.3E. (as given by Strasbourg).

Scale VII at Uzak and Gediz (Aegean Sea). Renseignements de l'Observatoire de Kandilli.

Ferrand.

Seven Falls

 $\delta = +5$; A = + .6805, B = + .3819, C = + .6254; h = -1: D = +.489, E = -.872; G = +.545, H = +.306, K = -.780. O-C. S. 0 - C. Supp. L. AZ. 8. m. s. 8. m. m. s. m. s. P_g 1 2 2 31 355 0 50 Istanbul i 3 10 +30c 1 35 $5 \cdot 9$ 312 + 4 Sofia i 2 -+ + 49 6.0 337 c 1 30 + 6 Bucharest e 3 16 c 1 49 $7 \cdot 1$ 335 Campulung 317 +16537 132 Ksara i 2 5 ${
m PP}_{{
m S}_{g}}$ +1524 10 314 15322 8.9 Belgrade 3 5 11 55- 8 169 -+++ $9 \cdot 2$ Helwan e 6 54 7 10 +2243 321 15.4 Prague 54 +1716.3 300 Milan E. i 3 55 e 7 +124 30 e 8.7 318 16.4 Cheb +13+++ 2 e 3 11 305 56 16.5 Chur e 7 16 16.8 e 4 +11308 e 8.7 Ravensburg 29 7 51 SSS ± 13 17.3 e 4 e 7 320 e 9.4 N. Jena e 7 29 17.3 e 4 +13306 Zürich e 7 + 8 e 4 + e 9.2 309 17.4 Ebingen e 7 e 7 e 7 14 33 $_{\rm PP}$ 17.5 311 222 ++++ Stuttgart 9 41 e 4 11 306 18.0 e 10.2 Basle 6 e 4 15 45 304 18-3 Neuchatel 48 20 9 0 i 4 37 \mathbf{PP} 17 309 9.9 18.3 Strasbourg 39 36 8 9.7 i 4 20.2 332 Copenhagen e 8 e 8 31 i 8 37 + 11.0 Clermont-Ferrand 297 40 20.5i 4 ++ +++ 286 48 42 e 10.2 20.9 Barcelona i 8 i 8 45 $21 \cdot 2$ 312 i 4 50 a 9.7Uccle 45 51? 317 e 9.7 De Bilt i 4 59 59 +10306 10.2 21.6 Paris 15 +1530 $\mathbf{P}\mathbf{P}$ 22.2 283 58 e 12.7 i 4 Tortosa 9 e 4 56 0 344 0 e 11.9 Upsala ++ 5 PP 36 56 312 5 16k e 9 e 12.2 $24 \cdot 2$ Kew 11 -1140 i 5 24 k i 10 277 $P_{c}P$ $25 \cdot 9$ 14 1 Granada + 1 10 \mathbf{PPP} 40 12.8 33426.3 -5 Bergen 13.8 36 + 6 SS e 10 17 i 10 24 316 e 5 26.3 Stonyhurst - 322 i 5 58 i 10 56 +26i 10 28 27.5 16.0 Aberdeen 55 10 59 +19276 5 6 41 \mathbf{PP} 16.2 $28 \cdot 1$ San Fernando 11 19 + 9 41 9 a 282 6 10 15.8 30.0 Lisbon i 13 54 17 SSS 44 40.7 89 New Delhi N. 2 1 337 49 9 19 $\mathbf{P}\mathbf{P}$ 41.1 Scoresby Sund + 1 9 41 i 14 23 PP42.5 0 23.7106 Bombay 13 i 16 43 +1811 10 PP51.2110 Kodaikanal E. 24 SSS 26 60.0 160 36.4 Tananarive E. 20 68.7 314 24.7

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

156

```
0 - c.
                                                                         Supp.
                                    Ρ.
                                                            o-c.
                                                                                       L.
                            Az.
                                                                                       m.
                                                              8.
                                                                     m.
                                             8.
                                                     m.
                                  m. s.
                      72.5
                                   11 28
                                                                                      25.7
                            315
Ottawa
                     73.3
                                                                                      33.3
                            298
                                                     21
Bermuda
                      74.2
                                                                                      33.7
                            309
Fordham
                      75.5
                                            +12
                                                                                     e 34 · 2
                            309
                                 e 12
Philadelphia |
                                                                                    e 30·0
                      76.5
                            359
College
                                                                                    e 38.6
                                                                               ss
                     81.3
                            318
Chicago
                     81.6
                            334
                                                                                      37.7
Saskatoon
                                                                               SS
                            288
                      82 \cdot 8
San Juan
                                                                               _{\rm PS}
                      83.0
                                                                      23 40
                                                                                     e 40·0
                            352
Sitka
                                e 12 35
                                                                    i 12 38
                      84.9
                            317
Florissant
                                e 12 37
                                                                    i 12 41
                     85.0
                            317
St. Louis
                                                                                      44.7
                                                   e 22 417[-50]
Victoria
                     89.7
                            342
                                                                               P8
                                                                    e 25 39
                                                                                     e 47.3
                     93 \cdot 1
                            331
Salt Lake City
                                            -1
                                                                    e 30 41 PKKP
                            334 e 13 41
                     98.7
Tinemaha
                 Z.
                                                                    i 32 15
                                            \mathbf{PP}
                                                                              SSP
                                                                                    e 54.5
                            337
                                i 17 49
                     99 \cdot 2
Berkeley
                                                                              \mathbf{p}
                                                                      17 48
                                                                                      47.7
                            326 e 13 47
                    100.6
Tucson
                                                                    e 30 30 PKKP
Mount Wilson
                 z. 101·2 333 i 13 53
                                            960
                                                                    e 30 30 PKKP
                           333 i 13 51
                    101.2
Riverside
                                            -
                                                                    e 36 23 SSS
                                            + 3
                    101·3 333 e 13 57
                                                                                    e 48.4
Pasadena
                                                                    e 30 26 PKKP
                                            - 1
                 z. 101·6
                            331 e 13 55
Palomar
  Additional readings :-
    Istanbul P_g = 0m.53s.
    Sofia iEN = 2m.48s.
    Bucharest i = 1m.34s., iZ = 1m.47s., iS*Z = 3m.9s., iS*EN = 3m.12s., iS_g = 3m.31s.
    Campulung eP*N = 2m.10s., iN = 3m.44s., iS_gN = 4m.8s., iE = 4m.16s.,
    Belgrade i = 2m.46s., e = 3m.19s., iS = 4m.26s., i = 4m.54s.
    Helwan eNZ = 2m.31s., eN = 3m.17s., 8?E = 5m.29s., P_cP?N = 6m.5s., eN = 6m.53s.
        and 8m.23s.
    Milan ePN = 3m.59s.
    Jena iPZ = 4m.10s.
    Stuttgart iS = 7m.32s., eQ = 8m.29s.
    Tortosa PPPEN = 5m.42s.
    Upsala iPN = 5m.0s., iPE = 5m.5s., SN = 9m.7s.
    Kew iS = 9m.49s., eSS? = 10m.26s.?.
    San Fernando PPPE = 7m.22s., SSE = 13m.11s.
    Lisbon PE = 6m.13s., SE = 11m.40s.
    Bombay SE = 14m.30s., S_cSN = 17m.54s., iE = 18m.5s.
    Tananarive N = 27m.51s., EN = 33m.3s.
    Ottawa eE = 22m.41s.?
    Philadelphia eSS = 26m.12s., e = 27m.2s.
    Chicago eSSS = 31m.8s.
    San Juan e = 14m.48s.
     Berkeley iE = 17m.59s., iN = 21m.48s., cE = 47m.29s.?.
    Tucson e = 30 \text{m.9s.}
    Palomar eZ = 29m.52s.
```

June 25d. 6h. 57m. 44s. Epicentre 39°.0N. 29°.8E.

```
A = +.6762, B = +.3872, C = +.6268; \delta = +5; h = -1; D = +.497, E = -.868; G = +.544, H = +.312, K = -.779.
```

Long waves were also recorded at Colombo, Riverview, and La Paz.

		Δ	Az.	Р.	O-C.	s.	0 -C.	Suj	pp.	L.
		0	0	m. s.	8.	m. s.	8,	m. s.	305000	m.
Istanbul	•	2.1	344	0 52	Pg	1 33	Sr	800 7 - 3 018-50		_
Bucharest		6.1	333	e 1 32	- 2	i 2 51	+ 6	i 1 55	P*	
Sofia		6.1	309	e 1 57	Ps	3 11	Se		_	-
Ksara		7.1	135	e 1 48	0	e 3 24	+14	10000	_	
Campulung		7 · 2	332	e 1 51	+ 2			- Trees	, -	3.8
Belgrade		9.1	313	e 2 43	+29	4 4	+ 4	e 3 35	\mathbf{PP}	
Helwan		9.2	173	e 2 14	- 2	4 21	SS	e 2 24	\mathbf{PP}	_
Prague		15.5	321	e 3 40	- 2	e 6 53	+18			e 7·8
Milan		16.4	299	3 56	+ 3	7 16	+20			9.2
Cheb		16.6	318	e 3 56	0	e 7 11	+11	-	_	e 9·3
Chur		16.7	304	e 3 57	0	e 7 11	+ 8	32412		93.55
Zürich		17.6	305	e 4 5	- 3			-	****	
Stuttgart		17.7	310	e 4 9	1	e 7 34	+ 8	14 13	P	e 8.6
Basle		18.2	305	e 4 17	+ î	e 7 26	-11		_	e 9·4
Neuchatel		18.5	303	e 4 17	- 2	e 7 48	+ 4	-		e 10·2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

157

595		Δ	Az.	P.	0 -C.	s.	O-C.	Sup	p.	L.
		- 0	0	ш. s.	s.	m. s.	8.	m. s.	30	m.
Strasbourg		18.5	308	4 20	+ 1	7 50	+ 6		-	
Copenhagen		20.3	331	e 4 39	- 1	8 27	+ 4		- Seemen	10.3
Uccle		21.4	311	e 4 50	- 1	8 47	+ 2	-	-	e 10·3
De Bilt		21.5	316	i 4 53	+ 1	e 8 52	+ 5	100000	-	e 10·3
Paris		21.9	305	e 5 2	+ 5	e 9 0	+ 6			e 11·3
Upsala		22.3	343	e 4 58	- 3	e 9 2	0	e 10 51	888	e 11·3
Tortosa	E.	22.5	283	5 11	+ 9	9 11	+ 6 + 5	5 33	PP	
Kew		24.4	311	i 5 19k	- 2	9 44	+ 5	e 5 59	\mathbf{PP}	e 11·3
Bergen		26.3	333			e 10 1	-10	10 21	?	11.8
Stonyhurst		26.4	315			i 10 22	+10	-		e 13.8
Aberdeen	E.	27.6	321		-	i 10 30	- 2	-		16.8
San Fernando	E.	28.5	276			e 10 50	$+$ $\bar{4}$	20000		
Scoresby Sund		41.2	337	7 51	+ 3	14 16	+14	17 4	88	23.3
Florissant		85.1	317	e 12 37	- 2	e 23 7	- ī			
St. Louis		85.2	317	e 12 39	0	e 23 10	+ 1		_	

Additional readings :-

Bucharest $iP_{\pi}N = 2m.6s.$, $iS^*Z = 3m.15s.$ and 3m.18s., $iS_{\pi}?N = 3m.39s.$, $iS_{\pi}E = 3m.44s.$

Belgrade i = 4m.41s.

Helwan eN = 3m.45s. Upsala eSE = 9m.5s., eE = 10m.56s.

Tortosa $P_cPE = 8m.34s.$, SSE = 10m.15s.

Kew eSZ = 9m.54s.

June 25d. 8h. 6m. 52s. Epicentre 51°-5N. 173°-5W. (as on 1942 July 4d.).

$$A = -.6211$$
, $B = -.0708$, $C = +.7806$; $\delta = +11$; $h = -6$; $D = -.113$, $E = +.994$; $G = -.776$, $H = -.088$, $K = -.625$.

		Δ	AZ.	P.	O-C.	s.	0-C.	Sur	p.	L.
		. 0	0	m. s.	8.	m. s.	s.	m. s.	7	m.
College		18.8	35	e 4 22	- 1	e 7 30	20		-	e 9·0
Tinemaha	Z.	41.1	89	i 7 49a	+ 2	e 16 55	SS	i 11 1	?	21.2
Mount Wilson	Z.	43.0	92	i8 2	- 1		Process	i 11 18	8	
Pasadena		43.0	92	i8 4	+ 1			i 11 16	8	e 17·1
Riverside	z.	43.6	92	e 8 8	0			i 11 21	8	
Palomar		44.4	92	e 8 14	0	i 14 40	- 9	i 11 29	?	-
Tucson		48.9	88	i 8 50	0	c 15 47	- 6	i 12 3	3	e 20·8
Florissant	E.	56.9	68		-	e 17 26	-16			
St. Louis	A	57.1	68	e 9 51	+ 1	e 17 28	-17	_	-	
Stuttgart	Z.	80.1	358	e 15 39	PP		100000			

Additional readings :-

Tinemaha iZ = 11m.17s, and 13m.9s.

Long waves were also recorded at Kew and Granada.

June 25d. 14h. 17m. 26s. Epicentre 21°.5S. 170°.2E. (as on 1943 March 11d.). Pasadena suggests deep focus.

$$A = -.9177$$
, $B = +.1585$, $C = -.3644$; $\delta = +8$; $h = +4$; $D = +.170$, $E = +.985$; $G = +.359$, $H = -.062$, $K = -.931$.

		Δ	Az.	Р.	0-C.	s.	O-C.	Su	pp.	L.
		0	0	m. s.	s.	m. s.	8.	m. s.		m.
Auckland		15.8	167	3 49	+ 4	6 37	- 5	i7 3	88	7.7
Brisbane	N.	16.7	246	i 3 52	+ 4	i 7 3	0	i 7 53	Q	
Arapuni	1900	17.2	167	3 58	- 5	7 34 3	+20		_	***
Apia		18.8	70	i 4 26	+ 3	8 14	+24	c 4 33	\mathbf{PP}	
Wellington	z.	20.1	172	4 37	- 1	8 35	+16	4 55	pP	10.1
Riverview		20.8	230	i 4 42k	- 3	i 8 33	0	i 5 10	\mathbf{PP}	e 9.5
Sydney		20.8	230	e 4 34	-11	e 8 28	5	· —		e 10·2
Christchurch		22.1	177	i 4 59	0	8 52	- 6	i 5 9	PP	10.8
Perth		49.2	246	LOAD OF FRANCE	-	i 15 52	- 6	i 19 44	SS	
Honolulu		52.8	38	13 46	8	e 16 50	+ 3	-	_	e 21·9
Ukiah		86.6	46	e 13 54	+68			e 24 38	PPS	e 35.9
Santa Clara	Z.	86.6	48	i 12 48	+ 2			_	_	
Berkeley		86.6	48	i 12 46	0	i 23 22	- 1	i 16 18	PP	e 40.0
Pasadena		87.7	52	i 12 53a	+ 1	T. T. C.	-	i 13 14	pP	e 36·2
Mount Wilson	z.	87.8	52	e 12 52	0	****			-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

158

		Az. P. m. s.	o – c.	S. O-C. m. s. s.	supp.	L. m.
La Jolla z. Riverside z. Palomar Haiwee Tinemaha	87.8 88.2 88.3 88.8 89.0	53 e 12 52 52 i 12 54 54 12 56 50 e 12 59 50 i 13 0	+ 1 + 2 + 2		i 13 16 pP i 13 16 pP i 13 13 pP	
Sitka Victoria College Tucson Colombo E.	90·9 91·4 91·9 92·4 92·8	26 c 23 3 37 — 16 — 56 13 16 276 —	+ 2	e 23 34 [- 4] e 23 46 [+ 6] e 23 31 [-13] e 24 37 7 7 23 37 [-12]	e 25 17 PS	e 38·0 37·6 e 38·9 e 43·1
Salt Lake City Kodaikanal E. Rapid City New Delhi N. Bombay	102·3 102·5 2	48 — 47 — 296 — 285. —		e 24 4 [+ 2] i 23 51 [-17] e 24 16 [-22] i 24 33 [- 6] i 24 37 [- 7]	e 25 41 PS	e 40·6 e 57·6
Huancayo La Paz Chicago Columbia Ottawa		111 — 119 19 21 52 c 29 3 61 29 48 48 c 18 55	PP PS PS [- 1]		e 28 13 PS 29 44 PPS e 34 24 SS e 36 46 SSS e 36 347 SS	e 50·3 52·6 e 46·9 e 58·7 61·6
Seven Falls San Juan Bermuda Scoresby Sund Upsala	125.0 127.2 130.4 130.5 137.0	46 c 21 58 82 c 21 6 65 c 22 39 6 22 32 340 22 49	PP PKS PKS PKS		e 38 10 SSP e 34 44 ScSPKI 34 36 ScSPKI e 32 8 PS	
Ksara Copenhagen Helwan E. Potsdam Prague	142.0 3 142.2 2 144.5 3	296 e 19 36 340 e 19 34 291 e 21 16 337 e 19 467 333 e 19 58	[+ 9] $[+ 8]$ $[+ 18]$	27 35 [+53] e 29 34 {-13] e 26 34 [-14]	e 23 16 PP e 23 19 PP	62·6 e 77·6 P 70·6
Belgrade Jena z. Cheb De Bilt Uccle	146·2 3 146·5 3 147·3 3	320 e 19 55 335 e 19 42 335 e 19 45 343 i 19 46k 344 19 47	[+14] $[+1]$ $[+3]$ $[+1]$	e 31 34? 37 e 29 34? { -37	23 57 PP c 19 53 I c 28 33 PKKP i 19 58k PKP c 27 34 PPP	e 71·6 e 65·6 e 73·6
Stuttgart Kew Triest Strasbourg Zürich	$149 \cdot 2$ 3 $149 \cdot 2$ 3 $149 \cdot 5$ 3	336 19 43 349 i 19 49 327 i 19 58 337 e 19 46 335 e 20 12	$\begin{bmatrix} -3 \\ +3 \\ +12 \end{bmatrix}$ $\begin{bmatrix} +12 \\ -1 \end{bmatrix}$ $\begin{bmatrix} +24 \end{bmatrix}$	e 42 22 SS e 34 17 PS e 29 34 (-41)	e 23 28 PP 28 27 PKKP i 26 22 PPP	e 72.6
Chur Basle Neuchatel Milan Granada San Fernando E.	150.5 3 151.2 3 151.5 3 163.5	334 e 19 51 336 e 19 53 336 e 19 50 331 e 20 2 343 i 20 5k 349 e 25 5	[+ 3] [+ 5] [+ 1] [+12] [+ 1] PP	= = = = 45 18 SS	e 28 36 PKKP	i 83·5 88·6
8m.29s., pl Riverview iE = Christchurch el Berkeley iN = eN = 29m.5 Tucson e = 13m Kodaikanal e = Columbia e = 35 San Juan e = 25 Scoresby Sund Upsala eE = 225 Helwan iE = 42 Potsdam eN = 5 Belgrade e = 20 Kew eZ = 20m ePSiN = 35 Basle e = 23m.2 Granada PPS =	2., e = 6m. = 4m.44s. P _c PZ = 8m. 5m.14s. a E = 8m.36 23m.12s. 23m.12s. 23m.26s. 2m.26s. 2m.26s. 2m.46s. 2m.55s. 2m.55s. 2m.47s. 2m.42s.?, 2m.42s.?, 2m.42s.?, 2m.42s.?, 2m.47s. 2m.42s.?, 2m.42s.?, 2m.42s.?, 2m.42s.?, 2m.42s.?, 2m.42s.?, 2m.42s.?,	n.578., SS?Z = and 8m.368., iNZ = 9m.688., iNZ = 9m.688., iZ and 24m.308., iZ and 36m.18. N = 28m.128., iZ and 24m.448. ePPN?Z = 21m.448.	9m.19s. Z = 8m.4 Ss. iE = 2 = 36m.2	pScPZ = 16m.8 l6s., iSSN = 9m. l6s., iSSN = 24 l6s., iZ = 24 l6s., iZ = 24 l6s., iX = 36m.36 l6s., iX = 36m.36 l6s., iX = 26 l6s., iZ = 23	4s., and 6m.14s. 4s., iN =9m.18s. 4m.40s., eE = 29m.32s. 5s., iE = 37m.32s. 6m.57s.?, eZ = 31m.57s.?	n.10s.?, s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

159 1944

June 25d. 17h. 42m. 6s. Epicentre 1° 58. 23° 4W.

A = +.9175, B = -.3970, C = -.0260; $\delta = +9$; h = +7: D = -.397, E = -.918; G = -.024, H = +.010, K = -1.000. L. 0-c. Supp. O-C. AZ. m. m. s. 57 Rio de Janeiro Ε. 221 i 5 58 21 San Fernando 56k Lisbon 20.3 23 42.7 Granada 22.0 18 221 15 46.2 La Plata E. \mathbf{p} 18.3 6 10 15 -1246.4 298 San Juan PPi 10 24.5 34 31 a 1 15 18 i 8 46.5 249 ---La Paz PP• 4-10 28 23.034 15 i 8 3847.4 25 Tortosa 15 50 + 2544 48.6 Barcelona c 21·4 e 16 33 e 9 31551.6 9 Bermuda 88 e 21·4 c 20 29 52.5 256 17 i 16 44 i 9 Huancayo $\mathbf{P}\mathbf{P}$ c 11 ++ e 25.6 + i 16 47 52.6 23 9 20Clermont-Ferrand e 3 $\mathbf{P}\mathbf{P}$ c 17 e 11 41 26.919 38 21 9 54.9Paris 16 53 -24 28 31 9 55.0Milan 35 55.1 e 9 Neuchatel +++ 25 40 30 9 55.8 e Basle PP 33 25 43k 56.1 Zürich e 26e 9 42 56.1 Chur \mathbf{PP} e 11 54? e 26.4 i 17 18 42k 56.3 i 9 Kew i 10 12 17 + 24 56.7Strasbourg SS + 1 e 26.9 e 21 47 47 20 50 k $57 \cdot 2$ Uccle -41 i 17 57.3 30 44 Triest c 11 \mathbf{PP} 54 i 17 50 25 51 k 57.5 Stuttgart SS 21 57 27.6i 18 +i 9 54 14 57.8 Stonyhurst 88 e 27.9 54 1 k i 18 + 58.6 De Bilt +12e 12 $\mathbf{P}\mathbf{P}$ 32 20 e 28.9 e 10 10 e 18 + 59.8 Cheb PP c 12 18 e 18 24 e 10 10 60.1 Jena PPP e 13 36.6 50 ++ 18 28 e 10 13 35 60.3Belgrade \mathbf{PPP} e 13 54 e 18 e 10 15 0 60.727 Prague $\mathbf{P}\mathbf{P}$ 12 18 38 5 17 55 10 + 60.8 Helwan 27 14 38.0 60.9 14 16 57 Aberdeen E. 3 i 12 $\mathbf{P}\mathbf{P}$ e 26.9 i 18 49 c 10 61.8 25 24 + Potsdam SSS 25 i 18 + i 10 320 62.2 Fordham SS e 25·4 e 19 318 i 10 37 62-7 Philadelphia e 12 57 PP $29 \cdot 9$ 37 18 63.4 Bucharest 25.9 10 35 63.7327Seven Falls $\mathbf{P}\mathbf{P}$ 19 12 12 59 i 10 38 $64 \cdot 1$ Copenhagen ScS e 28·3 e 19 19 e 20 27 e 10 42 + 310 64.5 Columbia 19 27 30.0 e 10 44 65.6 15 Bergen +22e 10 52 e 19 567 65.7Ksara 26.9 4 30 19 4 e 10 44 323 _ 65.7 Ottawa 13 46 -13PP 31.9 e 20 13 e 10 56a 21 -69.0 Upsala E. PPP 88 e 15 19 30.921 e 24 21 69.0 N. + i 20 18 69.2 e 11 16 304 Mobile 36.2 + 6 109 11 30 71.5 Tananarive SS 32.9 20 52 36 71.9 Scoresby Sund PPS e 21 26 e 20 33 -17c 29·4 $72 \cdot 1$ 315 24 Chicago i 11 PeP 44 e 34·1 54 30 312 i 11 73.0 St. Louis +2888 e 42.9 e 23 227 51 +37314 i 13 97 83.7 Rapid City SS e 28 53 e 42.4 c 23 46 e 12 56 + 0 88.6 302 Tucson e 41.3 e 23 33 [+ 1] 89.8 311 e 13 + Salt Lake City $\mathbf{P}\mathbf{P}$ i 17 3 -+ + 93.7 e 13 17 303 Palomar 7., e 13 302 94.0La Jolla z. i 13 304 23 $94 \cdot 1$ Riverside i 13 27 0 e 13 24304 Mount Wilson 94.7Z. e 43.7 i 13 23 304 94.8 Pasadena 306 e 13 25 94.8Tinemaha PS i 17 58 26 16 \mathbf{PP} 17 33 71 96.4 Bombay e 24 18 43.9 [+2]

Continued on next page.

318

97.8

Victoria

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

```
O-C.
                               Az.
                                                                               Supp.
                                                                                              L.
                                      m.
                                                 В.
                                                         m. s.
                                                                                              m.
Berkeley
                                                                                    \mathbf{p}
                                                                                           e 48.3
                                                                [+6]
New Delbi
                                                PP
                   N. 100.0
Kodaikanal
                                                PP
                      101.0
                                                                                     SS
Sitka
                      102 \cdot 9
                                                                [+5]
                                                                         e 32 58
                                                                                           e 47.0
                              329
Colombo
                               83
                      103.3
College
                                                                                     PS
                      105.4
                              339
                                                                                           c 43.8
Riverview
                      144.5
                                    i 19 41
                                              [+3]
                                                                                    \mathbf{p}
                                                                                           e 69·2 ·
```

160

Additional readings :-San Fernando PPPE = 10m.40s., SSE = 17m.11s. Lisbon PZ = 8m.0s., PPZ = 9m.35s., E = 10m.53s., N = 11m.24s.Granada $P_cP = 9m.43s$. La Paz iSZ! = 15m.12s., SSZ = 18m.54s. Tortosa PPPE = 11m.11s., SSE? = 18m.45s. Huancayo e = 10m.34s, and 11m.20s. Kew ePPPNZ = 12m.59s.?, eP_cS?Z = 14m.19s.?, eN = 17m.18s., eS_cSNZ = 19m.37s.?, eSSNZ = 21m.54s.?, eSSSZ = 24m.24s.? Uccle eSSS? = 24m.3s. Stuttgart ePcPZ = 10m.34s., cPPPZ = 13m.19s., eScS = 19m.54s., cSS = 21m.29s. Stonyhurst 19m.0s. Cheb ePPP = 13m.54s., e = 20m.5s., eSS = 22m.14s., eSSS = 25m.2s.Jena eN = 12m.13s., 18m.27s., and 20m.13s.Belgrade e = 22m.12s. Prague eSS = 22m.36s. Helwan eN = 25m.2s. Fordham i = 20m, 24s. Philadelphia e = 15 m.0s.Bucharest eEN = 7m.59s. Copenhagen 11m.56s. and 20m.45s. Columbia e = 25m.12s. Upsala ePPPE = 15m.22s., cN = 21m.15s., eE = 21m.22s., cSSSE = 27m.54s.Scoresby Sund 21m.47s. Chicago e = 12m.51s. and 24m.8s. St. Louis iZ = 11m.34s., eZ = 12m.29s., iZ = 13m.12s., eE = 21m.31s., eN = 26m.34s. Tucson e = 12m.59s., 13m.22s., and 15m.32s.Palomar i = 13m.24s. Berkeley iE = 17m.50s., iZ = 26m.32s. and 45m.22s., iN = 45m.28s., eE = 46m.48s.?. College eSS = 33m.30s. Riverview iZ = 21m.24s. Long waves were also recorded at Wellington and Auckland.

- June 25d. Readings also at 2h. (near Balboa Heights), 3h. (near Stuttgart), 4h. (Istanbul and Bucharest), 5h. (Bucharest (2) and Istanbul (3)), 7h. (Ksara, Sofia, Belgrade, Stuttgart, Bucharest, and near Istanbul (3)), 8h. (Bucharest, St. Louis, Tucson, and Tinemaha), 9h. (Bucharest, Sofia, Triest, Belgrade, Stuttgart (2), Cheb, De Bilt, and near Istanbul), 10h. (Bogota, Bucharest, and near Istanbul), 11h. (near Istanbul), 14h. (San Fernando, Sofia, Stuttgart, Bucharest, and near Istanbul), 15h. (Bogota, Bucharest, and Uccle), 16h. (Ksara, Helwan, Bucharest, and Lick), 17h. (Bogota), 18h. (Kodaikanal, La Paz, and Berkeley), 19h. (Berkeley and New Delhi).
- June 26d. Readings at 4h. (Palomar, Riverside, Mount Wilson, Pasadena, Riverview, and Brisbane), 5h. (Kew, Stuttgart, Tucson, and Christchurch), 9h. (Pasadena, Mount Wilson, Riverside, Palomar, Tucson, and near Mizusawa), 14h. (Florissant, St. Louis, Pasadena, Mount Wilson, Riverside, Palomar, Santa Barbara, Tucson, Tinemaha, Haiwee, La Paz, and La Plata), 16h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, near Berkeley, Branner, and Lick), 19h. (San Juan), 20h. (Kaimata, Christchurch, near Wellington, New Plymouth, and Tuai), 22h. (Stuttgart).
- June 27d. Readings at 2h. (Vermont), 3h. (St. Louis, Palomar, Tinemaha, Riverside, Mount Wilson, Pasadena, Tueson, Oaxaca, and Tacubaya), 5h. (Vermont), 6h. (Bucharest (2)), 7h. (Sofia), 12h. (Copenhagen, Stuttgart, Palomar, Riverside, Mount Wilson, Pasadena, Tueson, and Suva), 16h. (Vermont), 16h. (near Stuttgart, Ravensburg, Neuchatel, Chur, Basle, and Zürich), 18h. (near Branner), 23h. (St. Louis, Palomar, Tinemaha, Tueson, Riverside, Mount Wilson, Pasadena, and Vera Cruz).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

161

Hower of the

June 28d. 5h. 31m. 45s. Epicentre 13°-8N. 93°-1W. (as on 25d.).

A = -.0525, B = -.9701, C = +.2370; $\delta = +2$; h = +6; D = -.999, E = +.054; G = -.013, H = -.237, K = -.972.

		Δ	AZ.	Р.	O-C.	s.	0-C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Oaxaca	N.	4.7	313	-	_	i 1 56	-14			
Vera Cruz	N.	6.1	333	e 1 28	- 6			1,000	-	-
Tacubaya	F.	8.1	315	e 2 4	+ 2			-		-
Bogota	25.57	20.9	114	i 4 54	+ 8		-	e 12 39	P_cS	e 15·1
Columbia		22.9	26	e 5 3	- 3	e 9 7	- 6	e 5 39	PP	e 13.9
Tucson		24.5	322	i 5 22	0	e 9 55	+15	e 5 38	$\mathbf{p}\mathbf{p}$	e 12·3
St. Louis		24.9	5	e 5 20	- 6	e 9 46	- 1			
San Juan		26.3	76	e 6 11	\mathbf{PP}	e 10 27	+16	e 6 40	PPP	e 11.8
Chicago		28.4	7	e 6 20	+22	-	-	-		e 11.7
Palomar		$29 \cdot 1$	316	i 7 2 a	+58	-	-	100		
Riverside	7.	29.8	317	i 6 12	+ 1		-	e 9 17	$P_{e}P$	_
Mount Wilson	Z.	30.4	317	i 6 16	0	-	-			
Pasadena		30.4	317	i 6 17	+ 1			09 16	$P_{c}P$	e 14·3
Philadelphia		30.4	28	e 7 6	\mathbf{PP}	e 11 15	- 1	-		
Huancayo		31.1	144	-	-	e 11 40	+12	e 11 43	3	e 15·1
Haiwee	Z.	31.5	320	e 6 26	0		_	-	_	_
Bermuda	=2-53	31.9	50		-	e 11 12	-28	-		e 14.8
Tinemaha		32.3	320	e 6 35	+ 2					
Ottawa		34.8	21	e 6 51	- 3	e 12 15	-10	e 16 15?	3	20.3
Vermont		35.0	25			e 12 33	+ 5	-		e 20·3
Berkeley		35.3	318	i 6 59	0	i 12 39	+ 6	i 8 23	\mathbf{PP}	e 16·3
Shawinigan Falls	8	36.9	24	e 7 45	+33					23.3
Seven Falls		38.1	24	e 8 45	PP			-	****	21.3
La Paz	Z.	38.9	139	e 7 37	+ 8		-		_	19.8
Granada	-000	81.4	54	9 23k	7	e 18 56	?	1	_	38.2
Stuttgart		87.7	40	e 12 51	- 1		terret.	-	_	e 44.3

Additional readings:—
San Juan e = 7m.48s.
Berkeley iZ = 9m.57s., iE = 14m.27s.
Long waves were also recorded at Ukiah, Kew, and De Bilt.

June 28d. 5h. 46m. 18s. Epicentre 13°.8N. 93°.1W. (as at 5h. 31m.).

	Δ		Az.		O-C.	s.	0-C.	Supp.		L.
		0	0	m. s.	s.	m. s.	B.	m. s.	.0091.	m.
Vera Cruz	N.	6.1	333	-	-	i 2 48	+ 3		(married)	
Tacubaya	N.	8.1	315	e 2 4	+ 2	-	-	2011/20		
Bogota	-53.5	20.9	114	e 4 52	+ 6			-	-	-
Tucson		24.5	322	i 5 22	0	e 9 48	+ 8	1000		e 13·2
St. Louis	Z.	24.9	5	e 5 15	-11					
Palomar		29.1	316	i 6 4	0					93496
Riverside	Z.	29.8	317	e 6 10	- i		_			
Mount Wilson	Z.	30.4	317	16 15	- î					
Pasadena	Z.	30.4	317	e 6 15	- î	-	-	e 9 16	P_cP	
Haiwee	Z.	31.5	320	e 6 24	- 2			-	1 61	
Tinemaha	260	$32 \cdot 3$	320	e 6 33	ō	****	-	-	-	

June 28d. 7h. 58m. 48s. Epicentre 13° 8N. 93° 1W. (as at 5h.).

		Δ	Az.	P.	$\mathbf{O} - \mathbf{C}$.	s.	O-C.	Su	pp.	L.
		0	0	m. s.	S.	m. s.	s.	m. s.		m.
Oaxaca	N.	4.7	313	1 20	+ 6	-	-			2000
Vera Cruz	N.	6.1	333	i 1 38	+ 4				-	
Puebla	N.	7 - 1	318	1 53	+ 5	-				
Tacubaya	E.	8.1	315	e 2 3	+ 1		-	-	_	<u> </u>
Guadalajara	N.	11.9	306	3 1	+ 7					-
Manzanillo	N.	12.0	297	e 2 58	+ 3	0117	-		-	
Balboa Heights	CTAT.	14.1	108	e 3 27	+ 4		_	e 6 57	SSS	e 8·1
Mobile		17.4	14	14 7	4 i	-			555	
Port an Prince		20.5	74	e 4 49	+ 7	i 8 44	SS	5 14	PPP	e 10·8
Bogota		20.9	114	i 4 54	+ 8	19 5	SS	1 5 23	PPP	13.2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

162

	△ Az.	P. (0 -C.	S. C m. s.) -C.	m. s.	р.	L. m.
Columbia Cape Girardeau N. Tucson St. Louis San Juan	22.9 26 23.6 6 24.5 322 24.9 5 26.3 76	i 5 3 e 5 7 i 5 23 i 5 22 i 5 35	- 3 - 6 + 1 - 4 - 4	e 9 10 e 9 18 i 9 45 i 9 47 i 10 13	- 3 - 7 + 5 + 2	i 6 0 i 8 26 i 6 25	PP PP	e 11.8 e 12.4 i 10.5
Chicago Georgetown New Kensington La Jolla Palomar	$\begin{array}{cccc} 28 \cdot 4 & & 7 \\ 28 \cdot 7 & & 27 \\ 29 \cdot 1 & & 21 \\ 29 \cdot 1 & & 315 \\ 29 \cdot 1 & & 316 \\ \end{array}$	e 5 50 i 5 57 e 6 20 e 6 4 i 6 4	$-8 \\ -4 \\ +16 \\ 0 \\ 0$	1 9 54 	-51 -9 $+13$	e 8 47 i 11 33 e 7 4	PeP PPP	e 11·7 e 11·2
Boulder City Riverside Mount Wilson Pasadena Philadelphia	29·5 325 29·8 317 30·4 317 30·4 317 30·4 28	i 6 8 i 6 10 a i 6 16 i 6 16 a i 6 13	$-\begin{array}{c} 0 \\ 1 \\ 0 \\ - \end{array}$	e 12 45 e 11 5 i 11 17 i 11 7	+ 1 - 9	i 15 53 i 9 17 i 9 21 i 9 16 e 7 7	PcP PcP PP	e 13·3 e 14·2
Fort de France Huancayo Rapid City Haiwee Salt Lake City	31·0 85 31·1 144 31·4 346 31·5 320 31·5 333	e 7 12? e 6 28 i 7 14? i 6 27 e 6 25	PP + 6 PP + 1 - 1	i 11 40 i 12 7? e 11 33 i 11 33	$+\frac{12}{+35} \\ -\frac{1}{1}$	e 12 12 i 7 32 i 13 57? i 9 21 e 7 34	PP SS PcP PP	e 15·7 e 13·7 e 14·4
Santa Barbara Fordham Bermuda Tinemaha Lick	$31.6 316 \ 31.7 29 \ 31.9 50 \ 32.3 320 \ 34.6 318$	e 6 26 i 6 23 i 6 27 e 6 33 e 6 55	$ \begin{array}{cccc} & 0 \\ & 4 \\ & 2 \\ & 0 \\ & + & 2 \end{array} $	e 11 38 i 11 37 i 11 49	+ 3 + 9 -	i 9 21 e 11 5	P _c P	e 13·0 e 16·5
Ottawa Santa Clara Branner Vermont Berkeley	$34.8 21 \ 34.8 318 \ 35.0 318 \ 35.3 318$	6 49 i 6 55 e 6 58 i 6 55 i 6 58	- 5 + 1 + 2 - 1 - 1	12 17 e 12 21 e 12 26 i 12 17 i 12 20	$ \begin{array}{r} -8 \\ -4 \\ -2 \\ -11 \\ -13 \end{array} $	$ \begin{array}{r} 8 & 19 \\ \hline 1 & 8 & 42 \\ 1 & 8 & 14 \\ 1 & 8 & 22 \end{array} $	PP PP PP PP	15.5 e 16.6 e 16.3 i 15.2 e 17.5
San Francisco Butte Ukiah Shawinigan Falls Ferndale	$35.3 318 \ 36.1 338 \ 36.5 320 \ 36.9 24 \ 38.1 321$	e 6 44 i 6 56? i 7 12 7 8 e 7 16	$ \begin{array}{r} -15 \\ -9 \\ +3 \\ -4 \\ -6 \end{array} $	e 12 20 e 13 33? e 12 40 13 3 e 12 52	$^{-13}_{PeS} \\ ^{-11}_{+5} \\ ^{-24}$	e 6 59 i 8 26? e 8 32 e 12 42	P PP PP	e 15.0 e 16.3 e 15.9 17.5 e 18.9
Seven Falls La Paz Halifax Saskatoon Seattle	$38.1 24 \ 38.9 139 \ 39.7 33 \ 39.8 347 \ 41.6 331$	7 19 i 7 35 a 7 33? 7 38 e 8 18	$ \begin{array}{r} -3 \\ +6 \\ -3 \\ +2 \\ +27 \end{array} $	13 26 i 13 50 13 34 e 14 24	$^{+10}_{+22}_{-6}_{+5}_{+16}$	8 43 i 9 12 9 12 9 13 (e 17 29)	PP PP PP SS	19.2 19.2 19.2 18.2 e 17.5
Victoria Montezuma Sitka La Plata E. N.	$egin{array}{cccccccccccccccccccccccccccccccccccc$	7 58 e 9 50 i 9 25 10 12 9 36 9 48	- 2 PP - 3 + 10 - 26 - 14	$\begin{array}{c} 14 & 22 \\ 17 & 12 \\ 16 & 57 \\ 18 & 10 \\ 18 & 18 \\ 23 & 36 \\ \end{array}$	- 2 SS - 6 + 3 + 11 SSS	e 13 30 e 11 26 12 30 12 18	PP PP PP PP	e 20·0 e 22·6 29·5 29·8 30·2
Rio de Janeiro Honolulu College Reykjavik Scoresby Sund	$60.9 126 \\ 61.8 288 \\ 63.0 337 \\ 69.5 26 \\ 70.8 19$	i 10 13 e 10 26 e 10 26 e 15 24 i 11 17	- 4 + 3 - 5 PPP - 3	i 18 37 i 18 50 e 18 54 e 20 24 20 30	$\begin{array}{c} + & 3 \\ + & 4 \\ - & 7 \\ + & 4 \\ - & 5 \end{array}$	e 12 54 e 12 43 e 26 36 21 20	PP PP PPS	e 29·0 e 25·5 e 29·4 e 30·2
Lisbon Aberdeen Stonyhurst San Fernando Kew	76·8 53 79·1 33 79·4 37 79·5 55 81·1 39	11 54k 12 6 12 7 i 12 16a	$ \begin{array}{r} - 1 \\ - 3 \\ - 3 \\ - 2 \end{array} $	$\begin{array}{cccc} 21 & 40 \\ i & 22 & 1 \\ 22 & 11 \\ 21 & 50 \\ e & 22 & 23 \\ \end{array}$	$ \begin{array}{r} - & 2 \\ - & 6 \\ + & 1 \\ - & 21 \\ - & 5 \end{array} $	22 13 1 22 43 22 28 22 25 e 15 19	ScS PS ScS PP	32·2 36·3 37·8 36·2 e 39·2
Granada Bergen Paris Tortosa Uccle	$81 \cdot 4$ 54 $82 \cdot 2$ 29 $83 \cdot 4$ 42 $83 \cdot 8$ 50 $84 \cdot 1$ 39	i 12 21k 12 16 e 12 35 12 29 i 12 32a	$\begin{array}{c} + & 1 \\ - & 8 \\ + & 5 \\ - & 3 \\ - & 2 \end{array}$	i 22 40 22 31 e 22 48 e 23 6 e 23 0	$^{+}_{-}\overset{9}{\overset{8}{\overset{-}{3}}}_{+11}$	e 15 28 e 28 33 i 23 8	SS ScS	36.9 28.1 e 31.2 e 38.2 e 38.2
De Bilt Clermont-Ferrand Barcelona Neuchatel Strasbourg	84·2 84·5 84·9 49 86·8 42 86·8	i 12 35 a e 12 34 e 12 26 e 12 46 e 12 47	$^{+}_{-}_{12}^{1}_{-}_{0}$	i 22 51 e 23 4 e 23 6 	$-\frac{8}{2} + \frac{8}{0} = [-\frac{1}{1}]$	i 28 41	<u>ss</u>	e 40·2 e 39·8 ————————————————————————————————————

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

163

O-C.

8.

Az.

Supp.

m. s.

L.

m.

```
Basle
                       87.0
                                                                                 SS
PP
Copenhagen
                      87.3
                                                                                         36.2
                      87 .7
Stuttgart
                                                              [+
                                                                                       e 40·1
Zürich
                       87.7
                                                                                 PP
                                                                                       e 39.8
Upsala
                       88.2
                                                                                 SS
                                                                      e 29 37
                                                                                       e 44.8
Jena
                       88.4
                                                     e 23
                       88.5
Chur
                      88.7
                                       597
Milan
                  E.
                                                 27
                                                     e 23 371 (+
Potsdam
                      88.8
                                                                                 \mathbf{p}
                              36 e 12
                                       59?
                                                                      e 16 18
                                                                                       e 40.2
                                              +
                                 e 13
                                                     i 23 52
                                                                      1 25
                      88.8
                              36
                                                                           3
                                                                                 \mathbf{PS}
                                       4
                                                                                       e 37·2
                  N.
                                                                  8
                                                                                 \mathbf{PP}
                       89 \cdot 2
                              38 e 13
                                                          33
Cheb
                                              +
                                                              I +
                                                                      e 16 28
                                                                                       e 47.2
                                                                  4]
                              38
                                                     e 23 50
                                                                      e 16 42
                                  e 13
                       90.4
                                        6
                                                                                 \mathbf{PP}
                                                                                       e 38·2
                                                               -
Prague
                                                     i 24 9
i 20 369
                              42
                                  i 13
                                                                      i 25 12
                       91.6
                                                                                 PS
Triest
                       92.8
                             252
                                  e 14 37?
Suva
                                                                                 \mathbf{PP}
                       96.3
                              42
                                  e 13 46
                                                     e 24 17 [+
                                                                      e 17 43
                                                                                       e 41.2
Belgrade
                                                                  9]
                                                               +22
                                                                                SSP
                             235 e 22
                                                       25
                                                          36
                                                                        32 36
                      99.3
                                                                                         46.2
Arapuni
                                                       24
                                                          51
                              39
                                  e 13 47
                                                              \{-3\}
                      100.0
                                                                                         42.2
Bucharest
                                              -- 1
                                    18
                                              PP
                                                          42
                                                                        27
                                                                                 PS
                      100.5
                             230
                                                              [+13]
Wellington
                                                                                         46.7
                                                                        27
                                                       24
                                                          50
                             228
                                       42
                     102.4
                                                              [+11]
                                                                           29
                                                                                 PS
                                                                                         47.6
Christehurch
                                               \mathbf{P}
                                  e 14 42
                                                                        19 12
                     111.1
                                                          18
                                                                                 \mathbf{PP}
Helwan
                              51
                                                             [+1]
                                              _{\rm PP}
                                                                      e 28 54
                                                                                 _{PS}
                     112 \cdot 2
Ksara
                                                                      e 30
                                                                                 PS
                     118.8
                             239
                                  e 20
                                              \mathbf{PP}
                                                     i 25 50 [+ 5]
                                       20
                                                                                       e 55.4
Riverview
                                  e 23 12
                                             SKP
                  N. 135·3
                              10
Dehra Dun
                                                      22 58
                                                              SKP
                                                                                 PP
                              12
                                  i 19
                                       31
                                                                        22
                                                                                         65.2
                     136.8
New Delhi
                                             [+
                                    19
                                       38
                                            [+
                                                       35
                                                          30
                                                               PPS
                                                                        22
                                                                                 PP
                     142.0
                             103
                                                                           40
Tananarive
                                                                                         71.6
                              23
                                       337
                                                                        22
                                                                                PP
                  N. 144.7
                                                          581 (+10)
                                                                           59
                                    19
                                                6]
Bombay
                                            [ -
                                    19 50
                  N. 147.9
                                            [+
                                                                        20
                              15
                                                61
                                                       30 18
                                                              \{+11\}
                                                                            6 PKP,
Hyderabad
                                  i 22 17
                             231
                                                     i 30 35
                      148.0
                                                              \{+28\}
Perth
                                                                                       173.4
                              22
                                    19 10
                                            [-44]
                                                          50
                                                                                PPP
                     154.4
                                                              \{-52\}
Kodaikanal
  Additional readings :-
    Port au Prince PPP = 5m.28s., SS = 9m.44s.
    Bogota i = 4m.58s.
    Tucson eP_eP = 9m.5s.
    Chicago e = 7m.48s., i = 9m.30s.
    Pasadena iZ = 6m.33s.
    Philadelphia e = 8m.4s., i = 11m.39s.
    Huancayo ePPP = 7m.538.
    Rapid City i = 8m.31s.?.
    Branner eSE = 12m.30s.
    Vermont e = 7m.45s., i = 12m.43s.
    Berkeley iZ = 8m.4s., 9m.33s., and 10m.2s., iN = 10m.6s., iZ = 12m.26s., iNZ = 15m.20s.
    Butte e = 15m.1s.?.
    La Paz PPP = 9m.35s., iSSZ = 16m.31s., S_cS = 18m.0s.
    Halifax SSS = 16m.36s.?
    Saskatoon SS = 16m.48s., SSS = 17m.30s.
    Victoria e = 14 \text{m.0s.}, SSS = 17 \text{m.48s.}
    Montezuma e = 16m.19s.
    Sitka e = 11m.20s., i = 12m.12s., e = 20m.3s. and 20m.45s.
    La Plata E = 15m.54s., N = 22m.12s., E = 22m.18s. and 24m.36s., N = 24m.42s.
    Honolulu e = 10m.40s.
    College e = 13m.57s., 22m.20s. and 24m.59s.
    Scoresby Sund 25m.24s.
    Lisbon SSN = 26m.29s., SSE = 26m.32s.
    Aberdeen iN = 30m.29s., iE = 30m.36s., iN = 32m.48s.
    Stonyhurst S_cS = 22m.45s., PS = 23m.5s., SS = 27m.7s., SSS = 30m.41s.
    San Fernando SSSE = 27m.24s.
    Kew e = 14m.59s., ePPPZ = 17m.14s., ePPPE = 17m.29s., eSKSE = 22m.30s., eS_cSE =
         22m.44s., ePSE = 22m.53s., eN = 23m.12s.?, eEZ = 23m.24s.?, eSSEZ = 28m.12s.?,
          eSSSEZ = 31m.42s., eQ = 34m.42s.
    Granada pP_cP = 12m.43s., PP = 15m.47s., Q = 35m.6s.
    Tortosa QE? = 32m.6s.
     Uccle eSS = 28m.12s.?, e = 35m.12s.?.
     De Bilt \epsilonSSSS = 35m.12s.?.
    Copenhagen 23m.15s. and 33m.6s.
    Stuttgart eS = 23m.25s., ePSZ = 24m.32s., eSS = 29m.37s., iSSS = 33m.17s., eQ = 25m.25s.
         36m.6s., ePKP, PKP = 38m.20s.
    Upsala ePN = 12m.52s., PS?E = 24m.6s., eSSN = 28m.12s.?, eSSE = 29m.12s.?. eN = 28m.12s.?
         31m.12s.?, eSSSE = 33m.42s., eN = 36m.12s.?.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

164

Jena ePN = 12m.59s., eSN = 23m.35s., eE = 33m.32s., eN = 40m.12s., 40m.23s., and 44m.2s., eZ = 44m.5s., eE = 44m.12s.Potsdam ePS?E = 25m.0s. Cheb eS = 29 m. 46 s., eSSS = 33 m. 49 s.Prague eSKS = 23m.12s., ePS = 24m.29s., ePPS = 24m.57s., eSS = 40m.0s., eSSS = 43m.42s. Triest eSKS = 23m.43s., iSS = 30m.24s., iSSS = 34m.8s.Suva i = 27m.17s. and 33m.24s., iSS = 35m.47s. Belgrade ePS = 26m.16s. Arapuni e = 28m.36s. Wellington SSZ = 32m.42s., Q = 43m.0s.Christehurch PZ = 24m.55s., PPP = 29m.30s.?, e = 32m.12s., iEN = 33m.12s., eEN = 36m.52s.?, e = 40m.3s., Q = 43m.4s., readings wrongly identified. Helwan PSN = 28m.36s., PPSN = 29m.38s.Riverview iZ = 20m.28s., iSKKSEZ = 27m.21s., iPSE = 30m.9s., iZ = 30m.18s.iPPSE = 31m.26s., ePPSN = 31m.29s., iZ = 36m.30s., iSSN = 36m.46s., iSSP?Z =36m.578., iSSP?E = 37m.08., iSSSN = 40m.248., iSSSE = 40m.288., eQN = 48m.548.New Delhi SS = 35m.14s., PPS = 36m.18s.Tananarive SS = 41m.57s., SSS = 47m.6s.Bombay iN = 23m.27s., e = 48m.12s.Hyderabad PKSN =23m.9s., SKSPN =33m.27s. Perth i = 43m.57s. Kodaikanal PP = 22m.10s., c = 31m.40s.

June 28d. Readings also at 2h. (Bucharest and Ksara), 3h. (Granada. Uccle, De Bilt, Kew, Bergen, Upsala, Stuttgart, Cheb, and Helwan), 4h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, and Wellington), 5h. (Suva), 6h. (Tucson), 8h. (Istanbul, St. Louis, Palomar (5), Haiwee, Tinemaha, Riverside, Mount Wilson (3), Pasadena, Tucson (5), Tacubaya, Oaxaca, and La Paz), 9h. (Brisbane, St. Louis, Palomar (7), Haiwee (2), Tinemaha, Riverside (4), Mount Wilson (5), Pasadena (2), Tucson (7), Bogota (2), Vera Cruz, Oaxaca (2), Tacubaya (4), and near Triest), 10h. (Vera Cruz, Tacubaya (3), Bogota (2), Columbia (2), Tucson (5), St. Louis (2), Palomar (6), Riverside (3), Mount Wilson (5), Pasadena (4), Haiwee (2), Tinemaha (3), La Jolla, Ottawa (2)), 11h. (Ottawa), 12h. (Palomar, Tucson), 13h. (Tacubaya (3), Tucson (2), Palomar (2), Mount Wilson, Kew, near Christchurch, Kaimata, Wellington, Tuai, and New Plymouth), 16h. and 18h. (Palomar and Tucson), 19h. (Palomar, Tucson, and Philadelphia), 21h. (near Apia), 22h. (Istanbul, Palomar, and Tucson).

June 29d. 11h. 29m. 48s. Epicentre 11°.0S. 79°.0W.

$$A = +.1873$$
, $B = -.9638$, $C = -.1896$; $\delta = -6$; $h = +6$; $D = -.982$, $E = -.191$; $G = -.036$, $H = +.186$, $K = -.982$.

		Δ	Az.	Р.	0 - C.	s.	$\mathbf{o} - \mathbf{c}$.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		\mathbf{m} .
Huancayo		3.8	107	c 1 2	+ 1	i 1 50	+ 3	i 1 16	$\mathbf{P}_{\mathbf{s}}$	
La Paz		11.9	119	2 52	- 2	6 6	+57		- 13 <u>- 1</u>	7.5
Bogota		16.3	18	e 3 56	$+$ $\bar{4}$	6 58	+ 5	e 7 22	SSS	
San Juan		31.9	23	e 6 25	- 4	e 11 32	- 8		- AMESSES	e 12.5
Rio de Janeiro	N.	36.1	113	e 15 12	SS		-			i 19·6
St. Louis		50.5	349	e 8 56	- 6	e 16 11	- 5		_	
Philadelphia		50.8	5	-	-	e 16 26	+ 6		_	e 19·0
Tucson		52.7	326	e 9 20	+ 2			-	_	
Mount Wilson	Z.	58.3	322	i 9 58	- 1		_			
Pasadena	z.	58.3	322	e 10 1	+ 2					
Granada	6677	85.2	51	1 12 43 a	+ 4	i 23 17	+ 8		-	44.4

Long waves were also recorded at Kew, De Bilt, and Riverview.

June 29d. Readings also at 1h. (Mount Wilson, Pasadena, Palomar (2), Tucson (2), St. Louis, Philadelphia, Columbia, and Montezuma), 3h. (Palomar and Tucson), 6h. (St. Louis, Mount Wilson, Riverside, Palomar, and Tucson), 7h. (Jena), 9h. (Riverview), 10h. (near Tucson), 12h. (Stuttgart), 13h. (La Paz and near Huancayo), 14h. (Mount Wilson, Tucson, and Pasadena), 15h. (Tucson, Mount Wilson, Riverside, and near Malaga), 17h. (Palomar and Tucson), 20h. (near Zürich, Stuttgart, and Ravensburg), 23h. (Istanbul).

June 30d. Readings at 2h. (Bucharest), 11h. (near Zürich and Stuttgart), 19h. (Ksara and Helwan), 21h. (near Berkeley, Lick, and Branner), 23h. (near La Paz).

The scanned images of the bulletins of the International Seismological Summary (ISS) have been obtained as part of a global earthquake relocation project (Villaseñor et al., 1997) initiated with funding from the US National Science Foundation through grant EAR-9725140 and collected by SGA Storia Geofisica Ambiente (Bologna) on behalf of the Istituto Nazionale di Geofisica e Vulcanologia (Rome), in the frame of Euroseismos project.

A digital hypocenter file of the ISS (Villaseñor and Engdahl, 2005) can be obtained from the USGS web site: http://earthquake.usgs.gov/scitech/iss/

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Villaseñor, A., and E.R. Engdahl, *A digital hypocenter catalog for the International Seismological Summary,* Seism. Res. Lett., vol. 76, no. 5, pp. 554-559, 2005.

Villaseñor, A., E.A. Bergman, T.M. Boyd, E.R. Engdahl, D.W. Frazier, M.M. Harden, J.L. Orth, R.L. Parkes, and K.M. Shedlock, *Toward a comprehensive catalog of global historical seismicity,* Eos Trans. AGU, vol. 78, no. 50, pp. 581, 583, 588, 1997.