These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

The International Feismological Hummary. 1944 Ianuary, February, March.

INTERNATIONAL GEODETIC AND GEOPHYSICAL UNION.
ASSOCIATION OF SEISMOLOGY.
FORMERLY THE BULLETIN OF
THE BRITISH ASSOCIATION SEISMOLOGY COMMITTEE.

The Director of the I.S.S. wishes to express his thanks to U.N.E.S.C.O. and H.M. Treasury for financial support, which has covered the cost and preparation of this volume.

The number constitutes the beginning of the eighth volume of the International Seismological Summary in which travel times and Epicentral distances are calculated with reference to "Geocentric" latitudes of epicentres and observing stations. The travel-times used in making determinations are those contained in "Seismological Tables" by H. Jeffreys and K. E. Bullen, Brit. Ass. for Advancement of Science—London, 1950, and residuals derived accordingly.

Distances are calculated from modified direction-cosines defined by:

A= $\cos \phi' \cos \lambda$ B= $\cos \phi' \sin \lambda$ C= $\sin \phi'$

 λ being the east longitude from Greenwich and ϕ' the geocentric latitude whose relationship to the ordinary geographic latitude ϕ is :—

 $\tan \phi' = .99328 \tan \phi$.

These formulae are used to determine direction-cosines of both epicentre and station, though the position is in every case referred to normal ϕ and λ .

The notation is that generally accepted. P and S stand for the times of onset of the direct longitudinal and transverse waves. Pg, Sg, P*, S* for short distances are used for times for these waves transmitted through the superficial "Granitic" and "Intermediate" layers respectively. Reflections of the direct waves at the earth's surface are denoted by PP, PS, PPP, SS . . . and at the outer surface of the central core by PcP, PcS . . .

The refracted logitudinal wave through the central core is known as K. Such waves as PKP, SKS, PKS, SKKS, are frequently recorded at great distances from the epicentre. All times are given as Greenwich Civil Time and are referred to the adopted T₀ as zero.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

2

The arrangement of the "Summary" consists of :-

- (1) Date and Time at Origin (T₀), calculated from the above-mentioned tables, together with the depth of focus where this is assumed not to be in the surface. The time calculated is that at which the P wave leaves the focus, not that when P arrives at the epicentre.
- (2) Epicentre constants :-

A=
$$\cos \phi' \cos \lambda$$
 D= $\sin \lambda$ G= $\sin \phi' \cos \lambda$
B= $\cos \phi' \sin \lambda$ E= $-\cos \lambda$ H= $\sin \phi' \sin \lambda$
C= $\sin \phi'$ K= $-\cos \phi'$

from which distances, Δ , and where necessary Azimuths, of stations with respect to the epicentre may be calculated by means of the formulae:—

$$\cos \Delta = aA + bB + cC$$

$$2 - 2 \cos \Delta = (a - A)^2 + (b - B)^2 + (c - C)^2$$

$$2 + 2 \sin \Delta \sin Az = (a - D)^2 + (b - E)^2 + c^2$$

$$2 + 2 \sin \Delta \cos Az = (a - G)^2 + (b - H)^2 + (c - K)^2$$

a, b, c being related to the observing station in the same way as A, B, C are to the epicentre.

 δ is defined as the nearest integer to $10^5(A^2+B^2+C^2-1)$ and may be used to compare distances calculated by the first two formulae above, whose equivalence depends on the assumption

$$A^2+B^2+C^2=1$$

h is the height, in kilometres, of the epicentre above the sphere of equal volume concentric with the earth and is given by

$$h = -3.549 + 10.738 \cos 2 \phi$$

- (3) The tabular matter consisting of the station names arranged in order of epicentral distances, followed by this distance and the Azimuth measured round the epicentre from North through East. Other columns give the P phase and its residual, or PKP, in which the residual is shown in brackets []. The S phase or an associated phase follows with its residual. If SKS is entered here the residual is shown in [], and if SKKS in {}. Under "Supp" is placed the time of some other, preferably well recorded phase such as PS, SS, or, in the case of deep focus shocks, pP. The final column, L, records the onset, if known, of Rayleigh waves R, or of the horizontally polarised surface waves Q.
- (4) Readings for which space is not available in the tabular part, added at the foot. Although still referred to the time at origin as zero, these are no longer prefixed with a plus sign.

The letters E, N, Z after a phase indicate that the reading was taken on an instrument recording East-West, North-South, or Vertical component of motion, though some stations have instruments oriented to record North-East or North-West components. Reflections near

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

3

the epicentre take place, and in the case of deep focus earthquakes can be distinguished from the direct phases. These are distinguished as pP, sS, sP, pPP—the small p and s referring to the initial portion of the path towards the surface.

The letters a, k after a P or PKP phase stand for the terms "Anaseismic" and "Kataseismic," and indicate whether the first longitudinal motion was one away from the origin or towards it.

The epicentres for earthquakes with abnormal focal depth are calculated from travel times appropriate to them in the tables cited above. The depth to be assumed can be obtained from these tables when the observational data are plentiful, and the epicentre then determined in the usual way. When the data are scanty an indication of depth can be obtained from the evidence of the readings of certain individual stations.

The first quarter for 1944 contains 74 epicentres, 53 of which are repetitions from previous epicentres.

Cases of abnormal focal depth are noted below:—

Jan.	5d.	4h.	Undeter	mined shock	Suggest	ed Deep
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2h.		143.5E.	0.0	
	11d.	1h.	39.9N.	142·4E.	0.0	05
		A 100 PER SEC. LA 100 PER SEC.		68·6W.	Suggested	Deep
				mined shock		,,
			0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	174.3W.	55%	
				118.5E.	0.0	05 "
Feb.	1d.	5h.	41.6N.	142·0E.	0.0	20
26-101-6103	4d.	21h.		152·3E.	Suggested	Deep
				mined shock	Sept Section	••
				70·0W.	0.0	15
March	5d.	17h.	7.5N.	126·7E.	0.0	20
	15d.	8h.	24.7N.	125·2E.	0.0	10
		22h.	41 ·0N.	143·3E.	Suggested	Deep
		Oh.		123·4E.	0.0	550 200 000 000 000 000 000 000 000 000
		2h.	5.6S.	131·0E.	0.0	05

Thanks are also due to the Director of the Meteorological Office and the Superintendent of Kew Observatory for hospitality extended to the staff and assistance with administration.

> KEW OBSERVATORY, Richmond, SURREY.

September, 1953.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

5

1944 JANUARY, FEBRUARY, MARCH.

Jan. 1d. Readings at 1h. (Riverview, Wellington, Christchurch, Auckland, and Mizusawa), 5h. (Tananarive near Stuttgart and Ebingen), 6h. (Wellington, Stuttgart), 8h. (Bogota), 9h. (Bombay and Riverview), 10h. (Calcutta, Wellington, Mount Wilson, Tucson, Riverside, Tinemaha, Palomar, La Paz, and near Huancayo), 16h. (St. Louis).

Jan. 2d. 10h. 59m. 46s. Epicentre 40°·5N. 34°·0E. (as on 1943 Nov. 27d.).

$$A = +.6322$$
, $B = +.4264$, $C = +.6469$; $\delta = -3$; $h = -2$; $D = +.559$, $E = -.829$; $G = +.536$, $H = +.362$, $K = -.763$.

	Δ	AZ.	Р.	O-C.	s.	O-C.	Sup	p.	L.
	٥	0	m. s.	S.	m. s.	s.	m. s.	200	m.
Istanbul	3.8	279	1 16	P_g	2 13	Sg	1 26	3	
Ksara	6.8	167	e 2 15?	Pg	4 7	sS_g			
Bucharest	7.0	306	e 1 47	+ 1	i3 0	- 8	i 3 43	Sg	
Sofia	8.3	289	e 2 14	+10	13 31	- 9	i 2 20	P*	4.6
Helwan	10.8	192	e 3 17	8		r ei	e 5 59	9	e 9·4
Belgrade	10.9	298	e 2 40	0	e 4 32	-12	e 5 16	SSS	e 5.8
Stuttgart	19.4	305	e 4 29	- 1	e 7 56?	- 8	e 10 44?	Q	13.2
Zürich	19.5	300	e 4 30	-1		-			_
Basle	20.2	300	e 4 38	- 1	\\ ;====	-			
Strasbourg	20-3	304	e 4 39	- 1		-			-
Neuchatel	20.5	299	e 4 42	0	-			-	_
Copenhagen	20.8	325	4 52	+ 7	8 34	+ 1	***	-	22
Upsala	21.9	338	e 8 39	3	i 8 56	+ 2	e 8 46	3	_
Clermont-Ferrand	23.1	294	5 9	+ 1		-	54.00 m/s	-	-

Additional readings:—
Sofia iE =3m.45s. and 4m.32s.
Stuttgart iPZ =4m.32s.

Long waves were also recorded at Triest.

Jan. 2d. Readings also at 2h. (near Mizusawa (2)), 4h. (near Lick), 7h. (Pasadena, Mount Wilson, Tucson, Riverside, Tinemaha, Palomar, Wellington, Christchurch, Arapuni, and Riverview), 11h. (near La Paz), 12h. (near Berkeley, Branner, and San Francisco), 15h. (Bombay, New Delhi, Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, Haiwee, and Palomar), 19h. (Tacubaya), 22h. (Pasadena, Mount Wilson, Riverside, Tucson, Tinemaha, Apia, Stuttgart and Granada).

Jan. 3d. 10h. 19m. 13s. Epicentre 13°·0N. 71°·0W. (as on 1943 Dec. 24d.).

$$A = +.3173$$
, $B = -.9216$, $C = +.2235$; $\delta = -2$; $h = +6$; $D = -.946$, $E = -.325$; $G = +.073$, $H = -.211$, $K = -.975$.

		Δ	AZ.	1	>.	$\mathbf{o} - \mathbf{c}$.	S.	0-C.	Su	pp.	L.
		0	0	m.	8.	s.	m. s.	8.	m. s.	NATO ALLA	m.
San Juan		7.1	40	e 2	23	P_g	e 3 2	8	-	-	e 3.5
Bogota		8.9	200	e 2	13	+ 1	i 3 57	+ 2	i 2 29	P*	i 6.8
La Paz		$29 \cdot 4$	175	e 11	18	S	(e 11 18)	+17		-	-
Tucson		41.2	305	i 7	48	0			e 9 35	P_cP	
Palomar	z.	46.3	305	i 8	29	0	_	_	-	-	1.
Riverside	z.	46.9	306	e 8	34	0			-	_	-
Mount Wilson	Z.	47.5	306	e 8	38	0			_	_	
Pasadena	z.	47.6	306	e 8	38	- 1	_	-	-	-	
Haiwee	Z.	48.0	308	e 8	41	- 2	-		_	-	_
Tinemaha	z.	48.4	309	i 8	46	0		_	_	_	

Bogota gives also i = 4m.22s. Long waves were also recorded at Huancayo and St. Louis.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

6

Jan. 3d. Readings also at 2h. (near Bogota), 3h. (near Berkeley), 8h. (near Lick), 9h. (Stuttgart, Hyderabad, Calcutta, and New Delhi), 10h. (near Milan (2), Kew, De Bilt Uccle, Potsdam, Jena, Upsala, Prague, Bucharest, and Colombo), 13h. (Stuttgart, Tucson, Palomar, Santa Barbara, Haiwee, Tinemaha, Riverside, Mount Wilson, Pasadena, Riverview, and near Apia), 14h. (near Mizusawa), 15h. (Bombay and near Apia), 17h. (Ksara, La Plata, and near La Paz), 18h. and 19h. (Mizusawa).

Jan. 4d. 0h. 57m. 54s. Epicentre 13° 0N. 71° 0W. (as on 3d.).

A = +.3173, B = -.9216, C = +.2235; h = +6.Az. O-C. 0 - C. Supp. m. s. m. s. 8. 8. m. s. m. $\begin{array}{cccc} {\bf i} & {\bf 2} & {\bf 18} \\ {\bf e} & {\bf 3} & {\bf 0} \\ {\bf i} & {\bf 3} & {\bf 54} \end{array}$ $^{\mathrm{P}_{\mathrm{g}}}_{-\ 2}$ e 2 Port au Prince 347 -17i 3 31 i 4.2 San Juan $7 \cdot 1$ e 1 51 $^{-20}_{-1}$ 40 e 3.8 i 2 10 Bogota 8.9 200 P* 9.780 e 3 39 Fort de France e 5 45 e 5 35 Huancayo 25.3 191 + 5 e 6 52 e 10 +12e 11.6 + - - -La Paz $^{+51}_{+6}$ 29.4 175 11 5216.0 St. Louis 330 e 6 17 i 7 45 30.7 e 11 27 SS e 15·1 41.2 Tucson 305 PP e 27·3 i 8 27 e 8 32 Palomar 46.3 305 Riverside 46.9 306 47.5 Mount Wilson 305 i 8 36 23221 Z. 18 36 306 Pasadena 47.6 Haiwee 48.0 308 e 8 41 i 8 44 Tinemaha 309 48.4 i 10 40 Granada 64.3 56

Additional readings:—
Bogota i = 2m.17s., $iS^{\bullet} = 4m.35s.$

St. Louis eZ = 6m.29s. Tucson iPP = 8m.41s.

Long waves were also recorded at Chicago and Bozeman.

Jan. 4d. 12h. 47m.20s. Epicentre 43° · 0N. 0° · 2E. (as on 1943 Dec. 26d.).

$$A = +.7336$$
, $B = +.0026$, $C = +.6795$; $\delta = -10$; $h = -3$; $E = +.003$, $E = -1.000$; $G = +.679$, $H = +.002$, $K = -.734$.

	Δ	Az,	Р.	0 - C.	s.	0-C.	Sur	pp.
	•	0	m. s.	8.	m. s.	8.	m. s.	-
Clermont-Ferrand	3.5	36	e 0 51	- 6	e 1 37	- 3	i 1 45	s•
Paris	6.1	16	e 1 34	Ō	e 2 2	Pa		~
Neuchatel	6.3	48	e 1 43	+ 7	e 3 10	S*	()	_
Basle	6.9	46	e 2 45	+60	e 3 34	S*	-	_
Zürich	$7 \cdot 3$	51	e 1 49	- 1	e 3 49	S*	-	
Strasbourg	$7 \cdot 7$	41	1		i 3 45	S*	-	
Stuttgart	8.5	44	e 2 24	P*	e 4 10	S*	e 3 6	P

Jan. 4d. 15h. 56m. 39s. Epicentre 2°.0N. 99°.0E. (as given by Bombay).

$$A = -.1563$$
, $B = +.9871$, $C = +.0347$; $\delta = 0$; $h = +7$; $D = +.988$, $E = +.156$; $G = -.005$, $H = +.034$, $K = -.999$.

		Δ	Az.	Р.	O - C.	s.	O-C.	L.
O ROBERT CONTRACTOR		۰	0	m. s.	s.	m. s.	s.	m.
Colombo	E.	19.7	285	4 40	+ 6	8 10	0	10.2
Calcutta	N.	22.9	334	e 5 5	- 1	i 9 5	- š	
Bombay	E20	30.7	305	e 6 13	- 6	i 11 6	-15	13.0
New Delhi		33.6	325	i 6 39	- 5	i 11 52	-14	
Riverview	N.	60.6	132			e 18 46	PS	e 32·6
Stuttgart	z.	88-4	319	e 13 3	+ 8	102-7		_
Mount Wilson	Z.	129.9	40	1 19 30	[+18]	C Berlins	_	
Riverside	Z.	130.5	40	i 19 19	[+6]		_	_
Palomar	Z.	131.2	40	i 19 10	1 - 41		7.5	
Tucson		135.7	36	i 19 29	[+7]	_	-	-

Bombay gives also iN = 11m.25s., iE = 11m.29s.Long waves were also recorded at Christchurch and Wellington.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

7

Jan. 4d. Readings also at 3h. (near Bogota), 4h. (Ksara and Pehpei), 6h. (Bogota), 7h. (Fort de France and San Juan), 11h. (near Sofia), 12h. (near Berkeley, Branner, Fresno, and Lick), 14h. (near Alicante), 17h. (near Alicante, Clermont-Ferrand, and near Lick), 22h. (Tucson, Bombay, Christchurch, near Wellington, Riverview, Sydney, and Brisbane), 23h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Haiwee, Palomar, near La Paz, Tucson, and near Stuttgart, Zürich, and Basle).

Jan. 5d. 2h. Japanese shock.

Mizusawa ePE = 56m.20s., SN = 59m.15s. Cheb e=60m. and 93m. Jena eN = 66m.11s. Bombay N = 66m.16s. and 66m.38s. Stuttgart eZ = 66m.16s., iPZ = 66m.27s., eS = 76m.47s., eQ = $98 \cdot 5$ m., R = $109 \cdot 2$ m. Tinemaha iP = 66m.21s.k. Haiwee iPNZ = 66m.23s.k. Santa Barbara eP = 66m.24s Mount Wilson iPZ = 66m.29s.k, iPPZ = 69m.52s. Pasadena iPZ = 66m.29s.k. Palomar iPZ = 66m.35s. New Delhi eN = 67m.49s., e=73m.0s. Tucson iP = 66m.57s.k. Riverview eN = 71m.0s.?, eLN = $89 \cdot 6$ m. Long waves were also recorded at other European stations.

Jan. 5d. 4h. Undetermined shock. Pasadena suggests deep focus.

Huancayo iP = 9m.15s., i = 9m.22s. and 9m.41s.
La Paz iPZ = 10m.41s., iSZ = 12m.20s., iLZ = 12m.42s.
Bogota iP = 11m.55s., iPP = 12m.14s., i = 12m.48s., iS = 15m.32s., iP_cP? = 16m.20s., i = 18m.33s.
Balboa Heights eP = 13m.50s.
Fort de France eP = 14m.59s.
St. Louis eZ = 17m.58s.
Fordham i = 18m.3s.
Tucson iP = 18m.22s., i = 18m.53s., iP_cP = 19m.15s.
Palomar iPZ = 18m.53s.a, iZ = 19m.22s.
Riverside iPZ = 18m.58s.a, iZ = 19m.18s., i = 19m.28s.
Pasadena iP = 19m.3s., i = 19m.19s. and 19m.33s.
Mount Wilson iPZ = 19m.4s.a, iZ = 19m.23s., 19m.27s., and 19m.32s.
Tinemaha iP = 19m.16s., i = 19m.46s.

Jan. 5d. 5h. 5m. 3s. Epicentre 36° 4N. 27° 4E. (as on 1942 Sept. 1d.).

A = +.7163, B = +.3713, C = +.5908; $\delta = -1$; h = 0; D = +.460, E = -.888; G = +.525, H = +.272, K = -.807.

	Λ	Az.	P.	O-C.	s.	O -C.	Sn	pp.	L.
	Δ		m. s.	s.	m. s.	8.	m. s.	PP.	m.
	۰	0		277 + 0.00	11/2/2016 03/2016	57.05.00			
Istanbul	4.8	15	1 53	$\mathbf{P}_{\mathbf{r}}$. 2 59	S.	~ ~	-	_
Sofia	7.0	355	e 1 41?	- 5	i 3 29		e 2 3	P.	-
Helwan	7 · 3	152	e 1 51	+ 1	3 12	- 3	3 57	Sg	-
Ksara	$7 \cdot 4$	108	1 12?	-40	e 3 14	- 4			
Bucharest	8.1	353	e 2 31	$\mathbf{P}_{\mathbf{g}}$	e 4 10	S*	i 4 45	S.	
Belgrade	9.9	330			e 4 36	+16	e 5 11	8.	e 6·7
Triest	13.8	316	(4,444	-	e 6 13	SS		_	
Zürich	17.8	313	e 3 57	-14		-	-		
Stuttgart	18.2	319	e 4 17	+ 1	e 7 39?	+ 2	e 4 36	\mathbf{PP}	12.8
Basle	18.4	313	e 4 18	0			-		-
Jena N.	18-4	327	e 4 17	- 1	4	<u> </u>			_
Neuchatel	18.5	312	e 4 22	+ 3	7.		*****		· -
Strasbourg	18.8	317	. e 4 31	$^{+}_{+}$ $^{3}_{8}$					
Clermont-Ferrand	20.5	304	4 41	- 1	-				10000
Copenhagen	21.8	337	e 4 57	+ 1	9 9	+17	e 5 40	PPP	
Uccle	21.9	319	e 5 6	+ 9	e 9 1	+ 7			e 12.0
Kew	24.8	317	_		e 10 7	+21		-	e 14·0

Additional readings :-

Sofia iN = 2m.26s.

Helwan eE = 3m.7s. and 3m.27s.

Bucharest ePN = 2m.37s., iS_gZ = 5m.9s. Belgrade e = 5m.23s. and 5m.31s., i = 5m.38s., e = 6m.2s., and 6m.32s.

Stuttgart eQ =9m.57s.?. Long waves were also recorded at other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

8

Jan. 5d. 7h. 44m. 4s. Epicentre 36° 4N. 27° 4E. (as at 5h.).

Felt at Kulluk on the Ægean Coast equidistant from Izmir and Rhodes. Epicentre 36°·5N. 27°·6E. (Strasbourg). Rapport du Ministre de France en Turquie, Ankara, 24 mars 1944.

	Δ	Az.	P. m. s.	0 - C.	S. O-C. m. s. s.	Supp. m. s.	L.
Istanbul Sofia Helwan Ksara Bucharest	4·8 7·0 7·3 7·4 8·1	15 355 152 108 353	1 39 i 1 48 e 1 50 e 1 49 e 2 0	P ₅ + 2 - 3 - 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 2 34 Pg i 2 34 Pg	m. = =
Focsani Belgrade Bacau Triest Milan	$9.3 \\ 9.9 \\ 10.2 \\ 13.8 \\ 16.4$	358 330 358 316 309	e 2 207 e 2 43 e 2 207 i 3 25 3 58	+ 3 PPP -11 + 6 + 5	$\begin{array}{r} (4 & 14) & + & 9 \\ e & 4 & 10 & -10 \\ \hline e & 5 & 42? & -12 \\ 7 & 13 & SS \end{array}$	e 4 33 SS	i 5·7 4·3
Prague Ravensburg Cheb Zürich Ebingen	16.6 17.4 17.5 17.8 18.0	330 314 326 313 317	i 4 4a e 4 8 e 4 10 e 4 10a e 4 12	$\begin{array}{c} + & 8 \\ + & 2 \\ + & 3 \\ - & 1 \\ - & 1 \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	e 4 18 PPP e 4 42 PPP	e 9·1 e 10·2
Stuttgart Basle Jena Neuchatel Strasbourg	18·2 18·4 18·4 18·5 18·8	$319 \\ 313 \\ 327 \\ 312 \\ 317$	i 4 16k e 4 18 i 4 15 e 4 19 e 4 24	$ \begin{array}{r} 0 \\ 0 \\ 3 \\ + 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 9 26? Q e 7 52 sS	e 10·8 e 8·6
Potsdam Clermont-Ferrand Tortosa N. Copenhagen Uccle	18·9 20·5 21·5 21·8 21·9	331 304 290 337 319	i 4 26 e 4 41 e 5 3 i 4 54 i 4 56a	+ 2 - 1 + 11 - 2 - 1	$ \begin{array}{rrr} $	e 8 55 SS	e 9·9 e 12·0 — e 10·9
Paris De Bilt Upsala Granada Kew	$22.0 \\ 22.2 \\ 24.3 \\ 24.8 \\ 24.8$	312 322 348 282 317	e 4 54 i 4 58k i 5 17 i 5 29 i 5 24a	- 4 - 2 - 3 + 4 - 1	e 9 10 +14 e 9 10 +10 e 9 41 + 4 i 10 0 +14 i 9 59 +13	i 5 57 PP e 5 53 PP	e 12·4 e 11·9 e 12·6 14·7 e 12·9
San Fernando Lisbon E. New Delhi N. Bombay Fordham St. Louis Z.	27·0 29·0 42·3 43·4 74·6 85·7	280 287 85 102 309 316	e 5 42 i 7 56 e 8 4 i 11 43 i 12 42	- 3 - 1 - 2	e 10 32 +10 10 58 + 4 e 14 21 -14	11 22 <u>7</u> 9 42 PP	17 <u>·0</u>

```
Additional readings:—
    Istanbul P_g = 1m.50s.
    Sofia iEN = 2m.38s., iS_gE = 3m.30s.
    Helwan P_gZ = 2m.21s., S = 3m.2s.
    Bucharest iSE?Z = 3m.13s., iS_gZ = 3m.59s.
    Belgrade e = 3m.7s., 3m.36s., and 4m.50s., iSS = 5m.25s.
    Prague ePPP = 4m.24s., e = 5m.14s. and 5m.50s.
    Cheb e = 5m.23s.
    Stuttgart eZ = 5m.31s., iSZ = 7m.48s.
    Jena iPN = 4m.19s., eN = 5m.36s. and 6m.30s.
    Granada P_cP = 8m.58s., SS = 11m.2s
    Kew eSSNZ = 10m.59s.
    Bombay P_cPE = 9m.51s., P_cPN = 9m.54s., eE = 15m.25s., SSSE = 17m.56s., SSSN = 17m.59s.
    Long waves were also recorded at Bergen.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

9

Jan. 5d. 10h. 59m.10s. Epicentre 13° 0N. 71° 0W. (as on 4d.).

A :	= +	3173,	B = -	-·9216, ($0 = + \cdot 223$	δ ; $\delta =$	-2;	h = +6.		
		Δ	Az.	P.	0 – C.		O – C. s.	m. s.	pp.	$_{\mathbf{m}.}^{\mathbf{L}.}$
Port au Prince San Juan Bogota Balboa Heights Fort de France		5·7 7·1 8·9 9·3 9·7	347 40 200 243 80	m. s. e 1 31 e 1 39 i 2 10 e 2 18 e 2 29	$^{+}_{-}\stackrel{3}{\overset{9}{\overset{-}{2}}}_{+}$	m. s. i 2 35 i 3 0 i 3 55 e 3 54	$-10 \\ -11 \\ -11$	i 1 56 e 2 15 i 2 14 e 4 33	Pg Pg SS	i 3.6 i 3.5
Columbia Huancayo New Kensington Cape Girardeau La Paz	N.	$22.8 \\ 25.3 \\ 28.5 \\ 29.3 \\ 29.4$	339 191 347 331 175	$\begin{array}{c} { m e} \ { m 5} & 9 \\ { m e} \ { m 5} & 32 \\ { m e} \ { m 6} & 5 \\ { m e} \ { m 6} & 11 \end{array}$	+ 2	$\begin{array}{c} e & 9 & 17 \\ i & 9 & 52 \\ e & 11 & 18 \\ \hline i & 11 & 3 \\ \end{array}$	$+\frac{6}{2} \\ +\frac{32}{2} \\ +$	e 6 10	PP =	e 12.9 i 12.2 e 17.3 14.7
St. Louis Chicago Tucson Rapid City Rio de Janeiro	E.	$30.7 \\ 32.1 \\ 41.2 \\ 41.5 \\ 44.9$	$330 \\ 336 \\ 305 \\ 326 \\ 142$	i 6 18 i 7 47 e 7 50 e 18 27	- 1	i 11 24 e 11 41 =	+ 3 - 2 -	e 13 48 i 9 23 e 9 0	SSS PP PP	e 15·7 e 17·5 e 24·2 e 19·4 e 23·3
Salt Lake City Palomar La Jolla Riverside Mount Wilson	z. z.	45·1 46·3 46·5 46·9 47·5	317 305 304 306 306	e 8 21 i 8 29 e 8 28 e 8 34 i 8 38	- 0 0	e 15 4	+ 5	i 10 30 i 10 42	PP - PP	e 25·3
Pasadena Haiwee Tinemaha Santa Barbara Uccle	z. z.	47.6 48.0 48.4 48.9 70.8	306 308 309 305 41	1 8 38 e 8 42 e 8 46 e 8 48	- 1 0	e 20 44?	+ 9	e = 52	<u>-</u>	e 27·0 — e 29·8
De Bilt Stuttgart	z.	$71.4 \\ 73.9$	39 43	e 11 38	- 1	e 21 10	PS	-	=	e 31·8

Additional readings :-

Port au Prince iS =2m.25s. San Juan e = 2m.35s.

Bogota iP = 2m.37s., i = 4m.20s.

Huancayo i = 6m.16s. St. Louis iZ = 6m.24s.

Tucson e = 11m.18s

Rapid City e = 15m.27s.

Palomar iZ = 8m.34s.

Long waves were also recorded at Bozeman, La Plata, and Kew.

Jan. 5d. 19h. 6m. 14s. Epicentre 48° 2N. 9° 0E. (as on 1943 Dec. 27d.).

Intensity V in the region of Balingen. Epicentre 48° 16'N. 8° 53'E. (Jura Souabe). Annales de l'Institut de Physique du Globe de Strasbourg, 2 éme partie, Seismologie, tome IX1944, p.5, Strasbourg 1951.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

Jan. 5d. 21h. 12m. 38s. Epicentre 3°.0S. 102°.0E. (as on 1943 June 8d.).

A = -.2076, B = +.9768, C = -.0520; $\delta = -6$; h = +7; D = +.978, E = +.208; G = +.011, H = -.051, K = -.999.

ъ	= +	·978, E	=+	.208;	$G = + \cdot 0$	11, $H = -$	·051, F	$\zeta =999.$		
•		۵	Az.	P. m. s.	O – C. s.	s. m. s.	O -C.	m. s.	pp.	L. m.
Colombo Kodaikanal Calcutta Perth Bombay	E. N.	$24 \cdot 2 \\ 27 \cdot 7$	294 300 333 157 308	5 15 i 5 52 i 5 58k 6 52 i 7 1	$ \begin{array}{r} $	i 9 30 i 10 38 i 10 43 i 11 42 i 12 32	- 5 + 5 - 7 + 7 - 12	i 6 53 12 40 8 24	PP SS PP	12·0 =
Dehra Dun New Delhi Hukuoka Kôti Sumoto		39·4 39·4 45·2 47·0 48·3	328 325 34 37 37	e 6 57 i 7 31k 8 37 e 8 42 8 55	$ \begin{array}{r} -36 \\ -2 \\ +17 \\ +7 \\ +10 \end{array} $	i 13 4 i 13 19 15 19 15 36 15 51	$^{-31}_{-16} \ ^{+18}_{+10} \ ^{+6}$	e 16 22 9 3	SS PP	e 20·9 19·8 —
Sendai Riverview Mizusawa Tananarive Ksara		54·6 55·1 55·3 55·5 72·1	$38 \\ 130 \\ 37 \\ 250 \\ 307$	9 35 i 9 40a e 9 47 e 9 41 e 11 30	+ 3 + 4 + 9 + 2 + 2	16 17 i 17 25 e 17 26 e 17 113 e 20 46	$ \begin{array}{r} -54 \\ +7 \\ +5 \\ -13 \\ -4 \end{array} $	i 10 8 e 17 31 e 17 33 21 17	PS PS PS	e 27·3 e 25·0
Auckland Helwan Wellington Arapuni Suva		74·5 74·8 75·1 75·3 76·2	$\begin{array}{c} 128 \\ 302 \\ 132 \\ 129 \\ 108 \end{array}$	$\begin{array}{c} 11 & 52 \\ 11 & 43 \\ 11 & 42 \\ \hline \\ 15 & 17 \end{array}$	+10 - 1 - 4 PP	21 27 21 10 21 24 21 28 1 1 21 45	$^{+10}_{-10}_{0}_{+2}_{+9}$	12 16 i 21 43 12 3 27 43 16 53	PP PS pP	35·4 43·2 38·4 36·4 37·4
Tuai Bucharest Sofia Belgrade Upsala		76·6 82·1 83·7 86·1 89·7	130 315 313 315 330	12 17 e 12 21 e 12 33 e 12 46 i 13 4	$^{+ 23}_{- 3} \\ ^{+ 1}_{+ 2} \\ ^{+ 3}$	21 41 i 22 29 e 22 46 i 23 18 i 23 51	+ 1 - 9 - 8 - 0 - 1	i 15 29 e 15 48 e 16 8 e 16 54	PP PP PP	39·4 40·4 e 49·2 e 45·4
Prague Triest Potsdam Cheb Copenhagen		90·7 90·9 91·7 92·0 92·2	$320 \\ 315 \\ 322 \\ 320 \\ 326$	e 13 5 e 13 22? i 13 18 e 13 11	$ \begin{array}{r} -1 \\ +12 \\ +6 \\ -2 \end{array} $	e 24 1 i 23 22 i 24 8 e 24 16 24 8	$\begin{bmatrix} -16 \\ -16 \\ -2 \\ +4 \\ -6 \end{bmatrix}$	e 16 34 e 13 33 i 16 52 16 57	PP PP PP	e 42·4 e 45·4 e 44·7 e 49·4
Jena Milan Stuttgart Zürich Neuchatel		92.6 94.1 94.1 94.5 95.6	320 315 319 317 317	e 13 12 13 39? i 13 20a e 13 21 e 13 25	$ \begin{array}{r} - & 3 \\ + & 17 \\ - & 2 \\ - & 2 \\ - & 3 \end{array} $	e 24 8 27 10 i 24 29 e 23 52	{ + 7} - 2 [- 6]	e 13 16 e 13 38 e 13 38	PeP pP	e 51·5
Basle De Bilt Uccle Clermont-Ferran Paris	d	95·7 96·6 97·2 98·3 98·5	$317 \\ 322 \\ 320 \\ 315 \\ 318$	e 13 26 e 13 31 i 13 34 a e 13 43 e 13 58	$\begin{array}{c} - & 3 \\ - & 2 \\ - & 2 \\ + & 2 \\ + & 16 \end{array}$	e 24 18 i 24 9 i 24 51 e 24 40 i 24 44	$\{-5\}\ [-1]\ -6\ \{-2\}\ \{-0\}$	e 17 31 i 17 33 e 17 39 e 17 40	PP PP PP	e 42·4 44·4 e 45·0 45·4
Kew Aberdeen Honolulu Stonyhurst College		$^{100\cdot 0}_{100\cdot 2} \\^{100\cdot 6}_{100\cdot 9} \\^{101\cdot 2}$	321 328 69 324 24	e 13 51 i 20 9 	$\frac{^{+}_{\mathbf{PP}}^{3}}{^{\mathbf{PP}}_{\mathbf{PP}}}$	i 24 25 i 25 18 e 27 15	[- 2] - 2 [- 5] PS	i 17 53 i 24 18 e 27 27 27 5	and the second second second second	e 50·9 e 43·5 e 48·8 51·1 e 41·6
Scoresby Sund Granada San Fernando Lisbon Sitka		103·7 104·2 106·4 108·3 109·5	343 307 307 310 29	18 23 (i 18 58) e 18 37 18 57k	PP PP PP	25 20 { (25 54) { e 25 20 { 24 54 [$\{ -1 \} $ $\{ +30 \} $ $\{ -20 \} $ $\{ -11 \} $	27 43 (19 4) e 27 57 34 4? e 35 31	PS pPP PS SS	(55·2) 58·4 52·3 e 55·2
Victoria Ukiah Berkeley Santa Clara Bozeman	n. z.	120.3 125.4 126.7 127.2 128.6	33 42 44 44 29	e 20 31 i 21 4 i 21 12 e 21 19	PP PP PP	e 30 30 i 31 16 e 31 33	PS PS	e 37 43 e 39 2 i 21 9 e 33 3	*	59·4 e 59·8 e 59·8 e 56·9
Tinemaha Santa Barbara Haiwee Logan Pasadena		129·8 130·2 130·6 130·9 131·4	42 45 42 33 45	e 19 15 e 19 20 i 19 19 e 19 20 i 19 19	[+ 3] [+ 8] [+ 6] [+ 6] [+ 4]	i 22 36 i 22 41 i 22 39	SKP SKP SKP	e 21 28 i 21 38 e 39 21 i 21 36	PP PP	e 63·4 e 56·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

11

1944

42m.3s.

College e = 23m.36s. and 33m.50s.

Scoresby Sund 33m.22s.7.

L. O-C. Supp. O-C. Δ Az. m. 8. m. m. s. SKPi 21 PP131.5 Mount Wilson e 65·0 [+28]SKPe 38 18 e 22 131.6 Salt Lake City skpe 21 43 PPRiverside $132 \cdot 1$ \mathbf{skp} +201132.8La Jolla e 21 44 PPSKP Palomar $132 \cdot 8$ PPe 59·2 133.4 e 28 39 e 19 17 Rapid City e 39 54 Seven Falls PP53.4135.6 352 e 22 354 e 19 347 PP 77.4 Shawinigan Falls 136.4 [+10]70 - 4345 e 22 22 $\mathbf{P}\mathbf{P}$ 136.6Halifax 231 e 22 22 \mathbf{PP} Rio de Janeiro E. 137·4 PPe 26 49 [+14] e 22 10 e 65.5 137.643 i 19 20 [-6]Tucson 32 227 PSKS PP[+5]22e 69·4 19 31 137.7357 Ottawa 23 227 23 \mathbf{SKP} 63.4 137.8 205 La Plata e 67·7 e 22 18 138.720 $\mathbf{P}\mathbf{P}$ Lincoln PKP e 19 0 19 26 140.2 352 [-31]Harvard e 22 27 e 32 35 PPe 23 10 SKP PS e 71.2 140.4 Chicago e 32 52 PSKS i 22 46 PP353 i 19 31 e 73.5 142.1 [-3]Fordham e 80·5 142.6 e 22 40 $\mathbf{p}\mathbf{p}$ New Kensington i 23 41 SKP $_{\mathrm{PP}}$ [-2]e 51.4 142.8 16 e 19 34 St. Louis e 33 0 PSe 61.0 e 29 32 {- 7} 143.1 355 e 22 46 PP Philadelphia e 20 42 Cape Girardeau N. 144.2 15 e 19 40 [+ 91 e 81.8 338 e 19 54 148.2 Bermuda [+ 8] e 71.8 149.0e 19 54 e 30 12 {-Columbia e 19 54 49 N. 153.6 Tacubaya i 31 15 {+11} i 24 39 76.9206 i 20 3a [+ 4] 158.3La Paz Fort de France 159.7304 e 20 323 e 20 5] SS e 44 28 e 65.7 San Juan 160.8 SS e 24 52 $\mathbf{p}\mathbf{p}$ 190 e 20 9 +] 3] i 45 18 e 58.9 164.8 Huancayo 292 e 20 15 PP e 26 0 175.6 Bogota

Additional readings :-Calcutta iPPN = 6m.38s., iSS = 11m.58s.Bombay iPE = 7m.5s., iEN = 7m.19s., PPE = 8m.20s., PPPN = 8m.40s., eSN = 12m.27s., iE = 13m.1s. and 14m.25s., SSEN = 14m.36s., iE = 15m.28s., iN = 15m.32s. New Delhi iPE = 7m.34s., PPN = 8m.43s., PcP = 9m.43s., SSN = 15m.28s., SSS = 15m.58s., iE = 17m.12s., $S_cSN = 17m.48s.$ Riverview iPPE = 11m.45s., iZ = 17m.31s., iPSN = 17m.50s., isSN = 18m.5s., iE = 18m.36s. and 19m.29s., iN = 20m.54s., iSSN = 21m.20s.Tananarive eN = 12m.10s., $S_cS = 19m.16s.$, SS = 20m.43s.Ksara SS = 25m.24s. Auckland pS = 21m.47s., SS = 26m.16s., Q = 32.4m.Helwan $P_cPZ = 11m.57s.$, PPZ = 14m.31s.Wellington iZ = 11m.52s., sPZ = 12m.17s., iZ = 12m.59s., and 13m.22s., PPZ = 14m.48s., pPPZ = 15m.7s., pS = 21m.50s., PS = 22m.27s., iZ = 26m.12s., SSS? = 31m.22s.? Q = 33.4 m.Suva $S_cS = 22m.14s.$, SS = 27m.7s.?, Q = 33.4m.Bucharest iPSN = 23m.3s., iPSE = 23m.6s., iSS?N = 27m.17s.Sofia ePS?EN = 23m.14s., eE = 26m.6s.Belgrade i = 13m.2s., e = 26m.6s.Upsala eE = 20m.12s., iE = 23m.26s., iSKS?N = 23m.46s., iSKKS?N = 24m.15s., eE = 25m.17s., PPSE = 26m.17s., eE = 29m.22s.? and 32m.22s.?, eN = 36m.22s.?, iN = 39m.18s., eE = 41m.22s.? Prague ePPP=18m.37s., eSKS=23m.33s., ePS=24m.19s., eSS=30m.22s.?, e= 36m.52s. ?. Potsdam iSN = 24m.3s., isSE = 24m.33s.Cheb iSKS = 23m.46s., ePPS = 25m.42s.Copenhagen 18m.45s., 23m.44s., and 25m.45s. Jena eZ = 13m.29s., eE = 13m.32s., eN = 23m.41s.Stuttgart ePPZ = 16m.48s., iPPZ = 17m.4s., ipPPZ = 17m.30s., iSKS = 23m.50s., esS = 24m.57s., eSP = 25m.53s., eSS = 30m.58s., eSSS = 34m.34s., eQ = 48m.52s.? De Bilt ePPP = 19m.37s., eSKKS = 24m.42s., ePS = 26m.12s.Uccle e = 15m.54s., ePPP = 19m.31s., e = 24m.9s., PS = 26m.11s., eSS = 31m.22s.? Clermont-Ferrand iPS = 26m.43s., eSS? = 31m.4s.Paris eSS = 31m.44s. Kew iSKKS = 24m.53s., ePS = 26m.51s., ePPSN = 27m.52s.?, eSS = 31m.57s., eQ = 27m.52s.? 44m.52s.7. Aberdeen iN = 21m.19s., iE = 31m.53s., iN = 37m.22s.Stonyhurst PPP = 20m.3s., SKKS = 24m.58s., PPS = 27m.53s., SSS = 36m.41s., Q =

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

12

```
Granada PS = (27m.40s.), readings increased by 2 minutes.
San Fernando ePP?E = 19m.25s., eSS?E = 34m.31s.
Lisbon PPZ = 19m.2s.a, Z = 19m.12s.?, SN = 26m.57s.
Victoria eN = 46m.4s.?
Bozeman e = 22m.37s. and 39m.5s., eSSS = 45m.8s.
Logan e = 19m.47s.
Pasadena iZ = 19m.33s., iSKP = 22m.41s., iZ = 23m.4s., iEN = 26m.32s. eSSEN =
    38m.58s.?.
Mount Wilson eZ = 31m.32s.
Palomar iZ = 22m.56s.
Rapid City e = 31m.59s., eSS = 40m.2s.
Tucson i = 19m.30s., 22m.25s., and 23m.14s., c = 30m.14s., 34m.37s., and 38m.10s.,
     eSS = 41m.9s., eSSS = 43m.37s.
Ottawa PPS = 34m.22s.?, SS = 40m.22s.?, SSS = 46m.22s.?, eN = 50m.42s.
Harvard e = 22m.27s.
Chicago eSSS = 46m.11s.
Fordham ePS? = 35m.46s., eSS = 41m.44s.
St. Louis iPKPZ = 19m.37s., iZ = 19m.50s. and 19m.57s., iPSKS?N = 33m.18s., eN =
    34\text{m.}43\text{s.}, iPPS?N = 35\text{m.}41\text{s.}, eN = 36\text{m.}27\text{s.}, iSS?N = 41\text{m.}12\text{s.}, sSS?N = 42\text{m.}16\text{s.},
    isssn = 46m.51s.
Philadelphia eSS = 41m.17s., e = 47m.34s.
La Paz iSKPZ = 23m.38s., SSN = 44m.46s.
San Juan ePP = 23m.28s., e = 35m.35s.
Huancayo e = 30m.59s., i = 35m.56s., e = 53m.54s.
Long waves were also recorded at Tortosa and Bergen.
```

Jan. 5d. Readings also at 4h. (Bogota), 7h. (Aberdeen, Haiwee, Mount Wilson, Pasadena, Tinemaha, Tucson, Palomar, Riverside, Sydney, Tuai, and Auckland), 9h. (Wellington and Bogota), 11h. (Fort de France, Bogota (2), Port au Prince, and near Mizusawa (2)), 12h. (Palomar (2), Tinemaha, Pasadena (2), Mount Wilson (2), Haiwee (2), Tucson (2), and La Paz (2)), 17h. (Tacubaya and Oaxaca), 19h. (Oaxaca), 20h. (near Granada, San Fernando, and Almeria).

Jan. 6d. 16h. 43m. 55s. Epicentre 15°-6S. 74°-6W. (as on 1943 Nov. 16d.).

$$A = +.2559$$
, $B = -.9290$, $C = -.2673$; $\delta = -2$; $h = +6$; $D = -.964$, $E = -.266$; $G = -.071$, $H = +.258$, $K = -.964$.

		Δ	Az.	Ρ.	O-C.	s.	0-C.	Su	pp.	L.
456			0.7	m. s.	s.	m. s.	8.	m. s.		m.
Huancayo		3.6	350	i 0 59	+ 1	i 1 35	- 7	-	_	-
La Paz	Z.	6.3	101	i 1 56a		i 3 24	8.			4.2
Bogota		20.1	1	i 4 41	+ 3	e 8 36	Sg SS	i 5 8	PPP	
La Plata		24 · 4	144	5 23	+ 2	10 5	+26	5 34	PP	13.8
Balboa Heights		24.9	349	e 5 26	ō		-		-	100
Rio de Janeiro	E.	30.5	108	e 1 35	2	e 11 38	+20	(3 1 - 34)	-	e 16·4
	N.	30.5	108	e 1 27	- 2	e 11 35	+17			e 17.6
Fort de France		32.9	26	e 6 37	- 1		1	-		~
St. Louis		55.9	345	i 9 39	- 3	e 17 17	-12		_	e 29·1
Tucson		58.9	324	i 10 1	- 2	e 18 25	PS	i 10 10	3	e 29·2
Ottawa		61.1	359	e 10 14	- 4		-		3 <u>1-3-5</u>	36.1
La Jolla	Z.	63 · 1	320	e 10 40	+ 8	-		-		
Riverside		64.1	321	i 10 47	+ 9	-				
Mount Wilson	Z.	64.5	321	i 10 40	- 1			i 10 50	PeP	Service (
Pasadena		64.6	321	i 10 40	- 1	_	-	i 10 50	$\mathbf{P_{c}P}$	
Haiwee	z.	65.8	323	i 10 49	0					
Tinemaha	Z.	66.6	323	i 11 3	+ 9	-				-
Granada		84.9	49	i 12 45	+ 7	i 23 39	$s_c s$		_	45.8
Stuttgart	Z.	97.6	41	e 13 42	+ 4		~~~	e 13 53	$P_{c}P$	100
Bombay		148.7	78	i 20 2	[+17]		- 	23 44	PP	-

Additional readings :-

St. Louis iZ = 9m.48s., eZ = 13m.56s.

Bombay iPKP₂N = 20m.13s.

Long waves were also recorded at Wellington

Jan. 6d. Readings also at 5h. (Bogota, near Stuttgart and Ebingen), 6h. (Mount Wilson, Tucson, Riverside, La Paz, and Huancayo), 9h. (near Stuttgart (2)), 11h. (Pasadena, Tucson, Mount Wilson, Riverside, Tinemaha, Haiwee, Palomar, Huancayo, La Paz (2), San Juan, Port au Prince, and Bogota), 13h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Haiwee, Palomar, Tucson, and Tacubaya), 14h. (Stuttgart (2)), 15h. (La Paz and near Stuttgart), 16h. (Pasadena, Riverside, Tucson, and Haiwee), 17h. (La Paz).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

13

Jan. 7d. 2h. 49m. 23s. Epicentre 4°.4S. 143°.5E. Depth of focus 0.010.

A = -.8015, B = +.5931, C = -.0762; $\delta = -2$;

D = +.595, E = +.804: G = +.061, H = -.045, K = -.997. O-C. Supp. AZ. L. m. s. m. s. m. s. m. Brisbane i 5 i 6 160 +10i 5 34 i 11.7 Riverview 30.1168 i 6 58 Sydney 168 15.4 $\frac{114}{221}$ i 15 17 36.8 PP Suva +26Perth 52 37.7 12 8 39 $_{\rm PP}$ 19.5Kôti 38.9 347 20 13 Kohu $40 \cdot 1$ 355 29 13 31 Sendai 42.5358 45 13 9 -53Auckland 20.6 43.2 15 143 53 14 17 + 5 -43.4 Mizusawa 358 12 30 e 7 50 E.N. New Plymouth 44.38 145 5 32 14 Arapuni 44.5 143 14 7? -24Tuai 45.9 143 ScS 14 48 8 17 8 22 Wellington 46.2148 42 21.614 i 8 pPChristchurch 46.7 151 15 i 8 22.3 + 44 pPCalcutta 60.2 300 +10e 10 34 pPi 18 14 i 19 2 TS N. Colombo 64.5 280 10 39 +1019.2 E. (19 12)+14New Delhi 71.6 302 e 11 13 20 23 e 11 43 pP0 0 Bombay 73.3 291 e 11 25 + i 20 48 pP+ 6 11 55 Ukiah 95.3 e 29 55 51 e 43.0 Berkeley 96.0 \mathbf{PP} 53 i 23 45 Santa Clara 96.3 53 \mathbf{PP} e 17 14 e 23 36 [-Santa Barbara 98.1 56 e 13 27 z. Tinemaha 99-2 54 e 13 30 Pasadena 99.3e 40.8 56 i 13 32 0] i 24 0 [pP i 14 Mount Wilson 99.456 i 13 33 z. $\mathbf{p}\mathbf{P}$ Riverside 100.0 56 e 13 34 e 14 pPPalomar 100.5 i 13 37 57 i 14 pP103.9 1 24 26 [+ Bozeman 44 4] PSe 47.5 \mathbf{P} Tucson 58 e 14 105.6 i 18 \mathbf{PP} e 41.8 Ksara 107.1 303 e 14 18 P PPS e 28 46 Cheb 118.7 326 e 20 37? PPSt. Louis e 20 i 25 28 [-120.6 1] 47 \mathbf{PP} pPP e 20 34 Stuttgart $121 \cdot 2$ 327e 18 43 e 19 13 [+1]e 55.6 Chicago 121.343 e 30 6 e 62.7 De Bilt 121.3 332e 30 37? Uccle 122.5 331 (e 36 37?) SS e 36.6 Kew 124.3 e 42 40 334 SSS e 60.6 Ottawa e 18 53 126.834 e 38 37? SSP e 33 37? 56.6 Fordham 130.6 i 22 14 37 e 31 22 e 23 6 e 68·4 \mathbf{PS} Granada 135.6 32219 34 pPKP i 19 16k 71.426 27 [+18] San Fernando $137 \cdot 7$ i 19 17 323 4] e 22 54 72.6 PKS Huancayo $138 \cdot 1$ [+ 3]SS 113 e 19 17 e 22 54 PKSe 59·0 Bermuda 141.7 40 e 36 11 e 23 24 PKS e 52·1 Bogota 142.5 87 i 19 8 [-14]e 20 41 La Paz 142.5 124 e 20 20 Fort de France 153.6 65 e 19 41 [+1]

```
Additional readings:— Brisbane iSN =9m.25s., iSSE =10m.15s. Riverview iPPPNZ =7m.14s., iN =11m.0s., iE =12m.26s. and 13m.40s. Suva e =16m.40s., S_cS=17m.7s. Perth i =9m.55s., S_cS=16m.12s., S_cS=17m.7s., readings wrongly identified. Auckland S_cP=10m.22s., S_cP?=14m.27s., S_cS=15m.17s., S_cS=17m.37s., Q=18m.17s. Wellington pPZ =8m.55s., S_cP?=14m.27s., S_cS=15m.17s., S_cS=17m.37s., S_cPZ=10m.7s., S_cPZ
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

14

Pasadena ePPEZ =17m.32s., ePSE =26m.35s., eSSEN =31m.49s.?.
Bozeman e =37m.8s.
Tucson e =22m.7s., eSS =32m.30s.
St. Louis iPPZ =20m.7s., eE =21m.4s., eE =26m.26s., eSKKSE =26m.52s., eSPE = 29m.57s.
Kew eN =51m.37s.?.
Granada iPP =22m.41s., PPS =34m.55s., SS =40m.40s.
Huancayo e =41m.52s.
Long waves were also recorded at La Plata.

Jan. 7d. Readings also at 0h. (near Fresno), 3h. (near Balboa Heights), 5h. (Bombay, Tananarive, Florissant, St. Louis, and near Cape Girardeau), 6h. (Palomar and Tucson), 9h. (Palomar, Mount Wilson, Tucson, Riverview, Kew, Uccle, De Bilt, Cheb, Stuttgart, New Delhi, Calcutta, and Bombay), 11h. (Alicante and near Apia), 12h. (Tucson, Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, near Granada, Alicante, Almeria, and Malaga), 14h. (Calcutta), 15h. (near Malaga), 18h. (near Granada and Malaga).

Jan. 8d. 14h. Undetermined shock.

Perth i = 22m.30s. and 26m.15s. Brisbane eE = 22m.31s. and 33m.6s., iE = 35m.12s., eLE = 36m.35s. Riverview eP?NZ = 23m.32s., iS?EN = 29m.8s., eNZ = 30m.0s.Colombo P = 25m.8s.New Delhi ePN = 26m.17s., eS = 34m.27s., e = 52m.31s.Bombay ePE = 26m.21s., PPE = 28m.34s., iE = 30m.23s., iSE = 34m.37s., PSE = 34m.51s., eE = 35m.28s., SSE = 38m.35s.Sydney e = 29.5 m., eL = 37.5 m.Guadalajara PZ = 33m.34s. Auckland P = 33m.50s.?, S? = 42m.10s.?, Q = 46m.?. Wellington P = 34m.0s., S = 41m.40s., SS? = 44m.?., Q = 48m.?, R = 49m.Tacubaya PE = 34m.18s. Bogota eP = 36m.6s., i = 37m.25s. and 38m.35s. Tucson eP = 36m.7s. Tinemaha eZ = 37m.24s. Long waves were also recorded at Arapuni, and Christchurch.

Jan. 8d. 19h. Undetermined shock.

Apia i = 17m.26s. and 18m.0s., Q = 18m.5s. Auckland P? = 21m.10s.?, S = 25m.3s., i = 25m.20s., Q = 25m.55s.Tuai e = 25m.?. Riverview eEZ = 25m.16s., eE = 29m.17s., eN = 29m.22s., eLN = 31.9m.Arapuni S? = 26m.?. Wellington S? = 26m.20s., SS?Z = 28m.?, LZ = 29m.?. Christchurch i = 27m.8s., e = 30m.6s.Pasadena ePZ = 29m.10s. Mount Wilson ePZ = 29m.12s. Palomar ePZ = 29m.13s. Riverside ePZ = 29m.13s. Tinemaha eP = 29m.21s., iZ = 29m.45s.Tucson iP = 29m.33s. St. Louis eZ = 36m.12s., eL = 68m.Stuttgart eZ = 37m.15s. and 37m.26s. Huancayo e = 41m.16s. and 46m.52s., eL = 62m.25s. Long waves were also recorded at De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

15

- Jan. 8d. Readings also at 2h. (near Granada), 4h. (Pasadena, Tucson, Mount Wilson, Tinemaha, Haiwee, Apia, and near Mizusawa), 8h. (Huancayo), 9h. (near Granada, Malaga, and near Stuttgart (2)), 10h. (Pasadena, Mount Wilson, Tinemaha, Tucson, St. Louis, and near Stuttgart), 12h. (Pasadena, Mount Wilson, Tucson, and Tinemaha), 13h. (Wellington, Auckland, and Riverview), 15h. (Huancayo and near Stuttgart (2)), 17h. (Harvard and near Lick), 18h. (near La Paz).
- Jan. 9d. Readings at 0h. (Mizusawa and near Balboa Heights), 1h. (near Granada), 4h. (Riverview), 5h. (near Strasbourg, Ebingen, Zürich, and Stuttgart), 6h. (near Malaga), 7h. (near Lick), 12h. (near Mizusawa and near Apia), 15h. (Riverview, Tuai, Auckland, and Wellington), 18h. (near Zürich, Stuttgart, and Ebingen), 19h. (2), 20h. (2), 21h. and 23h. (near Alicante).

Jan. 10d. 4h. 22m. 47s. Epicentre 29°.0S. 69°.0W.

$$A = +.3139$$
, $B = -.8178$, $C = -.4823$; $\delta = -6$; $h = +2$; $D = -.934$, $E = -.358$; $G = -.173$, $H = +.450$, $K = -.876$.

		Δ	Az.	1	Ρ.	O-C.	s.	$\mathbf{O} - \mathbf{C}$.	Su	pp.	L.
		٥	0	m.	8.	8.	m. s.	8.	m. s.	425	m.
La Plata	E.	11.1	125	2	433	0	4 43	8 - 6		_	5.9
	N.	11.1	125	2	37 ?	- 6	4 43			-	5.8
	Z.	11.1	125	$\bar{2}$	47	+ 4	4 37			_	5.5
La Paz		12.5	6	3		Õ	i 5 24	+ 1		-	6.9
Huancayo		17.9	340	e 4	$1\overline{5}$	+ 3	e 7 25	- 5	e 5 0	\mathbf{PP}	e 8·2
Rio de Janeiro	E.	23.9	81	е 5	35	+19	e 9 38	+ 8	 32	****	e 12·8
	N.	23.9	81	e 5		+17	e 9 31	+ 1			e 12·7
St. Louis	z.	70.2	343	e 11	6	-11	- CAT COLUMN			-	
Tueson	623	72.7	324	i 11	30	- 2			-	-	_
Palomar	Z.	76.8	321	e 12	2	+ 7)			>
Riverside	z.	77.6	321	e 11	58	- 2	11.00		-		_
Mount Wilson	Z.	78.1	321	i 12	2	0	****				
Pasadena	Z.	78.1	321	e 12	1	1				_	_
Tinemaha	Z.	80.4	322	e 12	14	- 1					2

Mount Wilson gives also iZ = 12m.11s.

Jan. 10d. 20h. 9m. 51s. Epicentre 16°·8N. 100°·7W. (as on 1941 July 19d.).

Damage in the state of Guerrero; felt at Mexico City. Maximum intensity VI. Epicentre 16° 44'N. 100° 41'W. (Tacubaya). Shallow. Universidad nacional de Mexico.

Instituto de Geologia, Catalogo compendiadio de temblores durante el periodo Enero 1941—Diciembre 1944, Mexico 1945, p.55.

$$A = -.1778$$
, $B = -.9412$, $C = +.2872$; $\delta = -5$; $h = +5$; $D = -.983$, $E = +.186$; $G = -.053$, $H = -.282$, $K = -.958$.

		Δ	AZ.	Р.	O-C.	s.	O-C.	Suj	pp.	L.
			0	m. s.	s.	m. s.	8.	m. s.		m.
Tacubaya	N.	3.0	29	0 48	- 2		_	41 Sept. 1 (1984 11)	-	
Puebla	E.	3.3	47	0 52	- 1			-	_	
Oaxaca	N.	3.8	85	0 57	~ 4		-	The same of		
Manzanillo	E.	4 - 1	304	i 1 1	- 4	-	-	****	_	32 -33
Guadalajara	z.	4.6	328	i 1 12	0			-		-
Vera Cruz	N.	5.0	61	e 1 14	- 4			-		
Merida	N.	11.3	67	e 2 41	- 4 - 5			-		
Tucson	27.5	17.9	331	i 4 11	- 1	i 7 38	+ 8	_	_	i 8.4
Mobile		18.0	37	5 57	3			_	_	10.8
La Jolla		21.9	321	i 4 56	- 1	****		5	-	-
Balboa Heights		22.0	108	e 5 3	+ 5	e 9 10	+14	30000	-	
Palomar	z.	22.0	323	e 4 57	+ 5 - 1	_			_	_
Cape Girardeau	N.	22.7	23	15 1	- 3	i 9 18	+ 9	+	-	99
Riverside		22.8	323	e 5 4	- ī	i9 0	-11	i 5 24	\mathbf{PP}	_
Mount Wilson		23.3	323	i 5 11a	$+\tilde{1}$	- 10/211		7 (47)	-	_

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

16

1944

		Δ	Az.	P. m. s.	0 - C. s.	s. c	o −C. s.	m. s.	p.	L. m.
Pasadena St. Louis Florissant Santa Barbara Columbia	z.	23·3 23·6 23·7 24·5 24·6	$323 \\ 20 \\ 20 \\ 320 \\ 41$	i 5 10 a i 5 10 i 5 12 i 5 22 e 5 20	$ \begin{array}{r} 0 \\ 3 \\ - 2 \\ 0 \\ - 3 \end{array} $	i 9 25 i 9 22 i 9 25 e 9 43	$^{+}_{-}\overset{5}{\overset{3}{\overset{2}{2}}}$	i 5 17 i 9 37	pP sS	e 10·6 — e 13·0
Haiwee Tinemaha Salt Lake City Fresno Logan	z. N.	$24.6 \\ 25.5 \\ 25.8 \\ 26.1 \\ 26.6$	326 326 341 324 342	i 5 26 i 5 31a i 5 33 e 5 38 i 5 39	$\begin{array}{ccc} + & 3 \\ - & 1 \\ - & 1 \\ + & 1 \\ - & 3 \end{array}$	i 10 13 i 10 20	$+\frac{-}{11}$	i 10 44		i 11·7 i 14·2
Port au Prince Rapid City Chicago Lick Santa Clara		$27.1 \\ 27.3 \\ 27.4 \\ 27.6 \\ 27.8$	$\begin{array}{r} 82 \\ 357 \\ 20 \\ 323 \\ 323 \end{array}$	i 5 58 i 5 46 i 5 45 e 5 51 i 5 54	$^{+12}_{-\ 2}_{-\ 0}$	e 10 48 e 10 28 e 10 46	$+\frac{24}{0} + \frac{11}{11}$	6 33 e 6 23 —	PP PP PP	e 14·0 i 11·5 e 13·7 e 13·0
Branner Berkeley San Francisco Bogota Ukiah		$27.9 \\ 28.3 \\ 28.3 \\ 28.8 \\ 29.7$	323 323 322 111 324	i 6 0 e 5 55 e 6 6 i 6 8 e 6 13	+ 6 + 2 + 9 + 6 + 3	i 10 53 e 11 1	+10 - 5	$\begin{array}{cccc} & \mathbf{i} & 6 & 5 \\ \mathbf{i} & 12 & 12 \\ \mathbf{e} & 6 & 26 \\ \mathbf{i} & 7 & 46 \\ & & - \end{array}$	SS PP	e 13·3 e 15·6 e 13·7
New Kensington Bozeman Pennsylvania Buffalo Philadelphia		$29.9 \\ 30.1 \\ 31.0 \\ 32.0 \\ 32.0$	33 347 34 31 39	e 5 56 e 6 7 i 5 57 7 28 i 6 29	-16 - 6 PP - 1	e 11 9 e 12 25 e 12 2	$-\frac{3}{43} + 20$	e 7 21 i 6 18 8 12 e 7 18	PPP PPP PPP	e 12·5 i 13·2 e 20·0
San Juan Fordham Ottawa Seattle Saskatoon		33·3 35·4 35·5 35·6	$\begin{array}{r} 81 \\ 38 \\ 30 \\ 336 \\ 354 \end{array}$	i 6 39 i 6 39 6 57 e 7 41 6 53	$^{-\ 2}_{-\ 3}_{+\ 41}$	i 11 59 i 12 3 12 41 e 13 8 12 17	$^{+}_{1}^{2}_{1}^{$	e 7 45 8 17	PP PP	e 14·0 i 16·7 19·2 e 16·2 17·2
Harvard Weston Bermuda Vermont Victoria		35·7 35·8 36·0 36·0 36·7	38 38 58 34 336	i 7 2 a i 7 2 i 7 5 i 7 3 7 11	$ \begin{array}{cccc} & 0 \\ & 1 \\ & 0 \\ & - & 2 \\ & + & 1 \end{array} $	i 12 20 e 12 55 i 12 53 i 12 30 12 51	$ \begin{array}{r} -19 \\ +14 \\ +9 \\ -14 \\ -3 \end{array} $	i 7 12 e 8 28 i 8 25	PP PP PP	i 17:3 e 14:4 17:2
Shawinigan Falls Fort de France Huancayo Seven Falls Halifax		$37.6 \\ 38.1 \\ 38.1 \\ 39.0 \\ 41.7$	$\begin{array}{r} 32 \\ 87 \\ 137 \\ 32 \\ 40 \end{array}$	e 5 36? e 7 31 e 7 29 7 52	- 1 + 9 - 1 0	e 13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	+ 1 - 7 + 1 - 7	e 7 17 e 9 0 8 59	PP PP PP	17·2 1 16·3 18·2 24·2
La Paz Sitka Honolulu College La Plata	E. N.	46·1 47·8 53·9 57·4 65·5 65·5	133 337 285 338 141 141	i 8 34 a i 8 41 e 9 51 10 51? 10 45?	$^{+}_{-}^{\stackrel{6}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset$	i 15 22 i 15 41 e 17 6 e 17 48 19 37 19 333	+ 8 + 3 + 4 - 1 + 5 + 1	10 15 1 10 33 e 12 0 27 33? 19 45?		e 19·7 e 25·6 e 25·5 33·7 34·3
Rio de Janeiro Scoresby Sund Aberdeen Lisbon Stonyhurst		68.7 70.5 80.6 80.9 81.4	$^{123}_{20} \\ ^{33}_{52} \\ ^{36}$	i 11 9 i 11 18 i 12 20 i 12 20 i 12 23	$\begin{array}{c} + & 2 \\ & 0 \\ + & 4 \\ + & 3 \\ + & 3 \end{array}$	e 21 17 20 393 i 22 27 22 34 22 43	ScS + 7 + 4 + 8 + 12	21 51? i 15 30 15 31	ScS PP PP	e 28·3 e 39·3 e 38·2
Bergen Kew San Fernando Granada Paris		83·2 83·3 83·7 85·5 85·9	28 38 54 53 40	i 12 31 i 12 31 i 12 38 i 12 52 i 12 45	$^{+}_{+}^{2}_{6}$ $^{+}_{+}^{11}_{2}$	e 22 50 23 4 i 23 19 e 23 21	$\begin{array}{r} -0 \\ +10 \\ +7 \\ +5 \end{array}$	e 15 53 i 15 39? 16 13 15 46 i 36 15	PP PP PP PP	e 42·1 e 41·2 42·7 42·9 47·2
De Bilt Uccle Clermont-Ferran Tortosa Copenhagen	ıd	86·3 86·3 87·4 87·4 88·7	36 38 43 48 31	i 12 47 a i 12 44 a i 12 52 i 12 52 e 12 56	+ 2 - 1 + 2 + 2 - 1	i 23 35 23 31 i 23 35 e 23 19 23 44	$^{+15}_{+11}$ $^{+5}_{[+2]}$ $^{+1}$	e 16 99 16 39 e 16 16 16 25 16 21		e 40·2 e 40·2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

0 - C.

8.

+43

m.

O - C.

+16

L.

m.

Supp.

36

SKKS

1944

88.9

Calcutta iPKSN = 23m.14s.

Belgrade.

Upsala

Az.

```
25
                                                                                 \mathbf{PP}
                      89.2
                                  e 13
Strasbourg
                                                                                 \mathbf{p}\mathbf{p}
                                                                      e 16
                                                                           29
                      89.4
Neuchatel
                                                                                 \mathbf{PP}
                      89.6
Basle
                                                                                 \mathbf{p}\mathbf{p}
                                                                                       e 46.4
                      90.0
Stuttgart
                                                                                 \mathbf{PP}
                                        3 k
                      90.2
Zürich
                                                                                 \mathbf{PP}
                                                                      e 16 39
Jena
                                                                                 PS
                                              \mathbf{p}\mathbf{p}
                              33
                                  i 16
                      90.6
Potsdam
                                                     e 24 26
                                                               +22
                                                                      e 16 42
                                                                                 \mathbf{PP}
                                       9 a
                              40 e 13
                      91.1
Chur
                                                                                 PP
                                                                                       e 47.2
                                                     e 24 30
                                                               +24
                                                                      i 16 47
                                  e 12 56
                                              -13
                       91.3
                              36
Cheb
                                              _{\rm PP}
                                    16 45
                              42
                       91.4
Milan
                                                                                 \mathbf{PP}
                                                                                       e 45.2
                                                                        16 55
                                                     e 23 57 {- 2}
                                  e 13 9?
                                              - 5
                              35
                       92.4
Prague
                                              \mathbf{PP}
                                  i 17 8
                              39
                       94 \cdot 2
Triest
                                                                      1 25 29
                                                     e 24 29 [+ 9]
                             227 e 23 59
                       98.6
Christchurch
                                                       24 97[-29]
                              35
                      102 \cdot 2
Bucharest
                                                                      1 26 45
19 45
                                                                               SKKS e 53.2
                                                     i 25 37 [+ 9]
                             240
                      114.0
Riverview
                                              \mathbf{p}\mathbf{p}
                                                     e 29 21
                                                                PS
                                    19 36
                              45
                      114.5
Helwan
                                                                      e 29 28
i 39 2
                                                                                 PS
SS
PP
                                              \mathbf{PP}
                               39 e 19 46?
                      114.8
Ksara
                                                               PKS
                                              PP
                                                     i 22 51
                                  e 21 50
                  N. 134.8
New Delhi
                                                                        22 39
                                                     1 29 27
                                  e 19 38
                                             [+ 8]
                                                              \{+7\}
                             347
                  N. 139.9
Calcutta
                                                                                 \mathbf{P}\mathbf{P}
                                                               PKS
                                                                        22 51
                                                       23 8
                                    19 35
                                             [-2]
                               11
                      144.0
Bombay
                                5 e 20 7
                                             [+15]
                  E. 153·1
Kodaikanal
                            359 e 20 99 [+13]
                  E. 156·4
Colombo
   Additional Readings :--
     Pasadena iZ = 5m.19s., iNZ = 9m.35s.
     St. Louis is SN = 9m.36s.
     Florissant iPN =5m.19s.
     Port au Prince PPP =6m.48s., SS =11m.28s.
     Rapid City e = 9m.47s.
     Chicago i = 7m.7s., iS = 10m.38s.
     Pennsylvania i = 6m.48s., 8m.37s.
     Buffalo PPP? = 8m.30s., SS? = 13m.50s.
     Philadelphia i = 9m.57s.
     San Juan i = 13m.7s.
     Fordham i = 6m.48s, and 12m.17s.
     Ottawa SS = 14m.39s.?.
     Harvard iPPP? =8m.24s., isS =12m.36s.
     Weston e = 12m.17s.
     Vermont e = 13m.2s.
     Fort de France e = 11m.50s.?.
     Huancayo iS = 13m.28s.
     La Paz SSNZ = 18m.28s.
     La Plata SSN = 23m.33s., N = 29m.9s.?.
     Scoresby Sund 22m.45s.
     Aberdeen eE = 28m.9s., eN = 34m.17s.
     Lisbon PPE =15m.8s., PPN =15m.12s., SN =22m.39s., SE =22m.50s., SSE =27m.46s.
     Stonyhurst P_{e}P = 12m.33s., S_{c}S = 22m.53s., PS = 23m.31s., PPS = 23m.44s., Q = 35.2m.
     Bergen eZ = 21m.38s. and 29m.24s., iZ = 35m.51s.
     Kew iP_cPEZ = 12m.39s., ePPPN = 17m.59s., eSNZ = 22m.59s., eSSS = 32m.9s.?
          eQE = 34 \cdot 2m.
     San Fernando iZ = 13m.10s. and 13m.32s.
     Granada 24m.22s.
     De Bilt eSS = 28m.39s., eSSS = 33m.9s.?.
      Uccle SSN = 28m.558.
     Clermont-Ferrand ePPP = 18m.11s., eSKS = 23m.5s., eSS? = 29m.47s.
     Tortosa PPPN =18m.32s.
     Copenhagen S = 23m.54s.
      Upsala eN = 22m.4s., e = 33m.9s.?.
      Stuttgart ePPPZ=18m.36s., eSKS=23m.45s.?, eSP=25m.7s., eSS=30m.9s., eQ=
          42m.9s.
      Jena e = 25m.25s.
      Prague ePPP = 19m.7s., ePPS? = 25m.27s.?, eSSS = 34m.27s.?.
```

Riverview iPSEZ = 29m.30s., eSS?E = 35m.8s., eSSP?N = 35m.32s., eQN = 47m.9s.

Long waves were also recorded at Ferndale, Auckland, Wellington, Arapuni, and

Bombay iN = 23m.19s., PPPN = 26m.0s., PPPE = 26m.5s., SKSPE = 32m.55s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

18

1944

Jan. 10d. 20h. 33m. 21s. Epicentre 16°-8N. 100°-7W. (as at 20h. 9m.).

		Δ	Az.	m.	P. 8.	O – C. s.	m. s.	O -C.	m. s.	pp.	L. m.
Puebla	E.	3.3	47	0	49	- 4		~-		_	
Oaxaca Maraca (11)	z.	3.8	85	i 0	52	- 9					5 S
Manzanillo Guadalajara	E. N.		304 328	e 0 e 1	58 11	- 7 - 1	-	·	· · · · · · · ·		
Vera Cruz	z.	5.0	61	e î	îi	- 7					
Merida	N.		67	e 2	42	- 4	-		1/1/2005		
Tucson La Jolla		17·9 21·9	$\frac{331}{321}$	14	11 56a	- 1		A		-	i 8.8
Palomar	z.	22.0	323	14 e4	57	= 1		\equiv			
Cape Girardeau		$22 \cdot 7$	23		2	- 2	e 9 25	+16		-	_
Riverside		22.8	323	i 5	6	+ 1	i 8 59	-12	-	-	-
Mount Wilson		23.3	323	į 5	11a	+ 1		-		777	100
Pasadena St. Louis		23·3 23·6	$\frac{323}{20}$	i 5 i 5	10a 11	- 2	i 9 25 9 36	$^{+}_{+11}^{5}$	$\begin{array}{cccc} & i & 5 & 32 \\ i & 5 & 19 \end{array}$	$_{\mathbf{pP}}^{\mathbf{PP}}$	e 10·0
Florissant	N.	1.00	20	i 5	13	- ĩ	i 9 39	+12		<u>-</u>	_
Santa Barbara	E.		320	e 5	22	0		-	22 -22	100	
Columbia		24.6	41	e 5	22	- 1	e 9 47	+ 5		U=R	e 13·0
Haiwee Tinemaha		$24.6 \\ 25.5$	$\frac{326}{326}$	i 5 i 5	25 32a	+ 2	· —	2	-	· —	_
Salt Lake City		25.8	341	i 5	25	- 9	i 10 9	+ 7	. =		e 13·2
Fresno	N.	26.1	324	е 5	38	+ 1	eses al la colo mbia	-	e 5 59	\mathbf{PP}	e 14·2
Logan	52500	26.6	342	i 5	47	$^{+}_{+}$ 5	i 10 44	+28		-	13.9
Rapid City Chicago		$\frac{27 \cdot 3}{27 \cdot 4}$	$\frac{357}{20}$	i 5 e 5	57 49	+ 9	e 10 44 (i 10 42)	$^{+17}_{+14}$	_	\equiv	i 14·2 i 10·7
Lick		27.6	323	e 5	50	- i	(1 IU 42)	T 14		_	e 15.0
Santa Clara	E.	27.8	323	i 6	0	+ 7	e 10 54	+19	_	-	
Branner	E.	$27 \cdot 9$	323	i 5	55	$^{+}_{+}$ 7					
Berkeley		28.3	323	e 5	56	- 1	9	7	-	_	 -
San Francisco Bogota	E.	$\frac{28 \cdot 3}{28 \cdot 8}$	$\frac{322}{111}$	e 5 e 6	58 8	$^{+}_{+}$ $^{1}_{6}$	_	_		\equiv	e 15·7
San Juan		33.0	81	e 6	44	+ 5	e 11 44	-13		-	e 12·8
Fordham		33.3	38	i 6	39	$^{+}_{-}$ $^{5}_{2}$	6 11 44	-10	_	_	e 12·8
Ottawa		35.4	30	e 6	56	- 4	-		e 8 17	PP	18.7
Harvard Weston		35·7 35·8	38 38	i 7	1 2	- 1 - 1			i 7 9	- 3	
	P1.	34-35 Vers	11.5682	(3) (7) - v 20 (=)	-					2000	~~~
Shawinigan Falls Huancayo		$37.6 \\ 38.1$	$\frac{32}{137}$	e 7 e 7	20 56	$^{+2}_{+34}$	i 13 29	$+\frac{1}{3}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP,	20·7 i 14·8
Seven Falls		39.0	32	e 7	30	0		7.13	e 9 4	\mathbf{PP}'	17.7
La Paz		46.1	133	i 8	39	+11	-	-	-	—	22.7
Scoresby Sund		70.5	20	11	19	+ 1	:) :=:: :			
Lisbon		80.9	52	12	19k	+ 2	22 39	+13	i 22 57	PS	-
San Fernando Granada		83·7 85·5	54 53	i 12 12	39 46a	+ 7	23 21	0			
Uccle	z.	86.3	38	i 12		+ 1	25 21	T 0			
Clermont-Ferran	d	87-4	43	i 12	53	+ 3	-	-	_	_	_
Tortosa	N.	87.4	48	e 12	54	+ 4	e 24 25	PS	egrasii ka ilkaan		-
Stuttgart	z.	90.0	39	e 13	3	0	-	-	i 16 37	PP	
Zürich Chur		$90.2 \\ 91.1$	40	e 12 e 13	47	$-17 \\ -1$	-		e 16 29 e 16 44	$_{\mathbf{PP}}^{\mathbf{PP}}$	e 30·9
Ksara		114.8	39	e 19	54	$\mathbf{PP}^{\mathbf{r}}$			e 29 26	PS	-
New Delhi	N.	134.8	2	i 21	52	\mathbf{PP}			i 22 55	PKS	
Calcutta	N.	139.9	347	i 23	9	PKS					-
Bombay	N.	144.0	11	19	37	[0]	23 6	SKP	22 50	\mathbf{PP}	==

Additional readings:—
Pasadena iNZ = 9m.36s.
St. Louis isS?Z = 9m.48s.
Lisbon SE = 22m.48s.
Bombay PPPN = 25m.59s.

Long waves were also recorded at Tananarive and at other American stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

Jan. 10d. Readings also at 0h. (Bogota, near Granada, Almeria, and Malaga (2)), 1h. (Balboa Heights), 3h. (Bombay), 14h. (near Fresno and Lick), 15h. (Tortosa), 16h. (Mount Wilson, Tucson, Riverside, Tinemaha, and near La Paz), 18h. (Auckland (2), Christchurch), 19h. (Ksara), 20h. (Tacubaya and Santa Clara), 21h. (La Paz, Uccle, and Tacubaya (2)), 22h. (Tacubaya (2)), 23h. (Wellington, Stuttgart, Pasadena, Mount Wilson, Tinemaha, Riverside, Tacubaya (3), and near Mizusawa).

19

Jan. 11d. 1h. 34m. 11s. Epicentre 39°.9N. 142°.4E. Depth of focus 0.005.

Scale VI at Miyako and Hatinohe; V at Morioka; IV at Isinomaki and Mizusawa; II-III at Mito. Depth 40km. Macroseismic radius over 300km. Seismological Bulletin of Central Meteorological Observatory Japan for year 1944, Tokyo 1951, page 5, with isoseismic chart. Epicentre as adopted.

A = -.6095, B = +.4694, C = +.6389; $\delta = +2$; h = -2; D = +.610, E = +.792; G = -.506, H = +.390, K = -.769. 0-C. O-C. Az. S. 8. m. s. m. s. 0 10 -0 15k -0 10 2300.4 Miyako 0 26 0.9314Hatinohe 29 0 17 1.0 258Morioka 0 22 $1 \cdot 2$ 232Mizusawa 1 10 +18+181.8 0 48k 264Akita 32 57 215 $2 \cdot 0$ Sendai 25 +132.6 0 41a 215 Hukusima 8 0 39k 328 2.6Mori 23 0 50 346 Sapporo +160 58 202 Onahama 1 50 +1159 241 Aikawa 1 48 1 48 1 55 3.8 57k 204 Mito 3.9 212 Utunomiya $4 \cdot 1$ 206 Kakioka 50 207 $4 \cdot 1$ Tukubasan 1 48 $4 \cdot 2$ 34 Nemuro 218 $4 \cdot 4$ Maebasi 4.4 213 Kumagaya 28 4.6 227 Nagano Tokyo Cen. Met. Ob. 207+1715 207Yokohama 17 56 35 -+ + + 5 13 241 5.0 Wazima +3918 233 Toyama +1818 5.2 217 Kohu + 3 22 19 $5 \cdot 3$ 214 Hunatu $\frac{39}{23}$ +2019 203 $5 \cdot 3$ Mera 22 5.5 211 + _ Misima $\begin{array}{c} 20 \\ 42 \end{array}$ 20 - _ 5.6 206 Osima + 8 5.9 34 214 Shizuoka 59 +18+1142 $6 \cdot 2$ 213 Omaesaki + 9 53 35 227 + $6 \cdot 3$ Gihu $^{+13}_{+8}$ 59 34 217 0 6.4 Hamamatu 39 ++ 228 Hikone +1347 51 k 19 7.2 229 Kyoto + 5 26 230 Kobe +1240 228 Wakayama 45 $8 \cdot 2$ 229 Sumoto 27 **4** 5 -21227 53 Muroto + + 3 1 20 9.5 231 Kôti i 11 73.5 56 Tinemaha e 11 i 11 74.3 35 Haiwee 58 39 a 75.4 Mount Wilson 58 58 i 11 75.4 Pasadena i 11 76.0 Riverside 55 + Tucson 331 i 12 17 82.5 Stuttgart z.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

20

Jan. 11d. 11h. 1m. 34s. Epicentre 47°·3N. 11°·3E. (as on 1939 Dec. 14d.)

Scale IV in the vicinity of Innsbruck. Epicentre near that adopted. E. Trapp.

"Makroseism," Beobachtungen in den Jahren 1941-1945, Anhang 8. Jahrbuch für 1947 de Zentralanstalt für Meteorologie und Geodynamik, Wien. Macroseismic chart, p. D50.

$$A = +.6674$$
, $B = +.1334$, $C = +.7326$; $\delta = -8$; $\hbar = -4$; $D = +.196$, $E = -.981$; $G = +.718$, $H = +.144$, $K = -.681$.

	Δ	Az.	P.	O-C.	s.	O-C.	Su	pp.
		0	m. s.	s.	m. s.	8.	m. s.	2080000
Ravensburgh	1.2	293	-	-	e 0 41	0		-
Chur	1.3	249	e 0 23	- 2	e 0 45	+ 1	i 0 29	P_g
Zürich	1.9	272	e 0 34	ō	e 0 59	Õ		
Stuttgart	2.0	316	e 0 38	+ 3	e 1 1	1	i 1 11	Sz
Basle	2.5	275	e 0 39	- 4	e 1 23	Se	_	-
Strasbourg	2.7	298		-	e 1 26	S.	e 1 38	Sg
Neuchatel	3.0	264	e 0 55	+ 5	e 1 34	4- 7	_	_

Stuttgart also gives iS? = 1m.6s.

Jan. 11d. Readings also at 0h. (Tacubaya and near Alicante), 2h. (Tacubaya, Huancayo, La Plata, and near La Paz), 4h. (Tacubaya, Fort de France, Huancayo, Bogota, Stuttgart, near Berkeley, Branner, Lick, Fresno, Mount Wilson, Pasadena, Tucson, Riverside, and Tinemaha), 5h. (Tacubaya, near Berkeley, Branner, Lick, Fresno, Mount Wilson, Pasadena, Riverside, and Tinemaha), 6h. and 9h. (2) (Tacubaya), 10h. (near Mizusawa), 11h. (near Malaga), 16h. (Tuai, Wellington, Christchurch, Riverview, Ravensburg (2), near Chur (2), Basle, Zürich (2), Stuttgart (2), and Milan), 17h. (Huancayo, Fort de France, San Juan, Bogota, near Chur, Zürich, and Stuttgart), 21h. (Buffalo), 22h. (near Istanbul).

Jan. 12d. 15h. 2m. 35s. Epicentre 40° 4N. 125° 1W. (as on 1941 Feb. 11d.).

Intensity V at Cape Mendocino, Eureka, and Ferndale; IV at Cummings, Upper Mattole and Westpoint. Epicentre 40°-3N. 124°-9W. (Berkeley).

$$A = -.4391$$
, $B = -.6248$, $C = +.6456$; $\delta = -2$; $h = -2$; $D = -.818$, $E = +.575$; $G = -.371$, $H = -.528$, $K = -.764$.

Ferndale		۵ ° c	Az.	P. m. s.	0 - C.	m. s.	O – C. s.	m. s.	p.	$_{\mathbf{m}.}^{\mathbf{L}.}$
Ukiah Berkeley San Francisco Branner	E.	0.6 1.9 3.4 3.4 3.8	75 131 138 140 141	i 0 17 i 0 34 i 0 52 e 0 53? i 1 1	+ 2 - 3 - 2	i 0 25 i 0 47 i 1 33 i 1 30? e 1 47	$ \begin{array}{r} -12 \\ -12 \\ -4 \\ -7 \\ 0 \end{array} $	i = 20	P.	
Santa Clara Lick Tinemaha Haiwee Santa Barbara		$3.9 \\ 4.1 \\ 6.3 \\ 7.0 \\ 7.3$	$139 \\ 137 \\ 120 \\ 125 \\ 143$	i 1 3 e 1 5 i 1 39k e 1 50 e 1 50	$\begin{array}{cccc} + & 1 & & \\ + & 0 & & \\ + & 3 & & \\ + & 4 & & \\ & 0 & & \end{array}$	i 1 43 i 1 53 —	- 7 - 2 - =	i 1 23	P* = =	e 2·5
Seattle Mount Wilson Pasadena Riverside Palomar	z.	7·5 8·4 8·4 9·6	$\begin{array}{c} 14 \\ 134 \\ 136 \\ 133 \\ 134 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+60}_{-\ 2}_{-\ 0}_{+\ 1}$	i = 37	- <u>6</u>	e 2 17 =	P* =	e 4·3
Logan Salt Lake City Bozeman Tucson Rapid City		10·1 10·1 11·6 14·1 16·6	$\begin{array}{c} 78 \\ 83 \\ 58 \\ 121 \\ 70 \end{array}$	e 2 32 e 2 28 i 3 27 i 3 54	$+rac{4}{0} \\ +rac{4}{2}$	e 4 35 e 4 46 e 5 6 i 6 30	$^{+10}_{+21}_{+5}_{+28}$			i 5·4 e 5·4 e 6·2 e 7·1 e 7·9
Florissant St. Louis Cape Girardeau Chicago Honolulu	N.	$26.7 \\ 26.9 \\ 27.8 \\ 28.1 \\ 33.7$	83 85 75 245	i 5 45 e 6 12 e 5 53	$+\frac{10}{2}$	i 10 22 e 10 18 e 12 33	$+\frac{5}{2} \\ +\frac{25}{25}$			e 12·9 e 13·0 e 14·9 e 14·1 e 14·2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

21

		Δ	Az.	P	۶.	O-C.	s.		0 - C.		Supp.	L.
553TNV2		0	0	m.	8.	8.	m.	8.	8.	m.	8.	m.
Ottawa		36.1	65	e 7	6	+ 1				The state of		18.4
Fordham		38.4	72	1000	- 345		e 13 3	31 ?	+11			e 18.0
Seven Falls		$39 \cdot 1$	62	e 7	29	- 2						20.4
Bermuda		48.4	80	e 11	Committee of the Commit	3	e 15 5	9	+13	_		e 23.8
San Juan		54.8	95	_	•		e 17 1		. 0			e 28.5
Tortosa	N.	85.2	38	(e 14	25%	+106	W.256.22					e 14·4

Additional readings :-

Ferndale iE = 22s. and 54s.

Ukiah i=1m.22s.

Berkeley iZ =41s., iP =55s.

Santa Clara iE = 2m.10s.

Tucson i = 6m.20s.

St. Louis iZ = 6m.5s., eN = 10m.55s.

Long waves were also recorded at Riverview, Wellington, Christchurch, College, and other American and European stations.

Jan. 12d. Readings also at 4h. (near Mizusawa), 6h. (Mount Wilson, Pasadena, Riverside, Tucson, Tinemaha, and Stuttgart), 7h. (Bogota, Mount Wilson, Pasadena, Riverside, and Tinemaha), 9h. (near Bogota), 15h. (near La Paz), 16h. (near Malaga), 17h. (near Granada and Malaga), 18h. (Bombay, Colombo, Calcutta, Kodaikanal, and New Delhi).

Jan. 13d. Readings at 0h. (near Fresno), 2h. (Stuttgart, Ebingen, and Triest), 3h. (Tucson Tinemaha, Riverside, Pasadena, Mount Wilson, Wellington, Arapuni, Auckland and Suva), 10h. (Riverview), 14h. (near Mizusawa), 16h. (La Paz), 20h. (Wellington and near Branner), 22h. (Pasadena, Riverside, Tucson, and Tinemaha).

Jan. 14d. Readings at 3h. (Riverview and near Ferndale), 4h. (Huancayo), 5h. (Uccle, Tinemaha, Mount Wilson, Riverside, Tucson, Rio de Janeiro, La Paz, and La Plata), 6h. (Stuttgart, near Malaga, and Granada), 7h. (Pasadena, Mount Wilson, Tucson, Riverside, and Tinemaha), 11h. (Stuttgart), 12h. (Upsala, Tucson, Riverside, and Tinemaha), 14h. (Riverview), 19h. (near Balboa Heights), 20h. (Riverview, Wellington, Auckland, Pasadena, Tucson, Mount Wilson, and Tinemaha), 21h. (Mount Wilson, Tucson, Riverside, Fort de France, and San Juan).

Jan. 15d. 5h. 45m. 58s. Epicentre 18° 0N. 47° 0W. (as on 1942 Dec. 31d.).

$$A = +.6491$$
, $B = -.6960$, $C = +.3071$; $\delta = +6$; $h = +5$; $D = -.731$, $E = -.682$; $G = +.209$, $H = -.225$, $K = -.952$.

								18			
		Δ	Az.	I	.	0-C.	S.	0-c.	Su	pp.	L.
		0	.0	m.	8.	в.	m. s.	S.	m. s.	50500	m.
Fort de France		14.0	259	e 3	19	- 3			Anjunia Secu		e 8·5
San Juan		18.2	275	e 4	12	- 4	e 7 59	+22			e 9·2
Bermuda		21.4	315	e 4	53	+ 2	-				e 9 · 2
Harvard		$32 \cdot 1$	326	e 6		- 2				1000	e 14.0
Seven Falls		35.0	332	~ =			e 12 31	+ 3	_	_	15.0
			55.55.00	line:		E4.5	0 0-				10.0
Ottawa	55:51	36.3	326	e 8	2?	\mathbf{PP}		-			15.0
Rio de Janeiro	N.	40.8	175	e 9	30	PP	e 14 14	+18		-	e 19·7
Huancayo		40.9	225	e 7	46	0	e 13 53	- 5	-	To the	e 17.5
Chicago		41.9	314	e 8	27	+33			e 9 7	\mathbf{PP}	e 17·2
Granada		42.5	54	8	27 k	+28	i 14 27	+ 5		_	20.0
St. Louis		42.8	308	e 8	11	+10	e 14 27	4. 1	\$=##		0 17.5
Florissant		42.9	308	e 8	^ 2	+ 1	e 14 27	T å			e 17.5
Clermont-Ferrand	1	49.7	45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57	1 î	6 14 21	U		-	e 17·8
Rapid City		53.5	313	e 8	23	-61	e 17 55	+68	<u> </u>		05.0
Stuttgart		54.5	42	e 9	39	0	6 11 00	T 00	_		e 25.8
Double		OT O	7.0	0.0	02	V	0.00				e 26·0
Tucson		58.8	297	e 9	59	- 3	-		-	-	e 32·6
Logan		59.6	310	e 10	5	- 3	e 20 2	3			e 27·3
Riverside	Z.	$64 \cdot 1$	300	e 10	37	- 1					~
Tinemaha	Z.	64.6	303		43	+ 2	\$ <u></u>	_			
Mount Wilson	Z.	64.7	300	and the first term of the second seco	40	- 2		1100000	-	-	_
Pasadena	AC-11723	64.8	300		42	$-\bar{1}$	_	950			e 30·0

Additional readings :-

Harvard e = 7m.1s.

Huancayo e = 8m.37s. and 13m.25s.

Tucson e = 10m.39s, and 11m.11s. Pasadena iZ = 11m.20s, and 11m.39s.

Long waves were also recorded at Bozeman, Fordham, and other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

Bozeman

22

Jan. 15d. 23h. 49m. 27s. Epicentre 31°-5S. 68°-6W.

Intensity VI at Petorca, San Felipe; IV at Santiago, Valparaiso (Chile). Epicentre 31°·25S, 68°·75W. Depth of focus 50km., magnitude 7·4 (Gutenburg). Annales de l'Institut de Physique du Globe de Strasbourg, 2eme partie, Séismologie, Tome IX 1944, p.6. Strasbourg 1951. E. Tillotson. The Argentina Earthquake, Nature, London, 29 Janvier 1944, vol. 153, pp. 132-133.

A. Castellanos, El Terremoto de San Juan, Asoc. Cult. de Conferencia de Rosario, Argentina, publ. No. 6, 1945, pp. 77-242.

A = +.3117, B = -.7953, C = -.5199; $\delta = -5$; D = -.931, E = -.365; G = -.190, H = +.484, K = -.854. 0 - C. S. O-C. Supp. L, Ρ. AZ. m. m. s. s. S. m. s. 8. m. $\frac{2}{4} \frac{34}{27}$ i 4.6 359 e 2 13 2 1 8 2 1 Montezuma i 2 SS 4.5114 22 9.6 La Plata E. SS $5 \cdot 1$ 4 33? 29 9.651 ? -21114 $7 \cdot 7$ i 3 37 a i 6 33 +10La Paz 15.0 i 8 i 5 28 20.3 341 Huancayo +24i 10·0 75 18 58) Rio de Janeiro 24 1 E. +11+2175 i 9.9 24.1 i 5 29 55) N. (e 12 37) (22.6)351 (i7 36.3 6) -11Bogota PcP + e 7 -18e 13 50 e 17.7 41.6 345 52Balboa Heights PP 29 12 10 e 15 11 46.5 Fort de France e 19·2 $P_{c}P$ i 15 38 -26i 10 27 i 8 5049.7San Juan + 7 + 10 49 PP357 e 9 e 16 14 Port au Prince 49.9337 e 9 21-2155.9 Merida E. 58 326e 9 58.5 Tacubaya E. 5 ScS e 26.4 i 19 13 e 20 15 63.610 Bermuda 25 64.6 342 42 Mobile 10 PcP e 29.0 34 6 $66 \cdot 2$ 350 e 10 48 e 19 No. Columbia i 20 27 - 5 354 i 11 17 70.5 Georgetown e 15 13 PPP i 20 32 356 i 11 21 -1071.4Philadelphia i 20 i 11 34 $P_{c}P$ e 37.3 $72 \cdot 2$ 357 i 11 Fordham e 20 51 e 27 13 e 42.7 352 0 New Kensington $\mathbf{P}\mathbf{P}$ 72.4 353 i 13 48 Pennsylvania pPe 20 51 i 11 38 72.6 342 i 11 29 St. Louis $P_{c}P$ e 21 i 11 59 e 36.6 358 i 11 35 a 73.7Harvard e 11 50 $P_{c}P$ 353 11 74.740 Buffalo $P_{c}P$ e 32·0 74.9 324 Tucson -11e 16 12 PPP 31.1 345 e 11 i 21 75.0 40 Chicago i 11 PeP 2 28 56 i 30.6 i 21 47 - 75.7357 i 11 -Vermont 21 28 14 35 \mathbf{PP} 38.6 75.9 51 Halifax e 21 14 339 e 11 50 -25e 31.5 76.5 Lincoln $\mathbf{p}\mathbf{p}$ 37 14 55 36.6 21 3 5 76.8 11 52 355 Ottawa 3 50 3 21 58 39.6 77.8 358 11 Shawinigan Falls _ 31 + 21 56 34.678.3 12 359 Seven Falls i 12 78.8 320 La Jolla i 12 17 $P_{c}P$ 79.0 321Palomar z. $P_{c}P$ 79.7320 10 a Riverside i 12 24 i 12 320 $P_{c}P$ 14 a 80.3 Mount Wilson i 12 e 22 11 21 320 i 12 P_cP e 34·0 14 a 80.3 Pasadena i 12 30 $P_{c}P$ 20 a i 12 81.3 319 Santa Barbara -28e 17 PPP-26e 36·1 336 i 11 53 81.6 Rapid City e 22 e 22 33 81.7 322 Haiwee 337 e 12 115 213 82.0 Johannesburg e 22 43 i 12 36 P_cP i 12 26 a 322 e 42.4 0 82.5 Tinemaha 29 83.1 321 e 12 N. Fresnoi 15 24 i 22 47 \mathbf{PP} e 37·3 i 12 28 330 83.1 Logan P_cP e 12 e 23 36 84.5 320 Lick e 22 56 e 41.5 320 i 12 37 84.7 Santa Clara 7 e 23 e 23 e 12 39 320 84.9 + Branner $\frac{23}{22}$ i 16 e 41.0 \mathbf{PP} 320 i 12 40 85.3 Berkeley $\mathbf{P}\mathbf{P}$ e 16 36.4 12 38 85.9 332

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

	Δ	Az. P.	0 – C.	S. O-C. m. s. s.	m. s.	L. m.
Christchurch Ukiah Wellington Ferndale Arapuni	86·7 86·7 87·0 88·3 88·5	o m. s. 219 12 48 321 e 12 47 222 12 48 321 —	* 1 0 0 —	e $\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 20 PP i 23 39 S 12 57 pP e 23 23 SKKS i 25 217 PPS	e 39·8 40·6
Lisbon San Fernando Saskatoon Auckland Granada	89·1 89·3 89·7 89·8 91·4	42 12 51 45 i 13 0 337 13 3 134 12 539 46 i 13 10		$egin{array}{cccccccccccccccccccccccccccccccccccc$	13 1 PcP 13 10 PcP 29 573 SS 23 33 SKS 13 31 pP	38.5 40.6 36.6 41.6 41.9
Seattle Apia Tortosa Victoria Honolulu	$\begin{array}{r} 92 \cdot 4 \\ 93 \cdot 8 \\ 96 \cdot 2 \\ 96 \cdot 7 \\ 100 \cdot 2 \end{array}$	326 e 13 58 251 e 13 43 45 13 35 326 13 17 288 e 20 2	$^{+44}_{+23} \\ ^{+4}_{-16} \\ \text{PPP}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 26 30 PPS 17 37 PP 16 57 PP e 32 7 SS	e 42.6 e 44.2 48.4 40.6 e 46.4
Clermont-Ferrand Tananarive Kew Paris Stonyhurst	$\begin{array}{c} 100.6 \\ 100.9 \\ 102.0 \\ 102.0 \\ 102.4 \end{array}$	42 e 13 52 120 e 16 41 36 i 13 56 39 e 14 1	+ 1 - 1 + 4	e 25 46 +21 25 44 +16 1 24 34 [- 3] 1 24 27 [-10] 24 42 [+ 3]	e 18 5 PP 17 57 PP 1 18 7 PP 1 18 15 PP 33 3 SS	e 46·4 48·6 46·6 43·6 44·6
Neuchatel Milan Basle Uccle Zürich	103.5 104.0 104.1 104.1 104.6	42 e 14 3 45 18 22 42 e 14 7 37 e 14 4 42 e 14 6	$ \begin{array}{ccc} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 3 \\ & 3 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 18 15 PP e 18 18 PP e 18 14 PP	47 <u>·6</u>
Sitka Strasbourg Chur Chur Riverview Sydney	$104.8 \\ 104.9 \\ 105.0 \\ 105.0$	328 e 14 57 41 e 14 22 43 e 14 9 213 e 13 39	$^{+47}_{-12}$ $^{-1}_{-32}$	i 24 46 [- 3] e 24 46 [- 3] e 24 46 [- 4] i 25 6 [+15] e 24 9 [-42]	e 18 21 PP e 18 33 PP e 16 29 7 i 18 30 PP e 17 45 —	44·2 53·6 e 48·9
De Bilt Stuttgart Triest Scoresby Sund Cheb	$105.2 \\ 105.7 \\ 106.9 \\ 107.0 \\ 108.1$	37 i 18 30 42 e 14 12 45 e 18 33 13 18 40 41 e 18 59	PP PP PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 24 53 SKS e 18 30 PP i 33 57 SSP 28 5 PS e 28 13 PS	e 47.6 e 51.0 e 54.6
Jena Brisbane Prague Bergen Potsdam	108·1 109·2 109·3 109·5 109·6	40 e 18 49 218 e 14 38 42 18 59 30 — 39 e 14 33	PP PP PP	e 26 5 {+13} i 25 19 [+10] e 25 3? [-6] e 28 33? PS i 28 47 PS	e 34 12 SS e 19 1 PP e 21 41 PPP e 19 33 PP	e 51·3 e 46·6 e 46·6 e 51·6
Copenhagen Belgrade Helwan College Bucharest	110.7 110.8 112.7 113.7 114.4	35 19 13 49 e 18 55 67 e 18 27 332 e 19 29 51 e 19 30	PP [+20] [-12] PP PP	e 28 42 PS e 26 25 {+ 1} e 25 24 [- 3] e 25 27 [- 3]	28 57 PS i 19 20 PP 19 45 PP e 29 15 PS i 29 20 PS	e 57·5 e 51·1 55·6
Upsala E. N. Istanbul Perth Ksara	Company of the Compan	33 19 50 33 19 53 56 (19 33) 184 19 58 65 e 20 16	PP PP PP PP	29 33 PS (28 13) 3 27 3 {+10} 30 2 PS	e 38 331	e 53·6 e 49·6 57·1
Colombo E. Kodaikanal E. Bombay New Delhi N. Dehra Dun N.	$142.1 \\ 143.1$	122 19 24 114 19 35 99 e 19 33 86 19 51 82 e 20 33	[-10] [+ 1] [- 3] [+ 3] PKP ₂	29 52 {+18} 29 35 {- 5} i 33 56 SKSP	23 20 PKS i 22 52 PP 23 36 PP e 21 22	69·1 66·1
Mizusawa E. N. Calcutta N.	154.6	295 e 20 22 295 20 16 107 e 20 5	PKP ₂ PKP ₃ [+ 7]	23 56 PKS 23 49 PKS 30 58 {- 2}		e 69·8

Additional readings:— La Plata SNZ =4m.9s.

La Plata SNZ = 4m.9s. Huancayo i = 4m.44s., iS = 8m.16s.

Bogota i = (7m.11s.) and (7m.24s.), e = (13m.6s.) and (14m.25s.), readings increased by

15 minutes.

First de France PDD2 - 10m 47s

Fort de France PPP? =10m.47s. San Juan i=9m.53s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

24

```
Port au Prince i = 9m.14s., 11m.39s., i = 12m.14s., iS = 16m.29s.
Columbia e = 25m.7s.
Philadelphia e = 12m.48s, and 27m.26s.
Fordham i=21m.2s., iPS=21m.34s.
Pennsylvania i = 13m.58s., 14m.21s., 23m.11s., 23m.23s., and 23m.43s.
St. Louis eN = 12m.15s., iS?N = 20m.44s., iE = 20m.48s., iSSE = 21m.7s.
Harvard i = 11m.44s., iS = 21m.19s.
Buffalo PP = 14m.29s., PPP = 16m.0s., 21m.4s.
Tucson ePP = 14m.13s., ePPP = 16m.21s., e = 16m.47s., eS = 21m.18s., e = 21m.25s.,
     i = 21 \text{m.} 55 \text{s.}, eSS = 25 \text{m.} 38 \text{s.}, e = 29 \text{m.} 58 \text{s.}
Chicago e = 13m.55s., eS = 21m.9s., e = 26m.46s.
Vermont i = 21m.47s., e = 26m.6s. and 29m.43s.
Ottawa SS = 26m.57s.?, SSS = 30m.33s.?.
Riverside iZ = 12m.24s., ePKP,PKP = 39m.0s., eP'P'P'Z = 59m.6s.
Mount Wilson ePKP,PKPZ = 38m.44s., eZ = 39m.4s., eP'P'P' = 59m.8s.
Pasadena iPPZ=15m.35s., ePKP,PKPZ=39m.2s., eP'P'P'=59m.0s.
Rapid City iS = 22m.2s., eSS = 27m.3s., eSSS = 30m.42s.
Tinemaha ePKP,PKPZ = 38m.58s., eZ = 58m.50s.
Logan i = 13m.38s., e = 14m.2s., iSS = 28m.28s., e = 32m.3s.
Lick eSE = 22m.58s.
Berkeley iSZ = 23m.24s.
Bozeman i = 13m.7s., e = 16m.10s., eSS = 28m.31s., e = 34m.54s.
Christchurch PPP = 18m.4s., S? = 22m.36s., PPS = 24m.30s., SS = 28m.54s., Q = 34m.54s.
Ukiah e = 24m.55s. and 29m.58s.
Wellington iZ = 13m.43s, and 14m.38s., PPZ = 16m.8s., sPPZ = 16m.28s., S = 23m.10s.,
    i = 23m.43s., PPS = 24m.25s., i = 25m.38s. and 26m.54s., SS?Z = 28m.27s., iZ = 28m.27s.
    30\text{m.}30\text{s.}, SSS? = 32\text{m.}54\text{s.}, Q = 36.6\text{m.}
Arapuni Q = 36.6 m.
Lisbon N = 13m.51s., iS_cSN = 23m.52s.
San Fernando iN = 13m.51s., PPZ = 16m.38s., iSE = 23m.33s., iE = 23m.55s., and
    25m.10s.
Saskatoon SSS = 32m.33s.?
Auckland i = 13m.59s., PP? = 15m.35s., i = 20m.33s., PPS = 25m.3s., i = 26m.18s.,
    e = 32m.33s.? and 35m.33s.?, Q = 37.6m.
Granada sP = 14m.6s., PP = 16m.31s., pPP = 16m.59s., sPP = 17m.23s., SKS = 23m.37s.,
    PS = 25m.40s.
Seattle e = 14m.13s., eSS = 31m.18s.
Tortosa iN = 16m.44s., PPPN = 19m.40s., SKSN = 24m.8s., SKKSN? = 24m.25s.,
    S_cSN = 25m.6s., PSN = 26m.1s., SSE = 31m.23s., SSSN = 35m.50s., QN = 40m.55s.
Victoria SS = 29m.51s.
Honolulu i = 26m.38s.
Clermont-Ferrand iSKS = 24m. 32s.
Tananarive SKS = 24m.35s., EN = 24m.49s., PS = 27m.12s., SS = 32m.27s., Q = 41m.47s.
Kew iSKKS = 24m.55s., ePSEZ = 27m.17s., eSS = 32m.48s., iSSSEN = 36m.33s.,
    eQEN = 42m.3s.?.
Paris iSS = 32m.43s.
Stonyhurst SKS = 24m.57s., 30m.46s., 35m.18s., SSS = 37m.0s., 40m.6s., Q = 42.6m.
Uccle iSKSNZ = 24m.45s., iSS = 33m.15s., eSSSE = 37m.6s.
Sitka eP = 16m.8s., e = 27m.25s., iPS = 27m.40s., eSS = 33m.25s.
Strasbourg eSS = 33m.13s.
Riverview iPS = 27m.48s., SSN = 33m.29s., iSSSEZ = 37m.47s., eQE = 44m.57s.?.
De Bilt iSS = 33m.33s.
Stuttgart iSKS = 24m.53s., eSP = 27m.52s., eSPZ = 27m.58s., ePKKPZ = 29m.49s.
    e = 32m.46s., eSSN = 33m.38s., eSSS = 38m.12s., eQ = 45m.3s.
Cheb iSS = 34m.18s.
Jena ePE = 18m.55s., eN = 19m.46s.
Brisbane iN =28m.29s.
Prague e = 26m.42s., ePS = 28m.23s., SS = 34m.33s.?, eSS = 38m.33s.?.
Potsdam eN = 18m.57s.?, iPPN = 19m.20s., iN = 34m.23s.
Copenhagen 34m.3s.?.
Belgrade i = 20m.10s., eSS = 34m.59s.
Helwan PS?E = 29m.18s., eE = 30m.6s., SSE = 35m.38s.
College eSS = 35m.24s., e = 35m.33s.
Bucharest ePN = 19m.39s.?, eE = 24m.26s., eEN = 27m.43s., iSKKSE = 29m.59s.,
    eN = 35m.38s.
Istanbul readings reduced by 40 minutes.
Perth i = 33m.38s., SS = 38m.48s., SSS = 44m.3s.
Kodaikanal SKSP = 33m.3s.
Bombay PKSN = 23m.8s., iEN = 23m.17s., PPPE = 26m.7s., eN = 29m.47s., iE =
    29m.51s., SKSPE = 32m.55s., iE = 35m.36s., SSEN = 41m.24s.
New Delhi PKSN = 22m.28s., iN = 35m.27s., SSN = 42m.54s.
Calcutta SKSPN = 34m.53s., iPPSN = 37m.35s., iSSN = 43m.57s.
```

Jan. 15d. Readings also recorded at 3h. (Mount Wilson, Tucson, Pasadena, Riverside, Tinemaha, and near Malaga), 4h. (near Ferndale), 7h. (Sitka), 13h. (near Fort de France), 15h. (Columbia), 17h. (Stuttgart), 20h. (near Bogota), 21h. (near Mizusawa), 23h. (Clermont-Ferrand, Stuttgart, Mount Wilson, Tucson (2), Pasadena, and Tinemaha).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

25

Jan. 16d. 2h. 25m. 27s. Epicentre 40° 4N. 125° 1W. (as on 12d.).

Intensity V at Upper Mattole; IV at Ferndale. Epicentre 40°.3N. 125°.1W. (Berkeley).

$$A = -.4391$$
, $B = -.6248$, $C = +.6456$; $\delta = -2$; $h = -2$; $D = -.818$, $E = +.575$; $G = -.371$, $H = -.528$, $K = -.764$.

		Δ	Az.	P.	O-C.	$_{ m m. \ s.}^{ m S.}$	O -C.	m. s.	p.	L. m.
Ferndale Ukiah Berkeley San Francisco Branner		0.6 1.9 3.4 3.4 3.8	75 131 138 140 141	m. s. i 0 16 e 0 36 i 0 53 i 0 53? i 1 0	*** + 1 + 2 - 2 - 1	i 0 26 i 0 55 i 1 31 i 1 20 i 1 43	- 4 - 6	i 0 40 e 1 0 i 1 48? i 1 7	Pg P* P*	i 1·2 i 2·3 i 2·4
Santa Clara Lick	E.	$3.9 \\ 4.1$	$\frac{139}{137}$	$\begin{array}{ccc} \mathbf{e} & 1 & 34 \\ \mathbf{e} & 1 & 3 \end{array}$	$^{+32}_{-2}$	i 2 37 e 1 46	$^{-}_{\mathbf{p}}$	i 1 19	P_g	(i 2·6) e 2·6
Fresno Tinemaha Haiwee	N.	5·5 6·3 7·0	$129 \\ 120 \\ 125$	e 1 27 i 1 39 e 1 49	$^{+}_{+} \overset{2}{_{3}} \\ _{+} \overset{3}{_{3}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ss.		=	=
Santa Barbara Mount Wilson Pasadena Riverside	z. z.	7·3 8·4 8·4 8·9	143 134 136 133	e 1 50 e 2 5 e 2 5 i 2 12	- 1 - 1 0	i 3 13 e 3 40 i 3 37	- 2 - 3 - 6			e 3·9
Logan	1	10.1	78	i 2 32	+ 4	e 4 9	-16	i 5 18	Sg	i 5·6
Bozeman Tucson Rapid City Lincoln Ottawa		11.6 14.1 16.6 21.6 36.1	58 121 70 80 65	$\begin{array}{c} e & 3 & 9 \\ i & 3 & 25 \\ i & 3 & 29 \\ \hline e & 7 & 3 \end{array}$	PPP + 2 - 27 - 2	e = 52	+ 3	e 5 45 e 8 0 —		e 6 · 1 e 8 · 5 e 11 · 1 e 13 · 1 19 · 5

Additional readings :-

Berkeley iPZ = 0m.57s., iZ = 2m.0s.

Branner eEN = 2m.13s.

Lick iE = 2m.8s. and 2m. 23s., eN = 2m.29s.

Long waves were also recorded at Seattle, Chicago, and Philadelphia.

Jan. 16d. 14h. Central America. Pasadena suggests deep focus.

Merida ePN = 29m.55s. Balboa Heights eP = 30m.0s. La Paz P = 31m.14s. Bogota eP = 31m.32s., i = 31m.46s. San Juan eP = 32m.56s., eL = 36m.40s. Huancayo e = 33m.29s. and 34m.27s., eL = 38m.11s. Tucson eP = 33m.47s., e = 33m.59s., eS = 36m.54s., i = 37m.10s., eL = 45m.53s. Riverside iPZ = 34m.34s., eZ = 34m.43s., iP_cPZ = 37m.6s., epP_cPZ = 37m.18s. Mount Wilson ePZ = 34m.40s., iP_cPZ = 37m.11s., iZ = 37m.27s. Pasadena ePZ = 34m.40s., ipPZ = 34m.53s., iP_cPZ = 37m.11s., ipP_cPZ = 37m.24s., eLNZ = 48m. Tinemaha ePZ = 34m.56s., iZ = 35m.5s., iP_cPZ = 37m.16s., ipP_cPZ = 37m.29s. St. Louis eE = 37m.50s., L? = 40m. Florissant e? = 38m.38s., L? = 42m. Mizusawa eSE = 52m.37s.

- Jan. 16d. Readings also at 1h. (Pasadena, Mount Wilson (2), Riverside (2), Tinemaha (2), Tucson (2), and La Plata), 3h. (Bogota), 7h. (La Plata), 8h. and 10h. (La Paz), 11h. (Pasadena, Mount Wilson, Tucson, Riverside, Tinemaha, La Paz, and near Balboa Heights), 12h. (Pasadena, Mount Wilson, Tinemaha, Tucson, and near Apia), 13h. (Pasadena, Mount Wilson, Tucson, Riverside, San Juan, Rio de Janeiro, Huancayo, La Paz, and La Plata), 16h. (Ksara, Riverview, and Tuai), 19h. (De Bilt and Uccle), 21h. (Clermont-Ferrand, Stuttgart, Ksara, Bucharest, and near Istanbul), 22h. (La Paz), 23h. (Riverview).
- Jan. 17d. Readings at 1h. and 2h. (La Plata), 4h. (Bombay), 6h. (Riverview), 7h. (near Stuttgart), 13h. (Pasadena, Mount Wilson, Riverside, Riverview, Christchurch, and Brisbane).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

26

- Jan. 18d. Readings at 1h. (Stuttgart, Tucson, Pasadena, Mount Wilson, La Jolla, Tinemaha, Santa Barbara, Riverside, Haiwee, and Palomar), 5h. (Arapuni, Auckland, Christchurch, Wellington, Tucson, and Riverview), 6h. (Pasadena, and Granada), 14h. (Mizusawa), 15h. (Clermont-Ferrand and Stuttgart), 16h. (Stuttgart and near La Paz), 20h. (Mount Wilson, near La Paz, and near Malaga), 22h. (near Apia), 23h. (Pasadena, Tucson, Mount Wilson, Stuttgart, Chur, Colombo, New Delhi, Bombay, Calcutta, and Kodaikanal).
- Jan. 19d. Readings at 0h. (Wellington, Christchurch, Auckland, Brisbane, Riverview, Sydney, and Bombay), 5h. (Tucson, Pasadena, Mount Wilson, Riverside, Tinemaha, Stuttgart (2), Bombay, Wellington, Auckland, Riverview, and Mizusawa), 6h. (Wellington), 7h. (Pasadena, Mount Wilson, Riverside, and Bombay), 8h. (Wellington), 9h. (La Plata), 11h. (near Bogota), 13h. (near Malaga), 18h. (Bombay, Pasadena, Mount Wilson, Riverside, Tucson, and La Plata), 20h. (near Granada, Almeria, Toledo, and Malaga (2)).

A = -.9624, B = -.0961, C = -.2538; $\delta = -14$; h = +6;

Jan. 20d. 2h. 59m. 7s. Epicentre 14°-8S. 174°-3W.

Pasadena suggests depth of focus 90 km.

D = -.099, E = +.995; G = +.252, H = +.025, K = -.967. Supp. L. O-C. O-C. AZ. m. s. 8. m. s. m. 8. m. s. $^{+}_{+}\,^{4}_{2}$ $^{+}_{+}\,^{1}$ i 0 i 1 14 48 70 Apia 1 3 36 i 1 58 +11243 Suva PP i 5 48 11.9 9 38 5 18 $24 \cdot 0$ 203 Auckland 8 53? $P_{c}P$ 11.924.8 200 Arapuni 5 27 PP i 5 50 25.1 196 Tuai 10 30 sP 13.9 5 13 -4228.0199 Wellington \mathbf{P} 9 11 P_cP 14.4 (6 14)6 14 30.8 199 Christchurch i 7 58 i 17·1 i 6 i 7 PPP 242 32.9 38 Brisbane i 7 30 pP232 36.5 6 k Riverview e 12 41 232 e 6 11 36.5 Sydney 71.3Santa Barbara 71.6 i 1·1 24 Z. Berkeley 42 e 11 25 71.7Lick e 11 30 48 $72 \cdot 2$ La Jolla P_cP i 11 50 $72 \cdot 2$ i 11 27a Pasadena $P_{c}P$ Mount Wilson 72.3 i 11 51 i 11 30a e 11 48 $P_{c}P$ e 11 30 72.7 Palomar z. i 11 30a 72.7 47 Riverside i 11 36a 73.4 45 Haiwee i 11 37a 73.8 44 Tinemaha i 12 23 e 35·0 pP76.6 i 11 52a Tucson e 23 e 12 49 [-10]e 45.0 Rapid City 43 87-1 SKS e 13 24 e 24 33 i 23 52 52 94.5+ Florissant $_{
m SKS}^{
m PP}$ e 29.9 e 24 31 e 13 45 52e 13 21 94.6 St. Louis e 23 55 i 24 46 e 44.7 95.4104 Huancayo 51.9 $\frac{25}{25}$ 109.8 44 6] Seven Falls PS e 28 42 e 52·7 111.575 e San Juan 26 43 e 19 50 SKKS PP25 28 116.0 284 Bombay i 20 10 + 1] 0] 146.0 e 19 42 Paris i 19 44 PKP 355 e 19 41 146.0 Stuttgart 146.3357 i 19 43 [+ Strasbourg 358 01 e 19 43 147.3 Basle

Additional readings:—
Auckland PP=5m.58s., $P_cP=9m.23s.$, i=10m.8s. and 10m.53s.Wellington iZ=6m.8s., sPP?Z=7m.23s., $P_cPZ=7m.40s.$ Christchurch Q=10m.40s.Brisbane eQ?N=14m.17s., iE=16m.57s.

e 19 43

e 19 45

e 19 47

e 19 51

e 20 27

356

357

18

147-4

147.9

 $149 \cdot 1$

 $156 \cdot 2$

N. 153·7

Zürich

Neuchatel

Tortosa

Granada

Clermont-Ferrand

Continued on next page.

1]

1]

2]

i 19 52 PKP,

 PKP_2

SS

i 20 12

143 48

[+

_

PKP.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

27

Riverview iPP = 8m.36s., iPPPE = 8m.57s., iN = 9m.3s., iPcPE = 9m.26s., iE = 13m.3s., iSS?N = 15m.24s., iZ = 15m.34s., iSSS?N = 15m.50s., iN = 16m.21s. and 16m.42s., iScSE = 17m.20s. Pasadena iZ = 12m.1s. and 12m.11s. Tucson e = 14m.34s., 14m.43s., and 19m.10s., eSS = 22m.3s., ePKP,PKP = 39m.10s. Rapid City e = 13m.55s. and 15m.14s. St. Louis iZ = 13m.55s., eSKSE = 23m.49s., eSP?E = 25m.52s. Huancayo eSS = 31m.2s. San Juan eSS = 35m.23s. Bombay PSE = 29m.30s., PPSE = 31m.0s. Stuttgart eZ = 20m.6s. Clermont-Ferrand e = 20m.7s. Tortosa iN = 22m.28s. Long waves were also recorded at Harvard.

- Jan. 20d. Readings also at 0h. (Jena, Zürich, Basle, Strasbourg, near Stuttgart, De Bilt, Uccle, near Berkeley, Lick, and Branner), 5h. (near Mizusawa), 6h. (near La Paz), 9h. (near Bogota), 11h. (near Lick (2)), 12h. (St. Louis, Harvard, Tinemaha, Riverside, Tucson, Mount Wilson, Pasadena, Riverview, New Delhi, Calcutta, Bombay, and Colombo (2)), 17h. (Riverview), 19h. (Palomar, Tucson, and near Bogota), 23h. (Harvard).
- Jan. 21d. Readings at 4h. (near Apia), 5h. (Riverview), 7h. and 9h. (La Plata), 12h. (La Plata, near Bogota, and Balboa Heights), 14h. (Riverview), 16h. (La Paz), 17h. Auckland), 21h. (Strasbourg, near Zürich, Stuttgart, and Ebingen (2)).
- Jan. 22d. Readings at 2h. (near La Paz), 6h. (Mount Wilson, Tucson, Tinemaha, and Palomar), 8h. (near Apia and near Alicante), 10h. (near Alicante), 15h. (Triest), 16h. (Riverview), 19h. (St. Louis, Florissant, and near Mizusawa), 20h. (near Stuttgart), 21h. (near Seven Falls, Shawinigan Falls, and Ottawa), 22h. (Florissant, St. Louis, Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, and Palomar).

Jan. 23d. 7h. Undetermined shock.

College e = 20m.56s. and 23m.54s., eS? = 24m.15s., e = 25m.2s. and 25m.29s. Tinemaha ePZ = 25m.15s., i = 25m.18s., iPePZ = 27m.46s., iSePZ = 31m.32s.Haiwee ePEZ = 25m.22s., iNZ = 25m.25s., iP_cPZ = 27m.49s., iS_cPZ = 31m.34s. Santa Barbara iPZ = 25m.27s. Mount Wilson ePZ = 25m.32s., iNZ = 25m.37s., iPcPZ = 27m.53s., iScPZ = 31m.39s. Pasadena iPZ = 25m.32s., iEZ = 25m.35s., iP_cPZ = 27m.52s., iS_cPZ = 31m.38s.. $eLZ = 36 \cdot 3m$. Riverside ePZ = 25m.37s., iZ = 25m.40s., $iP_cPZ = 27m.54s.$, $iS_cPZ = 31m.41s.$ Palomar iPZ = 25m.43s., iZ = 25m.52s. and 25m.59s., iP_cPZ = 27m.57s., iS_cPZ = 31m.40s. La Jolla iPNZ = 25m.49s.Tucson iP = 26m.17s., i = 26m.22s. and 28m.11s., e = 30m.28s. and 32m.4s.Harvard i = 27m.4s., eL = 52m.Florissant ePN = 27m.9s., eN = 27m.13s., 27m.27s., and 34m.13s., eLN = 46m. St. Louis iPZ = 27m.10s., iZ = 27m.14s. and 27m.23s., eS?E = 34m.16s. Cape Girardeau eN = 27m.20s.Ottawa eZ = 27m.33s., L = 48m.Stuttgart eZ = 30m.7s. Long waves were also recorded at Fordham, Philadelphia, and Chicago.

Jan. 23d. Readings also at 2h. (near Apia and near Balboa Heights), 14h. (Stuttgart) 18h. (Triest), 22h. (Tacubaya, Tucson, Mount Wilson, and Riverside), 23h. (Auckland, Wellington, Christchurch, and near Ferndale (2)).

Jan. 24d. 4h. 24m. 9s. Epicentre 30° ·0N. 114° ·0W. (as on 1941 August 21d.).

A = -.3528, B = -.7925, C = +.4975; $\delta = +3$; h = +2; D = -.914, E = +.407; G = -.202, H = -.454, K = -.868.

		Δ	AZ.	Р.	$\mathbf{O} - \mathbf{C}$.	s.	O-C.	Sup	p.	L.
		0	o	m. s.	8.	m. s.	Б.	m. s.	e e da mora de	m.
Tucson		3.5	50	e 0 58	+ 1	i 1 51	S*	i 1 4	P*	i 2·3
La Jolla		4.0	317	e 1 14	P*	i 1 59	+ 7.	370	277.55	******
Palomar	Z.	4.1	326	i 1 4	- 1		2	i 1 13	P*	(9112)
Riverside		4.9	325	e 1 17	0	i 2 30	s•	i 1 28	P.	-
Pasadena		$5 \cdot 4$	321	e 1 33	+ 9	i 2 44	s•	i 1 40	P*	

Pasadena gives also i = 2m.50s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

28

Jan. 24d. 6h. Undetermined shock.

Seattle e=2m.58s, and 6m.23s., eL=7m.27s. Logan e=3m.55s., eL=9m.57. Tinemaha ePZ=4m.2s., eEZ=4m.11s. Haiwee i=4m.15s. Pasadena iZ=4m.31s. Riverside ePZ=4m.37s., iZ=4m.46s. Palomar iPZ=4m.48s. Tucson iP=5m.19s., e=7m.21s., eL=15m.17s. Florissant eE=17m.7sSt. Louis eE=17m.28sLong waves were also recorded at Fordham, Philadelphia, and Chicago.

Jan. 24d. Readings also at 0h. (Florissant, St. Louis, Cape Girardeau, Tinemaha, Riverside, Palomar, Tucson, and Tacubaya (2)), 1h. (Tacubaya and near Honolulu), 7h. (Fordham, Wellington, Riverview, and Brisbane), 8h. (near Bogota), 13h. (near Granada), 16h. (Ferndale), 17h. (Ksara and near San Juan), 19h. (near Mizusawa (3)), 20h. (near Berkeley, Branner and Lick), 23h. (near La Paz).

Jan. 25d. 7h. 33m. 12s. Epicentre 8°.9S. 118°.5E. Depth of focus 0.005.

$$A = -.4715$$
, $B = +.8684$, $C = -.1537$; $\delta = +5$; $h = +7$; $D = +.879$, $E = +.477$; $G = +.073$, $H = -.135$, $K = -.988$.

		Λ	Az.	Р.	0 - C.	s.	0 – C.	811	nn	L.
				m. s.	8.	m. s.	s.	m. s.	pp.	\$100 C 100 C 100 C
Perth Brisbane Riverview Sydney Colombo	E.	23·1 37·5 39·0 39·0 41·6	186 124 135 135 291	i 5 28 i 7 8 i 7 24k e 7 0 7 43	PP - 1	i 9 8 e 12 54 i 13 21 e 13 12 13 54	+ 5 + 1 + 5 - 4	i 7 31 i 7 46	pP pP	m. e 17·5
Calcutta Mizusawa Bombay New Delhi Auckland	N. E. N.	43.0 52.2 52.8	318 22 302 316 128	e 8 22 e 9 7 i 9 10 e 9 21	+ 27 + 1 - 1 - 3	e 16 26 e 16 31 e 16 45 17 43	$\begin{array}{c} - & - & 1 \\ + & 1 & 2 \\ - & 12 & 2 \\ + & 2 & \end{array}$	16 20 16 38 e 17 24	PS PS PS	23·8 23·8
Christchurch Wellington Ksara Tinemaha Pasadena	z.	$58.2 \\ 59.0 \\ 88.8 \\ 121.7 \\ 122.4$	$136 \\ 133 \\ 304 \\ 52 \\ 54$	10 31 e 12 53 i 18 51 i 18 52	$ \begin{array}{r} $	17 45 17 58 23 337 i 22 19	+ 3 + 5 SKP	23 29 10 48 — i 19 23	PP PP PPKP	28·0 23·8
Mount Wilson Palomar Riverside Tucson Florissant	z. z. z.	122.5 123.7 123.8 128.8 140.5	54 55 54 55 36	i 18 52 i 18 56 i 18 52 i 19 5 e 19 54	[+ 4] [+ 6] [+ 1] [+ 4] PPKP	i 22 15 e 22 52	SKP	i 19 21 i 19 21 i 19 32	pPKP	
St. Louis Shawinigan Falls Ottawa Tacubaya Harvard Fordham Bogota	z. N.	140·7 141·3 141·6 142·1 145·4 146·3 166·8	36 11 15 69 12 16	e 19 19 19 22 19 20 e 19 34 i 19 32 i 19 38 e 20 3	[- 3] [- 2] [- 4] [+ 9] [+ 5] [+ 5]	1 22 53 22 55 22 55 23 4	SKP SKP SKP	e 19 55	PKP	

Additional readings :-

Brisbane iSN =12m.51s., isSN =13m.31s., iQN =15m.31s.

Riverview iEN =9m.14s., iSN =13m.16s., iSSE =14m.1s., iSSZ =16m.12s.

Bombay iE =9m.55s., eE =17m.26s., SSE =20m.7s., SSSE =21m.53s.

New Delhi PPN = 12m.48s., eN = 21m.27s. Wellington i = 18m.18s.

Riverside ePPZ = 20m.33s., epPPZ = 20m.54s., iPKKPZ = 28m.44s.

Tucson i = 22m.24s., e = 24m.56s., i = 32m.5s.

St. Louis iZ = 23m.45s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

29

- Jan. 25d. Readings also at 0h. (Kew), 2h. (Stuttgart and Triest), 3h. (Tacubaya), 7h. (Merida and Tacubaya (2)), 8h. (Wellington), 12h. (St. Louis), near Berkeley, Branner, Lick, and near Alicante), 13h. (near Alicante), 17h. (Triest), 20h. (Stuttgart, Zürich, and near Fort de France).
- Jan. 26d. Readings at 1h. (Auckland, Wellington, Christchurch, and Riverview), 5h. (near Tananarive), 7h. (Mizusawa), 14h. (Riverview and near Alicante), 17h. (near Malaga).
- Jan. 27d. Readings at 0h. (Tinemaha, 1h. (near Granada, Alicante (2), Almeria, and Toledo), 4h. (St. Louis, Florissant, Fordham, Harvard, Palomar, Pasadena, Santa Barbara, Riverside, and Mount Wilson), 5h. (Cape Girardeau), 9h. (Mizusawa), 10h. (near Alicante), 13h. (near La Paz), 14h. (Palomar, Kew, and Balboa Heights), 19h. (Stuttgart), 21h. (near Mizusawa), 23h. (Wellington, near Berkeley, Branner, San Francisco, Santa Clara, and Lick (3)).
- Jan. 28d. 11h. Undetermined shock.

Brisbane iPN =4m.32s., iPE =4m.36s., iSE =8m.38s., isSN =9m.0s., iSSN =9m.32s., eSSE =9m.40s.

Riverview P?Z=5m.33s., eSN=10m.22s., iSE=10m.26s., eN=10m.37s., iSS?E=12m.5s., eQE=12m.24s.?, eRE=13m.0s.

Wellington P?Z=7m.13s.?a, iZ=7m.40s., PP?=8m.40s., PPPZ=9m.20s., S=13m.55s., i=14m.20s., SS=16m.0s.?, L=18m.

Mizusawa ePE = 7m.43s., ePN = 7m.47s., eSE = 12m.2s.

Auckland P? =8m.20s., e=15m.0s.?, L=17.5m.

Sydney e = 9m.0s.

Palomar ePZ = 12m.30s., iZ = 12m.48s.

Mount Wilson ePZ = 12m.32s., iZ = 12m.44s.Pasadena ePEZ = 12m.32s., i = 12m.44s., eLEZ = 41m.

Riverside ePZ = 12m.36s., iZ = 12m.47s.

Haiwee ePE = 12m.46s. Tinemaha iPZ = 12m.46s.

La Jolla eZ = 12m.478.

Tucson e = 13m.12s., eL = 16m.13s.

Christchurch S = 13m.30s., Q = 16m.53s., R = 20m.40s.

Bombay iSE = 21m.59s., $S_cSE = 22m.14s.$, PSE = 22m.50s., PPSE = 23m.4s.

Long waves were also recorded at Florissant, St. Louis, and Arapuni.

Jan. 28d. Readings also at 2h. (Suva, Wellington, Christchurch, and Riverview), 5h. (Clermont-Ferrand and Zürich), 12h. (near Mizusawa), 13h. (near La Paz), 14h. (Riverside, Tucson, and Palomar), 16h. (Wellington and near Apia), 21h. (near Apia), 23h. (Tinemaha, Palomar, Riverside, Mount Wilson, Pasadena, Tucson, Bombay, Calcutta, New Delhi, Auckland, and near La Paz).

Jan. 29d. 2h. 25m. 8s. Epicentre 62°-9N. 154°-4W.

A = -.4130, B = -.1979, C = +.8890; $\delta = +5$; h = -10; D = -.432, E = +.902; G = -.802, H = -.384, K = -.458.

		Δ	. Az.	P.	O-C.	s.	0 - C.	Sur	p.	L.
		۰	0	m. s.	8.	m. s.	8.	m. s.	33300	m.
College		3.5	53	e 0 56	- 1	1 40	0	i 1 47	S*	
Logan		32.6	110	e 6 35	ō		-	e 7 58	PPP	e 16.3
Tinemaha		33.9	122	i 6 48a	+ 1	_		i 6 53	9	0.10.0
Rapid City		34.6	99	e 6 55	$+$ $\bar{2}$	-	-	-		e 18.0
Haiwee		34.9	122	e 6 55	0		100000	3.00	-	
Santa Barbara		35.7	126	e 7 2	0		-	_	_	27 <u></u>
Mount Wilson		36.5	124	i7 9a		Telephone				
Pasadena		36.6	124	i 7 9a			-	i 7 13	8	e 18.9
Riverside		37.0	124	i 7 12a		_	-		_	0.00
Palomar	\mathbf{Z} .	37.8	123	i 7 19 a			—		_	8=3
La Jolla	z.	38.1	124	i 7 21	- 1		7.000		·	
Tucson	-	41.1	117	i 7 48	+ 1	e 14 12	+11		_	e 21·7
Florissant		44.6	92	i 8 22	$+\hat{6}$	e 14 55	+ 3	-	_	0 21 1
St. Louis		44.8	92	i 8 18	÷Ϊ	e 14 57	+ 2	i 8 28	\mathbf{pP}	e 21·7
Ottawa		46.0	74	e 8 27	Ô	1 18 407		e 21 52?		23.9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Λ	Az.	P		O-C.	S.	0-C.	Su	op.	L.
		0	0	m.	s.	s.	m. s.	8.	m. s.	MERCH	m.
Cape Girardeau	N.	46.2	92	e 8	28	0	-	-	e 8 33	\mathbf{pP}	_
Shawinigan Falls		46.4	70	e 8	32	+ 2			-	-	22.9
Seven Falls		46.8	69	e 8	35	+ 2	-	-	-	-	21.9
Fordham		50.5	76	e 8	59	- 3	-	_		_	e 25·9
Bermuda		61.6	74	e 12	27	\mathbf{PP}		-		-	e 30·3
	Z	67.9	12	e 11	8	+ 6	-	-	-		

Additional readings :-

Mount Wilson iNZ = 7m.14s., iZ = 7m.36s.

Palomar iZ = 7m.24s. and 7m.38s. Tucson i = 7m.53s., e = 13m.11s.

St. Louis iPZ = 8m.23s., eZ = 10m.11s.

Long waves were also recorded at other American stations.

Jan. 29d. Readings also at 0h. (Suva, Wellington, Christchurch, Auckland, and near Mizusawa), 1h. (Mount Wilson, Riverside, Palomar, Tucson, and Riverview), 3h. (near Fresno), 8h. (Mount Wilson, Riverside, and Palomar), 9h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, and Riverview), 18h. (La Paz and La Plata), 19h. (La Plata), 21h. (La Plata and Mizusawa).

Jan. 30d. Readings at 0h. (Stuttgart, Riverview, Tuai, Auckland, Tucson, Wellington, and Christchurch), 1h. (Pasadena), 10h. (near Lick), 16h. (near Stuttgart, Ebingen, and Ravensburg).

Jan. 31d. Readings at 0h. (Riverview, Wellington (2), Christchurch, St. Louis, Riverside, Palomar, Tucson, Pasadena, Mount Wilson, and La Paz), 1h. (Tacubaya), 2h. (St. Louis, Mount Wilson, Pasadena, Palomar, La Jolla, Riverside, and Tucson), 3h. (Cape Girardeau and Florissant), 4h. (Tucson and Stuttgart), 7h. (Bogota), 9h. (Stuttgart, St. Louis, Palomar, Tinemaha, Riverside, Mount Wilson, Tucson, Pasadena, and Mizusawa), 10h. (Florissant), 12h. (near La Paz and Huancayo), 14h. (near Fort de France), 15h. (La Paz), 16h. (Riverview), 17h. (Wellington, Christchurch, Arapuni, and Riverview), 21h. (St. Louis, Tucson, Tinemaha, Palomar, Santa Barbara, Riverside, Mount Wilson, Pasadena, Stuttgart (2), and Granada).

Feb. 1d. 3h. 22m. 38s. Epicentre 41°-5N. 32°-4E.

Destructive at Beypazari, Yogunpelit and Gudul. Epicentres suggested 41°·5N. 32°·5E., Magnitude 7·4 (Pasadena).

1 41°·5N. 32°·5E., Magnitu 41°·5N. 32°·3E. (J.S.A.).

Cevad E. Tasman. Gerede-Bolu, Depremi, M.T.A.

Sene 9, Sayi 1/31 1944, Ankara, pp. 134, 135. Abstract in English, p. 136. Three pages of photographs. 23,000 houses destroyed, many casualties. Seismic origin on the fault passing north of Gerede and south of Bolu. Scale IX-X at Cerkès, Gerede, and Bolu.

Marcel Fouché et Nuriye Pinar.

Le Séisme de Cerkès, Gerede, Bolu, de Fev. 1, 1944.

N. Egeran and E. Lahn.
Note sur la carte séismique de la Turquie. M.T.A. Sene 9, Sayi 2/32, Ankara, 1944, pp. 279-289, with map.

A = +.6343, B = +.4025, C = +.6601; $\delta = +7$; h = -2; D = +.536, E = -.844; G = +.557, H = +.354, K = -.751.

		△ Az.		Р.	$\mathbf{O} - \mathbf{C}$.	s.	O-C.	Supp.		L.
		0	٥	m. s.	8.	m. s.	s.	m. s.		m.
Istanbul		2.5	260	1 15	Pe	1 36	S.	_	2000 3	
Bucharest		5.4	304	i 1 27	+ 3	2 4	P			
Focsani		5.6	320	e 1 35	+ 8	i 2 51	S. P.	i 1 51	Pe	-
Bacau		6.4	324	e 1 45	+ 7	13 7	+14	i 3 29	S.	-
Campulung	N.	6.5	307	e 1 45	+ 6	i 2 58	+ 3	i 1 58	P. S. P.	_
Ksara		8.2	159	e 1 49	-14	i 3 27	-11	i 4 32	Se	-
Belgrade		9.3	295	i 2 20	+ 3	i 4 49	S*	i 2 56	PP	
Helwan		11.6	185	e 2 35	-15	e 4 40	-21	2 51	\mathbf{P}	
Triest		14.1	293	i 3 25	+ 2	e 6 15	+13		_	-
Prague		15.1	310	3 411		e 6 47	+22	e 3 52	PP	e 7·0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

31

		Δ	Az.	P. m. s.	O – C.	S. m. s.	0 – C. s.	m. s.	p.	L. m.
Cheb Potsdam Chur Jena	E. N.	$16.3 \\ 17.0 \\ 17.2 \\ 17.2 \\ 17.2$	308 317 296 310 310	i 3 51 i 4 1	$\begin{array}{cccc} & - & 1 & \\ & & 0 & \\ & + & 3 & \end{array}$	i 6 53? i 7 31? i 7 41 i 7 39 i 7 32		i 4 14 14 = 0 ?	PP PP	e 8·8 e 8·6
Milan Ravensburg Ebingen Stuttgart Zürich		17.3 17.4 17.9 17.9 18.0	291 298 300 303 298	i 4 13 i 4 6 e 4 14 e 4 12 e 4 12	c + 2 c 0	7 48 i 7 34 e 7 48 i 7 42 e 7 49	$^{+32}_{+15}_{+18}$ $^{+17}$	e 8 34? e 8 34?	Q	e 8·9 e 9·1
Basle Strasbourg Neuchatel Copenhagen Marseilles		18.7 18.7 19.0 19.3 20.0	299 302 296 325 284	e 4 20 e 4 25 e 4 25 e 4 38	- 2 - 2 - 1 - 4 + 1	e 8 12 i 8 2 e 8 13 i 8 12 i 8 23	$^{+24}_{+14}$ $^{+18}_{+10}$ $^{+6}$	<u>-</u> 1 4 59	- - PP	9·2 — 10·1
Upsala De Bilt Uccle Clermont-Ferran Paris	d	$20.5 \\ 21.3 \\ 21.4 \\ 21.6 \\ 22.2$	$338 \\ 310 \\ 306 \\ 291 \\ 300$	e 4 39 i 4 51 i 4 50 e 4 52 e 4 58		8 23? i 8 38 i 9 1 i 9 2 9 12	$^{-\ 4}_{-\ 5}_{+16}_{+13}$	i 4 50 i 5 11	PP PP	e 10·4 e 11·1 11·4
Barcelona Tortosa Kew Bergen Stonyhurst	N.	$22.6 \\ 24.0 \\ 24.4 \\ 25.2 \\ 26.2$	281 279 307 330 311	i 5 4 i 5 20 i 5 21 i 5 32 e 5 38	+ 1 + 3 + 3 + 3	i 9 22 i 9 26 i 9 50 10 5 10 17	$^{+15}_{-6}$ $^{+11}_{+13}$ $^{+8}$	6 1 i 8 58 e 9 6 6 29	PP PcP PcP	e 10·1 e 12·4 e 12·4 10·9
Aberdeen Granada San Fernando Lisbon Reykjavik		$27.0 \\ 28.0 \\ 30.2 \\ 31.7 \\ 38.2$	318 274 273 280 326	i 5 42 i 3 42 i 6 19 e 6 25 e 7 36	$ \begin{array}{r} -3 \\ +5 \\ -2 \\ +13 \end{array} $	i 10 40 i 8 50 i 11 18 11 52 13 31	+18 $+5$ $+15$ $+14$	i 3 53 i 9 6 14 22 e 15 8	PcP SS SS	11.5 14.9 19.9 e 17.8
Dehra Dun New Delhi Scoresby Sund Bombay Calcutta	n.	38·2 38·5 39·8 41·1 50·2	92 95 335 112 94	e 6 421 e 7 11 7 42 i 7 52 e 8 49	$ \begin{array}{r} -41 \\ -15 \\ +6 \\ +5 \\ -11 \end{array} $	12 27 i 13 32 i 14 1 14 14 i 16 19	$ \begin{array}{r} -50 \\ +10 \\ +19 \\ +13 \\ +8 \end{array} $	8 45 9 26 9 38 1 10 49	PP PP PP	17.6 18.8 —
Kodaikanal Colombo Tananarive Halifax Johannesburg	E.	50·3 54·3 61·7 66·0 67·5	116 117 164 309 184	e 8 26 9 19 e 10 15 10 49 e 10 58	$ \begin{array}{r} -34 \\ -11 \\ -7 \\ -1 \\ -2 \end{array} $	i 15 51 17 19 18 34 19 45 e 19 58	$^{-22}_{+12} \\ ^{-10}_{+7} \\ ^{+2}$	$\begin{array}{c} - \\ - \\ 12 & 27 \\ 24 & 4 \\ e & 20 & 10 \end{array}$	PP SS PS	31·1 27·1 31·4 31·4
Seven Falls Shawinigan Falls Vermont Harvard Weston		68.6 70.0 71.6 71.9 71.9	315 314 311 311	11 16 11 16 111 30 111 29 e 11 27	- 6 + 1 + 5 + 2	20 15 20 42 i 20 59 i 20 57 e 21 0	$^{+\ 6}_{+\ 15}_{+\ 9}_{+\ 12}$	25 10 25 22 e 14 18 i 14 22 25 48	SS PP PP SS	32·4 33·4 32·7 e 30·4
Ottawa Hukuoka Bermuda Fordham Sapporo		72·3 74·0 74·1 74·3 74·3	$316 \\ 60 \\ 300 \\ 311 \\ 46$	e 11 31 e 11 30 e 11 38 e 11 41	$^{+\ 2}_{+\ 15}_{-\ 0}$	e 21 11 i 21 4 e 21 23 e 21 35	$^{+}_{0}^{0}_{-}^{8}_{8}_{+}^{+}_{20}$	14 26 e 13 47 e 26 35	PP PP SS	e 33·4 29·4 i 29·8 i 34·0 36·3
Mori Kumamoto Toyooka Buffalo Miyazaki		74.5 74.7 75.5 75.6 75.7	48 59 55 316 60	e 11 43 e 11 36 e 11 36 11 48 12 12	$^{+}_{-}^{1}_{7\atop -12\atop 0\atop +23}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+17}_{+18}_{+18}_{+33}$		 PP	41.9
Hamilton Koti Kobe Sumoto Kyoto		75.9 76.0 76.3 76.3 76.4	317 58 56 56 55	e 11 50 11 49 11 47 e 11 43	$^{+18}_{-10}$	$\begin{array}{c} 21 & 45 \\ 21 & 36 \\ 22 & 19 \\ 21 & 52 \\ 22 & 13 \end{array}$	$^{+13}_{+2} \\ ^{+2}_{+15} \\ ^{+35}$	15 3 =	PP =	34·4 = =

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	P. m. s.	o −c.	s. m. s.	O – C.	m. s.		L. m.
Mizusawa	E. N.	76.9 76.9	49 49	e 11 51 e 11 55	- 5 - 1	$\begin{array}{cccc} 21 & 40 \\ 21 & 32 \end{array}$	$-3 \\ -11$	=	_	_
Miyako Sendai Georgetown		77.0 77.3 77.4	49 50 311	e 11 50 e 11 42 i 12 3	-6 -16 +5	$\begin{array}{ccc} 21 & 58 \\ 22 & 3 \\ \mathbf{i} & 21 & 58 \end{array}$	$^{+13}_{+15}$		_	=
Maebasi Kohu New Kensington Kumagaya Shizuoka		77·5 77·7 77·7 77·9 78·1	53 54 314 53 54	$\begin{array}{cccc} & 12 & 6 \\ e & 12 & 3 \\ e & 11 & 50 \\ & 11 & 58 \\ & 11 & 54 \end{array}$	$^{+}_{-}{}^{7}_{3}$ $^{-}_{-}{}^{3}$ $^{-}_{8}$	$\begin{array}{c} 22 & 4 \\ 22 & 10 \\ 21 & 52 \\ 22 & 11 \\ 22 & 14 \end{array}$	$^{+14}_{+18}$ 0 $^{+17}$ $^{+18}$	e 15 1	PP =	e 30·2
Tokyo Yokohama Saskatoon Sitka Chicago		78·4 78·5 80·2 80·8 80·9	53 53 337 354 320	e 12 8 12 5 12 16 e 12 14 e 12 34	$^{+}_{+}$ $^{1}_{2}$ $^{+}_{-}$ $^{3}_{+}$ $^{+}$ $^{1}_{7}$	22 23 22 22 22 33 e 22 36 i 22 32	$^{+23}_{+21}_{+14}_{+11}_{+6}$	e 26 22? e 15 41 e 15 15	SS PP PP	e 45·2
Fort de France Columbia San Juan Florissant St. Louis	z.	83·0 83·1 84·2 84·6 84·7	$283 \\ 310 \\ 289 \\ 319 \\ 319$	i 12 28 e 12 33 e 12 38 i 12 38 e 12 31	+ 4 + 4 + 6	e 22 38 e 22 55 i 23 1 e 23 3 i 23 14	$ \begin{array}{r} - 9 \\ + 7 \\ + 2 \\ 0 \\ + 10 \end{array} $	15 36 e 15 54 e 15 42 i 15 57 i 15 53	PP PP PP PP	e 36·0 e 34·4
Cape Girardeau Lincoln Rapid City Bozeman Butte	N.	85·3 85·9 85·9 87·3 87·4	317 323 331 336 337	e 12 41 e 12 46 e 12 43 e 12 54 e 14 193	+ 1 + 3 + 4 + 4	e 23 16 e 23 13 e 23 0 i 23 35 e 24 49?	+ 6 - 3 - 16 + 6 PS	e 15 52 i 16 12 e 16 12 e 17 29?	PP PP PP	e 32·8 e 34·6 i 35·9 e 37·0
Victoria Seattle Mobile Logan Salt Lake City		87·9 88·4 89·6 91·0 91·9	344 343 313 335 334	e 16 10 e 16 10 e 13 14 e 13 31	$^{+36}_{\mathbf{PP}} \\ ^{+19}_{+7} \\ ^{+20}$	e 21 22 23 48 i 24 18 e 23 54	PS - 3 +15 [+10]	$\begin{array}{c} 17 & 4 \\ e & 26 & 21 \\ \hline e & 30 & 2 \\ e & 17 & 4 \end{array}$	PP SS PP	e 43·0 i 37·4 e 36·6
Rio de Janeiro Ferndale Ukiah Tinemaha Berkeley	z.	94·8 95·6 96·7 97·3 97·7	244 342 341 336 339	e 13 40 e 13 57 i 13 41 i 13 38	$+15 \\ +24 \\ +5 \\ 0$	i 24 22 e 25 8 e 25 4 i 25 18	$-14 \\ +25 \\ +11 \\ -17$	i 17 22 e 17 42 i 17 54	PP PP	i 39·4 e 43·9 e 43·8 e 44·9
Merida Lick Santa Clara Fresno Haiwee	N. N.	97·9 98·0 98·1 98·1	307 339 339 338 335	e 16 30 e 13 52 i 18 10 e 13 50 e 13 45	+13 PP +10 + 5	e 25 26 e 24 36	$\{-\frac{-}{5}\}$	e 18 5 e 32 3 e 17 50	PP SS PP	e 45·2 e 42·6 e 48·4
Tucson Bogota Mount Wilson Riverside Pasadena	z. z.	$\begin{array}{c} 99.2 \\ 99.2 \\ 99.9 \\ 99.9 \\ 100.0 \end{array}$	328 285 335 335 335	e 13 46 i 13 52 i 13 52	$ \begin{array}{rrr} & 4 \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & 2 \end{array} $	e 24 37 = e 25 22	$\{-\frac{11}{2}\}$	e 17 52 e 18 26 i 17 56	PP PP PP	e 39·9 49·4 ———————————————————————————————
Palomar Vera Cruz Tacubaya Perth Manzanillo	z.	100·3 103·1 104·6 105·9 107·6	333 310 312 118 317	i 17 34 i 18 19	PP PP PP	i 24 37	[-18]		=======================================	1 46·8
La Paz Huancayo La Plata Montezuma	E. N.	108.5 111.1 112.3 112.3 112.8	294 272 243 243 260	e 15 53 18 28 18 16	P P [-10] [-22]	i 25 0 i 25 4 25 28 34 34 e 39 59	[-6] [-13] [+6] SS SSS	i 19 7 e 19 4 19 22 19 40	PP PP PP	1 44·4 45·4 47·2 e 46·8
Honolulu Brisbane Riverview Sydney Auckland		116.8 130.0 131.8 131.8 150.7	10 93 101 101 93	i 21 29 e 22 54 e 22 22		e 29 45 i 39 4 e 26 14 e 40 10 43 12	SS	e 36 9 i 43 50 e 40 4 e 23 16 47 52	SS SS PP SSS	e 56·3 i 67·4 e 57·6 e 70·6 61·4
Christchurch New Plymouth Arapuni Wellington Tuai		150·8 150·8 151·7 151·9 153·0	97 95 102	19 56 19 47	[-3]	e 38 22 30 4	PPS	e 51 22?	PP PP	73·2 67·4 71·4 68·5

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

33

NOTES TO FEBRUARY 1d. 3h. 22m. 38s.

```
Additional readings :-
  Bucharest E = 1m.33s.
 Focsani iP*E = 1m.56s., iN = 2m.6s., iS*N = 3m.10s., iS*E = 3m.13s., EN = 3m.18s.
  Bacau E = 3m.48s., iS_gN = 3m.56s.
  Campulung iS*N = 3m.25s., iS<sub>g</sub>N = 3m.40s., iS<sub>g</sub>E = 3m.44s.
  Belgrade i = 2m.28s., 2m.39s., and 3m.24s.
  Cheb ePN = 3m.54s.?, i = 4m.22s.?, 5m.8s.?, and 7m.28s.?.
  Potsdam iPN = 4m.7s.
  Jena iSZ = 7m.36s.
  Copenhagen 4m.31s., i = 4m.37s., 4m.42s.
  Clermont-Ferrand i = 4m.56s.
  Paris i = 5m.48.
  Tortosa iN =5m.49s., PPPN =6m.9s., iN =7m.22s., SSE =10m.53s.
  Bergen eZ = 8m.1s., SN = 10m.10s.
 Stonyhurst iP =5m.49s., PPP =6m.41s., PcP =9m.20s., 10m.27s.
  Granada PP=4m.28s., PcP=7m.18s., sS=9m.39s., SS=10m.29s., interpretation or
      timing at fault.
  Lisbon P = 6m.28s., P = 6m.32s., iPEZ = 6m.44s., iSE = 11m.57s., SSE = 14m.34s.
  Reykjavik iEN =9m.15s., iSEN =13m.53s., iEN =16m.26s.
  New Delhi PPPN = 9m.11s., PcPN = 9m.22s., PcSN = 13m.0s., iSE = 13m.37s., SSN =
      16m.29s., SSE = 16m.33s., SSSN = 17m.13s.
  Scoresby Sund iP = 7m.57s., 16m.35s.
  Bombay ePN = 7m.27s., iPEN = 8m.1s., PPN = 9m.42s., PPPE = 10m.1s., SEN =
      13m.39s., SSE =17m.11s., SSN =17m.15s. Suggested combination of three
      different shocks close together in time. The discrepancies noted in this deter-
      mination can be accounted for on this hypothesis but no other station has recorded
      a multiple shock.
  Calcutta iPPPN = 11m.46s., iSSN = 19m.56s.
  Tananarive E = 10m.40s., EN = 18m.50s., iPS = 18m.54s., iS_cS = 20m.39s., i = 21m.18s.,
      SS = 23m.15s.
  Halifax SSS = 26m.34s.
  Johannesburg 17N = 24m.58s.
  Seven Falls SSS = 28m.4s.
 Vermont i = 11m.48s., iSS = 25m.10s.
  Harvard iP=11m.33s., i=12m.19s., iPPP=16m.9s., iS=21m.1s., e=21m.29s.,
      22m.9s., 22m.43s., and 23m.22s., eSS = 25m.53s., eSSS? = 29m.25s.
 Weston P_cP = 11m.42s.
  Ottawa i = 11m.49s., PPPZ = 15m.45s., SS = 26m.6s., SSS = 28m.46s.
  Bermuda e = 14m.28s., i = 21m.52s., 25m.24s., and 29m.12s.
 Fordham iP = 11m.42s., i = 12m.2s., and 21m.31s.
 Sapporo e = 29m.18s.
 Buffalo PPP = 16m.40s., PS = 22m.54s., SS = 26m.24s., SSS = 29m.41s.
 Hamilton PPP = 16m.44s., SS = 26m.54s., SSS = 29m.45s.
 Georgetown iS = 22m.3s.
  New Kensington e = 26m.35s.
 Sitka e = 12m.32s., iS = 22m.43s., iSS = 27m.22s., eSSS = 31m.29s.
 Chicago e = 16m.43s., eS = 22m.10s., eSS = 27m.28s., eSSS = 30m.58s.
 Fort de France PPP = 17m.18s., PS = 23m.24s.
 Columbia iS = 23m.0s., e = 23m.58s., iSS = 28m.54s.
 San Juan i = 16m.33s., 28m.6s., and 29m.50s.
 Florissant iZ = 12m.53s., 13m.11s., and 16m.20s., iPPPZ = 17m.46s.
 St. Louis iPZ = 12m.35s. and 12m.38s., iZ = 12m.53s., 13m.23s., 14m.17s., 15m.19s.,
      and 15m.30s., iPPPZ=17m.50s., iPPPPZ=19m.26s., iE=25m.55s., eSSE=
      28m.47s., eSSN = 28m.57s.
 Cape Girardeau eN = 12m.56s., 15m.36s., 15m.41s., and 18m.34s.
 Rapid City i = 13m.8s., 15m.32s., and 23m.41s., eSS = 28m.6s.
 Bozeman e = 13m.15s, and 21m.27s., i = 27m.44s., eSS = 29m.9s.
 Butte eS = 25m.57s.?, e = 28m.47s.?.
 Victoria PS = 24m.52s.
 Logan e = 18m.17s.
 Salt Lake City e = 18m.39s., 24m.36s., and 25m.33s., eSS = 30m.13s., e = 32m.48s.
 Ukiah e = 31m.2s. and 38m.30s.
 Berkeley iPZ = 13m.54s., iPE = 14m.4s.
 Lick eE = 18m.15s.
 Santa Clara eE = 36m.41s.
 Fresno eN = 14m.13s.
 Tucson i = 14m.11s., 14m.45s., and 18m.7s., e = 20m.47s., and 25m.27s., i = 27m.52s.,
      iSS = 31m.42s., iSSS = 35m.55s., e = 38m.51s.
 Bogota e = 14m.2s.
 Pasadena eSKSZ = 24m.52s.^{1}, iEN = 25m.52s., ePKP,PKPZ = 38m.59s.
 Perth i = 25m.7s., 32m.2s., and 36m.2s.
 La Paz i=18m.20s., PPPZ=21m.22s., PPPN=21m.49s., iPSEN=28m.14s., PPS=
      28m.58s., iNZ = 29m.34s., iSSS = 34m.22s.
 Huancayo e = 18m.2s. and 21m.26s., i = 27m.23s., iPS = 28m.45s., eSS = 34m.22s.,
      eSSS = 39m.3s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

34

La Plata PPPE = 21m.46s., PPPN = 22m.4s., N = 27m.10s., PPSN = 28m.58s., PPSE = 29m.10s., N = 30m.28s., 31m.4s., and 32m.10s., E = 33m.4s. and 36m.10s., N = 37m.52s., E = 38m.4s., SSSE = 39m.34s.Honolulu e = 31m.39s. and 46m.27s.Brisbane ePPN = 21m.34s., iN = 23m.26s., ePPPE = 24m.37s., eQN = 54m.37s.Riverview iPKSE = 22m.58s., iN = 35m.41s., eE = 36m.19s., eN = 47m.16s.Auckland i = 20m.52s., 45m.22s., 54m.12s., and 58m.55s.Christchurch SKSP = 33m.47s., PPS = 37m.14s., SSZ = 43m.4s., SSS = 48m.16s., SSSS = 53m.32s., Q = 62m.34s.Wellington iZ = 21m.22s. and 22m.12s., PPP?Z = 27m.32s., i = 31m.20s., SKSP = 33m.52s., i = 39m.32s., SS = 42m.57s., PSPS = 44m.12s., SSS? = 49m.22s., e = 53m.10s., Q? = 61.4m.Tuai i = 20m.39s.

Feb. 1d. 5h. 16m. 27s. Epicentre 41°·6N. 142°·0E. Depth of focus 0·020.

(as on 1943 July 16d.).

Intensity VI at Urakawa; V at Obihiro, Mori, Hakodate, Hatinohe, Miyako; IV at Kucino, Sapporo, Mizusawa, Sakata, Tukubasan, Aomori; II-III at Nemuro, Isinomaki, and Wakkanai. Seismo. Bull. Cent. Met. Obs. Japan, 1944. Tokyo, 1951. Epicentre 41°-8N. 142°-1E. Macroseismic radius 300km. Shallow.

A = -.5910, B = +.4617, C = +.6614; $\delta = -10$; h = -2; D = +.616, E = +.788; G = -.521, H = +.407, K = -.750.

	Δ	Az.	ъ.	o – c.		0 - C.	Sur	p.	L.
Hatinohe Aomori Mori Sapporo Miyako	1·1 1·2 1·2 1·6 1·8	198 229 295 342 180	m. s. 0 19 0 10 0 17k 0 15k 0 27k	$ \begin{array}{r} $	m. s. 0 39 0 32 0 36 0 33 0 54	$ \begin{array}{r} 8 \\ -17 \\ -13 \\ -23 \\ -6 \end{array} $	m. s.		m. = =
Morioka Akita Mizusawa Nemuro Sendai	$2.0 \\ 2.4 \\ 2.6 \\ 3.2 \\ 3.4$	198 229 195 57 194	0 31 a 0 31 i 0 41 0 29 k 0 49	$ \begin{array}{r} -5 \\ -10 \\ -2 \\ -22 \\ -5 \end{array} $	$egin{array}{cccc} 0 & 59 \\ 1 & 9 \\ 1 & 18 \\ 0 & 56 \\ 1 & 33 \\ \end{array}$	$ \begin{array}{r} - & 5 \\ - & 3 \\ + & 1 \\ - & 34 \\ - & 2 \end{array} $		<u> </u>	_
Hukusima Onahama Mito Kakioka Tukubasan	4·0 4·8 5·4 5·5 5·6	198 192 195 194 196	0 58 1 8 1 14 1 20 1 20	- 3 - 4 - 6 - 1 - 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+}_{-}^{2}_{2}$ $^{+}_{+13}$ $^{+}_{+}^{10}$			
Maebasi Kumagaya Wazima Tokyo Cen. Met. Ob. Toyama	5·8 5·8 6·2 6·2	$\begin{array}{c} 205 \\ 201 \\ 225 \\ 198 \\ 218 \end{array}$	1 22 1 22 2 4 a 1 19 1 29 a	-11	$\begin{array}{cccc} 2 & 30 \\ 2 & 48 \\ 3 & 21 \\ 2 & 36 \\ 2 & 54 \end{array}$	$^{+2}_{+17}_{+50}_{-4}$			
Yokohama Hunatu Kohu Mera Misima	6·6 6·6 6·9	$\begin{array}{c} 198 \\ 203 \\ 204 \\ 195 \\ 201 \end{array}$	1 31 1 36 1 34 a 1 39	- 3 - 5 - 6 - 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+14}_{+3} \\ ^{+16}_{-1} \\ ^{+3}$			
Osima Shizuoka Gihu Nagoya Omaesaki	7·1 7·2 7·4 7·5 7·6	$\begin{array}{c} 198 \\ 204 \\ 215 \\ 213 \\ 204 \end{array}$	1 39 1 53 1 47 a 1 49 1 56	$ \begin{array}{cccc} & - & 3 \\ & + & 9 \\ & + & 1 \\ & + & 7 \end{array} $	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$^{-17}_{+22}_{+13}_{-4}_{+39}$			
Hikone Kyoto Toyooka Kobe Owase	7·8 8·2 8·3 8·8	$\begin{array}{c} 217 \\ 219 \\ 225 \\ 220 \\ 217 \end{array}$	1 53 a 1 58 1 59 2 5 a 2 7	$\begin{array}{ccc} + & 1 \\ + & 1 \end{array}$	3 26 3 36 3 37 3 43 4 2	$^{+}_{+}{}^{7}_{8}_{+}$ $^{+}_{0}$ $^{+}_{19}$			
Sumoto Yonago Siomisaki Hamada Muroto	9·2 9·6 10·3 10·4	220 230 212 233 219	$\begin{array}{cccc} 2 & 10 \\ 2 & 11 \\ 2 & 15 \\ 2 & 26 \\ 2 & 29 \end{array}$	$\begin{array}{c} & 0 \\ + & 1 \\ 0 \\ + & 2 \\ + & 3 \end{array}$	4 10 4 9 5 3 4 30 4 42	$^{+18}_{+17}_{+62}_{+12}_{+22}$			=

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	m.	s.	O – C.	s. m. s.	0 – C.	m. s.	p.	L. m.
Koti Izuka Kumamoto Unzendake Kagosima		$10.5 \\ 12.0 \\ 12.6 \\ 12.9 \\ 13.6$	223 232 229 230 226	2 5 2 5 3	27 a 47 a 56 a 0	0 + 2 + 2 + 4	4 29 5 45 5 27 6 9 7 1	+ 6 + 47 + 15 + 50			=
New Delhi Bombay Scoresby Sund Upsala Berkeley	n. z.	53·4 62·3 67·6 69·1 69·8	277 271 355 334 57	10 i 10	9 10 40 48 53	+ 4 + 3 - 1 - 3 - 2	16 39 1 18 34 19 34 1 19 45	+16 +15 +10 + 4	i 10 31 i 11 9	pP P	e 29 <u>·6</u>
Bergen Tinemaha Haiwee Logan Santa Barbara	z.	72·4 72·8 73·4 73·6 73·6	340 56 57 48 58	e 11 e 11 e 11	10 10 16 17	- 3 0 0 1	e 20 28 e 20 34 e 20 39	+ 4 + 3 + 6	e 11 33? i 11 26 e 19 50	pP pP -	e 35·6 - e 28·3
Copenhagen Mount Wilson Pasadena Riverside La Jolla	z.	74·1 74·7 74·7 75·3 76·1	333 58 58 58 58	e 11 e 11 e 11	19 23 22 24 42	$ \begin{array}{r} - & 1 \\ - & 1 \\ - & 2 \\ - & 3 \\ + & 10 \end{array} $	i 20 49	+==	i 11 45 i 11 43	pP pP	
Palomar Prague Jena Ksara Belgrade	z. z.	76·1 77·8 78·2 78·9 79·3	57 329 330 305 322	e 12 e 11 e 11	30 11 a 42 51 ? 51	- 2 pP - 1 + 4 + 2	i 21 35 e 22 14? e 22 10	+16 SP SP	21 56 - e 12 14	SP — pP	e 32·6 — e 43·8
Tucson Uccle Stuttgart Strasbourg Triest	z.	80.6 80.8 80.9 81.5 81.6	56 335 330 331 326	e 11 i 11 11	54 56 57 a 57 33	- 2 - 1 - 1 - 4 pP	e 21 57 e 22 13 e 22 33	sP SP	i 12 20 e 14 33? e 15 3	PP PP -	e 39·0
Chur Zürich Basle Neuchatel Helwan	z.	82·3 82·3 82·5 83·2 84·4	329 330 330 330 305	e 12 e 12 e 12 e 12 i 12	5 6 6 9	+ 1 0 0 + 3		=======================================	= i 13 14	_ _ PP	
Clermont-Ferran Florissant St. Louis Cape Girardeau Tortosa	d z. n.	85.6 86.8 87.0 88.4 90.8	332 38 39 39 331	i 12 i 12 e 12	22 26 27 34 45	+ 1 - 1 - 1 - 1	e 22 53 e 22 47 e 22 55 23 45	+ 4 - 4 [+ 9] +19	e 15 21 e 22 44 i 12 40 e 12 46 16 42	PP SKS pP pP PP	e 86·6
Harvard Granada Bogota La Paz	z.	91.0 95.5 123.5 144.0	24 333 45 55	(i 12	46 58k) 44 28	$-10 \\ [+5] [+12]$	(e 2 <u>4</u> 28)	+ <u>21</u>	(i 13 21)	p <u>P</u>	(46·0) =

Additional readings:—
Bombay iE = 19m.3s., iN = 19m.6s., SSN = 22m.41s.Upsala PSE = 20m.8s., eN = 23m.33s., SS?E = 25m.0s., eSSS?E = 27m.33s.?, eN = 28m.33s.?.

Mount Wilson iZ = 11m.32s. Pasadena iZ = 11m.32s., ePKP,PKPZ = 38m.49s.

Prague eSS = 24m.21s.

Belgrade e = 14m.44s, and 17m.38s. Tucson ePKP,PKP = 38m.46s.

Helwan iZ = 12m.24s., PPPZ = 12m.35s.

Florissant iZ = 12m.43s., iSE = 22m.56s.

St. Louis iZ = 12m.58s. and 13m.36s., eZ = 13m.54s. Cape Girardeau eN = 12m.38s. and 12m.57s.

Tortosa PPPN = 18m.5s., iN = 19m.28s., SSN? = 30m.7s.Granada PP = (16m.50s.), pPP = (16m.56s.), sPP = (17m.30s.), readings increased by 2 minutes.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

36

Feb. 1d. 6h. 8m. 44s. Epicentre 41°-5N. 32°-4E. (as at 3h.).

		Δ	Az.	Ρ.	O-C.	s.	O-C.		pp.	L.
Carrier Control Control Control		0	0	m. s.	S.	m. s.	8.	m. s.		m.
Istanbul		2.5	260	(0.36)	7	(1 3)	-11	(1 18)	S*	-
Bucharest		5.4	304	1 16?	- 8				~	
Belgrade		9.3	295	e 2 15	- 2	e 4 29	+24	e 3 0	PPP	
Triest		14.1	293			e 6 18	SS	000	111	~ 7.7
Chur		17.2	296	e 4 5	+ 2	6 0 10	100			e 7·7
Chui		11 2	200	C 4 0	+ 2	-	-	. .	2. 1	-
Stuttgart	Z.	17.9	303	e 4 13	+ 1	-			-	-
Zürich	20 C C H	18.0	298	e 4 14	+ 1	-	25.00	_		
Basle		18.7	299	e 4 19	- ŝ		-	-	_	
Strasbourg		18.7	302	e 4 23	+ ĭ		<u> </u>			-
Neuchatel		19-0	296	Sec. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	– 2			e e e e e e e e e e e e e e e e e e e	13	77.E.S
ATOMOM		100	200	e 4 24	_ 2	3. 5 - 	_	-	-	
Uccle	09	21.4	306	e 4 54	+ 3			-	-	
Clermont-Ferra	nd	21.6	291	e 4 53	1			32.50	-	
Tortosa	N.	24.0	279	5 27	+10	-	-			700
Granada	6200	28.0	274	5 îi	-44	******	3277			_
St. Louis	Z.	84.7	319	i 12 40		A-200. NO			1000	277
Do. Modio	***	04 1	010	1 12 40	+ 3	1,700,000	-	-	-	
Tucson		99.2	328	e 13 50	+ 5		(pomise)	e 13 53	$P_{c}P$	
Mount Wilson	Z.	99.9	335	i 13 55	+ 5 + 7	-	10.00	i 13 58	P.P	
Riverside	Z.	99.9	335	e 13 55	$\dot{+}$ $\dot{7}$		-	The second secon	$\frac{\mathbf{P_{c}P}}{\mathbf{P_{c}P}}$	1
Palomar	Z.	100.3	333	i 13 56	+ 6		-		LCL	-
	***	100 0	000	1 10 30	T 0			i 14 6	$P_{\mathbf{c}}P$	2.22.23

Additional readings :-

Istanbul SSS = (1m.36s.), readings decreased by 8 minutes.

Belgrade e = 3m.6s., iS = 5m.0s., i = 5m.14s.

Feb. 1d. 7h. 42m. 37s. Epicentre 41°-6N. 20°-5E. (as on 1942 August 27d.).

Intensity V at Debar.

Epicentre 41°·31'N. 20°32'E. (Belgrade). Radius of macroseismic area 17 kms.
Annuaire microséismique et macroséismique 1944, Nouvelle série No. 4, Beograd 1950, p.29.

A = +.7025, B = +.2627, C = +.6614; $\delta = -3$; h = -3; D = +.350, E = -.937; G = +.620, H = +.232, K = -.750.

	Δ	AZ.	Р.	O-C.	S.	O-C.	Su	pp.	L.
19222-7-102-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	٥	0	m. s.	s.	m. s.	s.	m. s.		m.
Belgrade	$3 \cdot 3$	359	e 0 58	+ 5	i 1 36	+ 1	e 1 3	P*	
Bucharest	5.0	54	1 23?	+ 5	_			- T	
Triest	6.4	312	i 1 38	0					
Istanbul	$6 \cdot 4$	92	e 2 23?	$\mathbf{P}_{\mathbf{g}}$	-		2000 03	-	-
Milan	$9 \cdot 1$	299	5 6	Sg	_			-	_
Prague	9.5	336			e 4 54	S*	e 5 13	Sz	e 5·6
Ravensburg	9.9	312	723		e 4 30	+10	e 5 17	S	6 2.0
Cheb	10.2	329	-	100	e 4 23?	- 4	0 0 11	S.	
Zürich	10.3	308	e × 31	- 1					
Stuttgart	10.7	316	e 2 36	- 2	e 4 31	- 8	e 2 47	PP	
Basle	11.0	307	e 2 39	- 3			~ _	_	
Strasbourg	11.4	312	e 3 8	PPP	5 0	+ 4	-		-

Additional readings :-

Belgrade $iP_s = 1m.8s.$, i = 1m.31s., iS = 1m.42s.

Stuttgart eZ = 3m.26s., eSZ = 4m.26s., $eS_g = 5m.44s.$, $iS_g = 5m.51s.$

Long waves were also recorded at Uccle and De Bilt.

Feb. 1d. 21h. 24m. 37s. Epicentre 41°.5N. 32°.4E. (as at 6h.).

	Δ.	Az.	P. m. s.	O -C.	s. m. s.	O – C.	m. s.	pp.	L. m.
Istanbul Bucharest Ksara Belgrade Helwan	2·5 5·4 8·2 9·3 11·6	260 304 159 295 185	0 32 i 1 48 e 2 3 e 2 14 i 2 39k	$ \begin{array}{c} -11 \\ \mathbf{P}_{s} \\ 0 \\ -3 \\ -11 \end{array} $	i 2 29 e 4 16 e 5 0	$ \begin{array}{r} - 5 \\ + 1 \\ + 11 \\ - 1 \end{array} $	0 40 - i 5 11 e 5 30	S. S	4.7
Triest Prague Cheb Potsdam Chur	$14.1 \\ 15.1 \\ 16.3 \\ 17.0 \\ 17.2$	293 310 308 317 296	e 3 32 e 3 37 e 4 4 e 4 7	$+ \frac{0}{1} \\ + \frac{3}{4}$	e 6 25 e 7 23? e 7 17? e 7 17	$^{+30}_{+7}$	e 7 4 e 4 9	sss PP	e 9·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

	Δ	Az.	Ρ.	0-C.	s.	0 - C.	Su	op.	L.
	٥	0	m. s.	s.	m. s.	8.	m. s.		m.
Milan	17.3	291	4 15	+11			-	0.000	-
Stuttgart	17.9	303	e 4 8	<u>- 4</u>	e 7 31	+ 1	i 4 14	PP	e 8.9
Zürich	18.0	298	e 4 11	- 2	0.01		* * **	• •	e 9.7
Basle	18.7	299	e 4 18	- 4	e 13 20	L	2122		
Strasbourg	18.7	302	4 23?	+ 1	7 43	- 5		=	e 13·3)
Neuchatel	19.0	296	e 4 19	- 7	201-201	<u></u>		42-37	
Upsala	20.5	338	i 5 0	PP	e 8 36	+ 9	e 8 42	88	e 12·4
Uccle	21.4	306	e 4 57	÷ 6	e 8 55	+10	0 0 12	1010	e 12.4 10.4
Clermont-Ferrand	21.6	291	e 4 50	- 4	0.00	710			10.4
Paris	22.2	300	i 4 59	- 1		=	e 5 2	3	
Tortosa	24.0	279	e 5 24	4 7					e 15·4
Granada	28.0	274	i 6 4k	+ 9	10 53	+15	3=9	- <u>SE</u> S	The second secon
Calcutta N.	50.2	94	AT UI	1 0	e 16 19	$^{+13}_{+8}$			15.7
St. Louis	84.7	319	e 12 41	+ 4	C 10 13	т о	<u> </u>		e 45·1

37

Additional readings:—
Istanbul S_g = 0m.58s.

Bucharest iN =1m.57s. and 2m.21s.

Belgrade e = 2m.19s. and 2m.23s., i = 4m.34s., 4m.53s., and 5m.3s.

Helwan eE = 4m.50s.

Upsala eN = 5m.52s, and 11m.0s. Tortosa eN = 6m.38s, and 7m.25s.

Long waves were also recorded at Florissant and at other European stations.

Feb. 1d. Readings also at 1h. (near Lick), 4h. (Bucharest and La Paz), 5h. (Tortosa, Stuttgart, Bucharest (2), and near Istanbul (2)), 6h. (Stuttgart, Triest, Belgrade, Bucharest, Ksara, and near Istanbul), 7h. (Palomar, Mount Wilson, Riverside (2), Tucson (2), Triest, Stuttgart, Bucharest, Belgrade, Ksara, and near Istanbul (4)), 8h. (Triest, Ksara, Bucharest (3), and near Istanbul (5)), 9h. (Bucharest and near Istanbul), 10h. (Pehpei and Auckland), 11h. (Istanbul (4)), 12h. (Palomar, Tinemaha, Tucson, and Istanbul (4)), 13h. (Istanbul (2)), 14h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, and Istanbul (2)), 14h. (near Mizusawa), 15h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, and near Istanbul (2)), 16h. (Tortosa, Stuttgart, Bucharest, and near Istanbul), 17h. (College, St. Louis, Stuttgart, Bucharest, Istanbul, and near Alicante), 18h. (La Plata and Bucharest), 19h. (2) and 20h. (Istanbul), 21h. (Bucharest and near Istanbul (3)), 22h. (La Plata), 23h. (Istanbul).

Feb. 2d. 3h. 33m. 9s. Epicentre 41°-5N. 32°-4E. (as on 1d.).

Istanbul Bucharest Focsani Bacau Campulung		2.5 5.4 5.6 6.4 6.5	Az. 260 304 320 324 307	P. m. s. 0 36 c 1 25 e 1 40 e 1 43 e 1 42	O-C. - 7 + 1 P* + 5 + 3	S. m. s. i 2 28 e 2 51	O -C. s. - 5 S. - 0	m. s. 1 21 1 50 —	SS Pr	1. m. 3.8 3.8
Ksara Belgrade Helwan Triest Prague		8·2 9·3 11·6 14·1 15·1	159 295 185 293 310	e 1 58 e 2 15 i 2 38k i 3 20 e 3 40	$ \begin{array}{r} -5 \\ -2 \\ -12 \\ -3 \\ +4 \end{array} $	e 4 40 i 5 5 e 4 45 e 6 35	$ \begin{array}{r} \mathbf{S_s} \\ \mathbf{S_s} \\ -16 \\ \hline +10 \\ \end{array} $			=
Cheb Potsdam Chur Jena Milan	E.	$16.3 \\ 17.0 \\ 17.2 \\ 17.2 \\ 17.3$	308 317 296 310 291	i 4 6 e 4 0 e 4 2 i 4 7	+ 5 - 3 - 1 + 3	e 5 513 e 7 28 e 7 19 e 7 26 7 29	$^{-62}_{+18} \\ ^{+5}_{+12} \\ ^{+13}$		=	e 7·8 e 8·8 e 9·6 9·8
Stuttgart Zürich Basle Strasbourg Neuchatel		$17.9 \\ 18.0 \\ 18.7 \\ 18.7 \\ 19.0$	303 298 299 302 296	e 4 11 e 4 10k e 4 19 4 29 e 4 21	- 1 - 3 - 3 + 7 - 5	e 7 26 e 7 28 e 7 51 e 7 57	- 4 - 4 + 3 + 3	e 8 51 9	Q = =	e 10·2 e 10·8
Copenhagen Upsala De Bilt Uccle Clermont-Ferrand		$19.3 \\ 20.5 \\ 21.3 \\ 21.4 \\ 21.6$	$325 \\ 338 \\ 310 \\ 306 \\ 291$	e 4 31 i 4 46 i 4 52k i 4 53k e 4 51	+ 2 + 4 + 2 + 3	1 8 50 1 8 51 8 49	+ 23 + 8 + 4		=======================================	e 11.8 e 10.8 e 10.6

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	P. m. s.	O-C.	$_{ m m. \ s.}^{ m S.}$	O -C.	m. s.	pp.	$_{\mathbf{m}.}^{\mathbf{L}.}$
Paris Tortosa Kew Stonyhurst Aberdeen	N.	22·2 24·0 24·4 26·2 27·0	300 279 307 311 318	e 4 58 e 5 26	- 2 + 9 -	e 9 34 (e 9 51 i 10 29 i 10 42	$^{+2}_{+20} \\ ^{+20}_{+20}$			e 16·1 e 9·8 e 15·6
Granada New Delhi Bombay Calcutta Ottawa	N.	28·0 38·5 41·1	274 95 112 94 316	i 5 51 k e 7 34 7 51 e 11 32	- 4 + 8 + 4 + 3	e 10 53 e 13 32 e 16 16	$^{+15}_{+10}$		PP	16·6
St. Louis Tinemaha Tucson Mount Wilson Palomar	z. z. z.	84·7 97·3 99·9 100·3	319 336 328 335 333	e 12 38 i 13 42 e 13 48 i 13 52 i 13 58	+ 1 + 6 + 3 + 4 + 8				=	

Additional readings:—
Istanbul $P_g = 39s.$, SSS = 1m.44s.Istanbul $P_g = 39s.$, SSS = 1m.44s.Bucharest iP*N = 1m.36s., iPEZ = 1m.39s., iS*N = 2m.46s., iS*EZ = 2m.49s., $iS_gE = 3m.3s.$

Belgrade e = 2m.24s., and 3m.5s., i = 4m.22s., 4m.42s., 4m.53s., 5m.14s., and 5m.34s.

Helwan iZ = 2m.45s., eEZ = 5m.20s.

Jena eN = 7m.31s. Upsala eE = 6m.6s., iN = 6m.10s., eN = 7m.14s., and 9m.8s.

Uccle eN =6m.55s. Stonyhurst i =11m.2s. Bombay SSN =17m.1s.

St. Louis iPZ = 12m.41s., iZ = 12m.53s.

Long waves were also recorded at Kodaikanal, San Fernando, Kew and Bergen.

Feb. 2d. Readings also at 0h. (Istanbul), 1h. (La Plata and Tucson), 2h. (Istanbul, Tucson, Palomar, Haiwee, Mount Wilson, Pasadena, and Riverside), 3h. (Santa Barbara), 4h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, and Tucson), 5h. (Istanbul(2)), 6h. (La Paz), 9h. (Istanbul and Ksara), 11h. (Tucson, Mount Wilson, Berkeley, near Branner, Lick, Fresno, near Apia, and near Fort de France), 12h. (Ksara, Stuttgart, Triest, Bucharest, Belgrade, near Istanbul (3), and near Apia), 13h. (Bucharest and near Istanbul), 14h. (Istanbul), 15h. (Bucharest), 16h. (Istanbul (3)), 19h. (St. Louis), 20h. (La Paz), 21h. (Tacubaya, Riverview, Wellington, Huancayo, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and near La Paz), 22h. (Oaxaca, Puebla, Tacubaya, Vera Cruz, St. Louis, Tucson, Mount Wilson, Palomar, and Riverside), 23h. (Riverview and Wellington).

Feb. 3d. 11h. 25m.24s. Epicentre 5°-6N. 71°-6W.

Felt at Pamplona and Santa Rosa de Viterbo, Colombia. Annales de l'Institut de Physique du Globe de Strasbourg. 2e partie, Séismologie, tome IX 1944, p.6, Strasbourg 1951. Epicentre as adopted (J.S.A.).

A = +.3142, B = -.9444, C = +.0969; $\delta = 0$; h = +7; D = -.949, E = -.316; G = +.031, H = -.092, K = -.995.

		Δ	Az.	m.	s.	O – C.	S. m. s.	O -C.	m. s.	PP-	L. m.
		2.9	248	A CONTRACTOR OF THE PARTY OF TH	48	0	i 1 11	-13	i 0 54	$\mathbf{P}_{\mathbf{g}}$	
Bogota		8.6	293	e 2	9	ŏ	e 3 46	- 2			1
Balboa Heights		13.7	48	e 3		-11		-20			-
Fort de France		13.8	22	i 3	54	+35	e 5 59	+ 5		_	e 7.8
San Juan Huancayo		17.9	191	è 4	14	+ 2	e 7 18	-12		-	e 8·2
La Paz	z.	22.2	170	5	0	0	19 5	+ 5	-	-	11.7
St. Louis	z.	37.0	335	e 7	9	- 4		1		****	
Rio de Janeiro	21.	39.6	136	e 17	36	SSS	_				e 21·1
		45.2	312	i 8	18	- 2	_		-	_	e 45.5
Tucson Palomar	z.	50.3	309	i 8		– 2				: =====	1).
Riverside	z.	50.9	310	е 9	3	- 2	-			-	-
Mount Wilson	z.	51.5	310	e 9	5	- 4			_	-	_
	Z.	51.6	310	i 9	7	- 3		-	-		
Pasadena Tinemaha	z.	52.8	313	e 9	16	— 3					

Additional readings:—
Bogota iPg=1m.4s., the reading entered as Pg is given as P*.

San Juan e =4m.49s.

Huancayo e = 5m.11s. and 7m.37s. Tucson i = 8m.27s. and 9m.1s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

39

1944

Feb. 3d. 12h. 14m. 58s. Epicentre 60° 2N. 137° 9W.

Felt at Whitehorse.

Epicentre 59°·6N. 135°·9W. (U.S.C.G.S.). 60°·5N. 137°·5W. Magnitude 6·5 (Gutenberg). Annales de l'Institut de Physique du Globe de Strasbourg, 2e partie, Séismologie, tome

IX 1944, p. 6, Strasbourg 1951. A = -.3706, B = -.3349, C = +.8663; $\delta = -2$; h = -9; D = -.670, E = +.742; G = -.643, H = -.581, K = -.500. Az. P. O-C. S. O-C. Supp. o o m. s. s. m. s. s. m. s. i 1.7 i 0 51 3.0152 Sitka S* e 2 i 3 23 57 e 3.6 320 College 6.6 $- \frac{1}{1}$ 256 8.0 138 Victoria 14.4 -37e 9.7 e 5 58 15.5 137 Seattle Spokane 17.3127+ 3 10.0 4 25 102 58 Saskatoon 19.0e 9 25 SS 151 21.4 Ferndale PPP e 8 e 5 53 49 + 2 21.5 120 e 4 e 5 49 Bozeman e 12.7 ++ 25 +11e 9 23.0149 Ukiah i 12.8 i 5 +1554 127 $24 \cdot 4$ Logan SS i 15.4 i 9 +14e 10 149 i 5 20 54 24.5 Berkeley i 5 27 SS e 12 32 P_cS e 14.9 e 10 30 25.0149 Santa Clara e 5 27 e 15.7 $25 \cdot 1$ 149 Lick N. PPP e 5 e 13.5 +19e 6 19 29 e 10 13 128 Salt Lake City $25 \cdot 3$ *** e 5 e 5 41 33 $26 \cdot 2$ 145 Fresno N. 142 26.340 Tinemaha i 5 47 a $27 \cdot 3$ 142 -Haiwee 146 i 5 57 Santa Barbara 28.4 29.0144 Mount Wilson \mathbf{PP} i 7 -122 e 10 44? $29 \cdot 1$ 144 i 6 Pasadena i 6 144 6 a 29.5Riverside e 6 15 30.5 143 La Jolla i 6 33.2135 40 Tucson e 16·3 e 12 e 8 PP 22 -14i 6 35.5 99 59 Chicago e 8 \mathbf{PP} i 7 e 12 46 23 e 17·8 105 36.5Florissant \mathbf{PP} i 18.8 i 8 - 5 e 12 49 36.7105 St. Louis \mathbf{PP} SS e 8 42 e 7 e 15 25 105 19 38.0Cape Girardeau SS 18.0 27 16 38.8 83 27 13 Ottawa 31 e 12 21 e 8 31 $_{\rm PP}$ 88 i 7 -6839.0 Buffalo 13 38 + 1 20.0 33 79 39.5 Shawinigan Falls SS 18.0 Seven Falls 78 7 37 13 44 16 50 40.0 --i 10 26 e 13 51 e 16 e 20·2 92 ++ 40.4New Kensington i 16 56 SS i 13 57 e 18.0 83 i 8 48 +6440.7Vermont 14 20 Scoresby Sund $42 \cdot 1$ 27 27 SS i 8 i 14 26 90 43.0Georgetown i 8 i 8 e 8 \mathbf{PP} 32 $_{
m PP}^{
m Q}$ e 22·0 e 19 2k83 i 9 46 43.0 Harvard e 9 32 i 14 32 + e 20·3 86 43.1Fordham \mathbf{PP} e 9 40 e 14 28 e 20·0 83 Philadelphia 43.1 (e 18 17) SS e 18.3 e 14 52 99 e 8 44.8 Columbia 45.3 74 SS 23.0 18 14 Halifax e 8 47 49.2128 Tacubaya N. e 16 50 e 23.8 $54 \cdot 3$ 86 Bermuda e 18 e 35·0 15 58.8 0 Upsala i 10 25 19 62.1 Copenhagen SS e 32.5 28 e 23 22 63.6 Kew e 15 39 -15 P_cS e 31.5 $65 \cdot 2$ e 19 12 -16e 10 30 San Juan e 12 5 e 10 49 5 66.5 Jena e 11 ---68.0 Strasbourg e 37·0 68.1 0 Stuttgart + 69.0 Basle e 11 13 + 69.4Neuchatel e 11 11 $69 \cdot 4$ 24 Zürich e 11 17 e 11 12 23 70.1 Chur 40.2 i 22 PS P_cP + 12 13 i 11 55k 75.9 36 Granada

Continued on next page.

e 12 43

86.2

Ksara

e 23

+ 5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

40

```
0-c.
                             Az.
                                                                           Supp.
                                                                                         L.
                                   m. s.
                                             s.
                                                                                        m.
New Delhi
                                             +
                                                                       24
                                                                                PS
                            119
                                 e 12 54
Huancayo
                                                                     e 16 17
                                                                                \mathbf{P}\mathbf{P}
                                                                                      e 38·3
Calcutta
                            318
                                             -13
Helwan
                      89.8
                                                                                P_cP
                                                                     e 13
La Paz
                            115
                      94.5
                                             PP
                                                                                        49.0
                                             ^{+~2}_{\mathrm{PP}}
Bombay
                     97.3
                            331
                                                              + A
                                                      25
                                                                                PP
Riverview
                     110.1
                            235
                                                                               PPS
                                                                                      e 51·1
  Additional readings :-
    Berkeley ePE =5m.23s.
    Salt Lake City iP =5m.32s.
    Tucson i = 7m.8s. and 9m.59s.
    Chicago e = 14m.11s.
    Florissant eZ = 8m.16s., iPPPZ = 8m.46s., eP_cP?Z = 9m.32s., eSSE = 14m.48s.
    St. Louis iZ = 7m.15s., iPPPZ = 8m.46s., iPcP?Z = 9m.31s., eSSE = 14m.45s., eSSSE =
        15m.28s., eN = 18m.6s.
    Cape Girardeau eN = 8m.22s., ePPPN = 9m.6s., ePPPPN = 9m.21s., eN = 9m.56s.
```

Buffalo ePP = 8m.13s., eSS = 13m.33s., eSSS = 15m.25s.Georgetown eS = 14m.31s.

Harvard i = 8m.8s.

Fordham eS = 14m.50s.

Philadelphia e = 17m.39s.

San Juan e = 20m.40s. and 22m.8s.

Granada PP = 14m.358.

Huancayo e = 24m.44s. and 28m.26s., eSS = 29m.25s., e = 35m.2s. Bombay PPE = 17m.37s., SKSN = 24m.14s., SN = 25m.4s., SSE = 31m.35s.

Riverview eN = 29m.5s., eSSN = 34m.48s., eE = 35m.11s.

Long waves were also recorded at Denver, Pennsylvania, Cheb, Bucharest, Bergen, and Honolulu.

Feb. 3d. Readings also at 4h. (Istanbul and near Mizusawa), 5h. (Stuttgart, Bucharest (2), and near Istanbul (4)), 6h. (Bucharest and Istanbul (2)), 9h. (near Istanbul, and near Alicante), 14h. (Tucson, Riverside, Palomar, St. Louis, La Paz, Huancayo, and Bogota), 19h. (Mizusawa), 20h. (Palomar, Riverside, Pasadena, Mount Wilson, Haiwee, Tinemaha, Tucson, Copenhagen, Riverview, Wellington, Auckland, Stuttgart, Belgrade, Bucharest, and near Istanbul), 21h. (Granada, Triest, Chur, Zurich, Stuttgart, and Ksara), 23h. (Istanbul).

Feb. 4d. 21h. 5m. 56s. Epicentre 44°-7N. 152°-3E. (as on 1940 Jan. 6d.).

Pasadena suggests deep.

$$A = -.6314$$
, $B = +.3315$, $C = +.7010$; $\delta = -4$; $h = -3$; $D = +.465$, $E = +.885$; $G = -.621$, $H = +.326$, $K = -.713$.

		Δ	Az.	P.	0 - C.	s.	0 - C.	Su	pp.
		0	0.0	m. s.	s.	m. s.	s.	m. s.	977
Tinemaha	Z.	64.8	63	e 10 46	+ 3		V	e 11 17	$P_{c}P$
Santa Barbara	Z.	65.5	65	e 11 15	+28	-	_		
Pasadena		66.6	65	e 10 58	+ 4	_		i 11 29	P.P
Mount Wilson	Z.	66.7	65	i 10 59	$+\tilde{4}$		3.75	i 11 30	$P_{c}P$
Riverside	z.	$67 \cdot 2$	65	e 11 1	$+$ $\hat{3}$	-		e 11 32	$\hat{\mathbf{P}}_{\mathbf{c}}^{c}\hat{\mathbf{P}}$
Palomar	z.	68-0	65	e 11 5	+ 2	· -		i 11 37	P_cP
Tucson		72.5	63	e 11 33	+ 3				- 0~
Florissant		79.5	45	e 12 9	- ĭ	e 21 38	-33	e 12 44	\mathbf{pP}
St. Louis		79.7	45	i 12 10	- î	e 22 10	- 3	i 12 44	pP
Stuttgart	z.	81.5	337	i 12 19	- 2		-		-
Strasbourg		81.6	338	12 22	+ 1		-	2-2-3	-
Zürich		82.9	337	e 12 27	- ī		-	_	
Basle		83.0	338	e 12 27 a	— ī	2			
Chur		83.1	336	e 12 29	ō	100000	_	· ·	_
Neuchatel		83.7	337	e 12 31	- ĭ				2.2
Clermont-Ferrar	ıd	85.9	340	12 43	ô	-			_

Additional readings :-

Tinemaha iZ = 11m.58s.

Mount Wilson iZ = 11m.30s, and 11m.43s.

Tucson e = 12m.7s.

St. Louis eSKSE = 21m.40s., esSKSE = 22m.43s., esSE = 23m.14s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

Feb. 4d. 23h. 45m. 13s. Epicentre 72° 2N. 0° 5E. (as on 1943 Nov. 5d.).

A = +.3075, B = +.0027, C = +.9515; $\delta = -8$; h = +7; D = +.009, E = -1.000; G = +.951, H = +.008, K = -.308.

		Δ	Az.	Ρ.	0-C.	S.	O-C.	Suj	DD.	L.
15000V 85		0		m. s.	s.	m. s.	s.	m. s.	572	m.
Upsala		14.1	142	e 3 44	+21	e 6 4	+ 2	3. 2564 1 Cart a		e 7·8
Aberdeen		15.2	185			i 5 21	-67		_	i 8.0
Copenhagen		17.3	157	i 4 8	+ 4		-	7—	-	9.8
Stonyhurst		18.5	185			i 7 28	-16			i 9.6
Potsdam		20.7	159	e 5 17?	+33	-	-	===	550	e 12.8
Kew		20.8	181	e 4 42	- 3	e 8 22?	-11	-	-	e 10·8
Uccle		21.5	175	e 4 49	- 3	8 46	- 1	7 1 - 11	0.55	10.3
Jena	N.	21.9	160	e 4 58	+ 1		-	1.0 p 	_	200
Cheb		22.8	161	-		e 8 47?	-24		-	_
Prague		$23 \cdot 1$	157	e 5 53	+45	e 9.27	+11	_	-	e 11·8
Strasbourg		23.9	168	5 18	+ 2	-	3 2 - 32	-	C=12	_
Stuttgart		23.9	166	e 5 16	. 0	e 9 39	+ 9			
Clermont-Ferrar	nd	26.6	176	e 5 37	- 5			_		
Granada		35.1	186	i 7 23a	+26	12 18	12			i 17.6
Ottawa		43.4	275		-	e 14 11	-24	-		17.8
Philadelphia		48.1	272		===7	e 15 21	-21			e 24·4
Florissant	E.	53.8	285			e 16 48	-13			e 24·3
St. Louis		53.9	285	e 9 24	- 3	e 16 49	-13		_	e 24.8
Tinemaha	Z.	63.1	308	e 10 36	+ 4					C 21 0
Haiwee	z.	63.9	307	e 10 38	- 3 + 4 + 1	-	-	0.000	-	-
Mount Wilson	z.	65.7	307	e 10 49	+ 1		Carrier :		14	<u></u>
Riverside	z.	65.8	307	e 10 56	+ 1 + 7					-
Tucson	-	65.8	300	e 10 44	- 5	-	-			e 35·5

Additional readings:— Upsala eN = 6m.10s. Stonyhurst i = 7m.56s.

Jena eN = 5m.6s., 5m.10s., and 5m.20s.

Clermont-Ferrand e = 5m.46s.

Philadelphia e = 18m.11s., 19m.1s., and 20m.53s.

St. Louis eN =19m.11s., and 20m.32s.

Long waves were also recorded at Scoresby Sund, De Bilt, San Fernando, Harvard, Chicago, Bozeman, and Pasadena.

Feb. 4d. Readings also at 0h. (Istanbul), 2h. (near Balboa Heights), 3h. (Stuttgart, Bucharest, and near Istanbul), 2h. (Riverview and near Istanbul), 7h. (Istanbul, Auckland, Wellington, Riverview, and near Apia), 8h. (near Istanbul), 9h. (Riverview, Huancayo, Tucson, Haiwee, Palomar, Riverside, and Tinemaha), 10h. (Istanbul), 11h. (Ksara, Bucharest, and near Istanbul), 13h. (Istanbul, Clermont-Ferrand, Barcelona, near Granada, Alicante (2), Almeria, Malaga, Toledo, and Tortosa), 15h. (Istanbul and Tucson), 16h. (Tucson, Palomar, and Riverside), 18h. (Stuttgart and Scoresby Sund), 19h. (near Mizusawa), 21h. (near Ksara), 23h. (near Branner).

Feb. 5d. 17h. 19m. 56s. Epicentre 22° 5N. 122° 5E.

A = -.4969, B = +.7800, C = +.3805; $\delta = +9$; h = +4; D = +.843, E = +.537; G = -.204, H = +.321, K = -.925.

	Δ	Az.	P. m. s.	O -C. 8.	s. m. s.	O – C. s.	m. s.	p.	L. m.
Zi-ka-wei	8.7	354	e 2 0	-10	i 4 46	Sg			
Miyazaki	$12 \cdot 2$	38	3 23	+25	5 39	+23			-
Hukuoka	13.1	30	i 3 13	+ 3	7 37	8			
Hamada	14.9	32	3 35	+ 1	8 35	L		***	(8.6)
Hunatu	19.2	44	e 4 24	- 4	9 52	\mathbf{L}		_	(9.9)
Kohu	19.2	43	e 4 33	+ 5	10 17	\mathbf{L}	_	<u> </u>	(10.3)
Yokohama	19.7	47	e 4 51	+17			-		e 9.9
Kumagaya	20.0	45	4 56	+19	9 58	\mathbf{L}	, ,		(10.0)
Tokyo Cen. Met. Ob.	20.0	46	e 9 22	8			-	-	
Mizusawa	23.0	40	4 487	-19	12 42	L	S-77	-	(12.7)

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	P.	O – C.	S. O-C. m. s. s.	m. s.	р.	\mathbf{m} .
Sapporo Calcutta Dehra Dun New Delhi Colombo	N. N.	40·4 41·1	33 277 292 288 256	m. s. e 6 43 e 6 25 e 7 56? e 7 45 8 26	$^{+69}_{-15}$ $^{+15}_{-2}$ $^{+16}$	e 11 59 ? (i 11 35) + 1 13 59 + 9 i 13 49 -12 14 45 + 3	9 22 10 18	PP PP	e 15.5 i 11.6 19.9 19.0 23.1
Kodaikanal Brisbane Riverview Sydney College	E.	The second secon	263 148 153 153 27	i 7 54 e 10 8 i 10 23a e 10 40 e 11 11	$ \begin{array}{r} -22 \\ +13 \\ -3 \\ +14 \\ -3 \end{array} $	i 19 20 + 28 e 20 21 - 1	i 20 49 e 13 4	ScS PP	e 29·7 e 34·2
Ksara Auckland Sitka Upsala Bucharest		75·1 76·9 77·6 78·0 79·0	$301 \\ 140 \\ 33 \\ 330 \\ 314$	e 11 46 e 16 46 e 11 59	PPP - 8	$egin{array}{cccccccccccccccccccccccccccccccccccc$	i 14 49	- - PP	27·1 e 34·6 e 38·1 38·1
Helwan Christchurch Copenhagen Belgrade Bergen		$80.1 \\ 80.2 \\ 82.3 \\ 82.5 \\ 83.1$	298 146 328 315 334	12 13 12 22 e 12 23 e 12 31 e 26 54	+ 8 - 2 + 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 15 10 17 39 15 30 e 16 17 e 32 4?	PP PPP PP SSS	39·3 e 47·3 e 42·1
Prague Scoresby Sund Tananarive Cheb Jena	N.	$83.9 \\ 83.9 \\ 84.0 \\ 85.1 \\ 85.1$	323 350 247 323 324	e 12 27 12 35 e 21 28 e 12 34 e 12 39	- 6 + 2 - 3 - 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 28 4 28 16 28 4 e 15 56	SS SS PP	e 38·1 e 40·7 e 45·1 e 43·1
Triest Stuttgart De Bilt Aberdeen Chur		86·4 87·5 87·8 88·1 88·3	318 323 327 334 321	i 12 49 a i 12 54 e 22 59 e 13 1	$-\frac{2}{4}$ $+\frac{2}{6}$	e 24 4 PS e 23 24 - 7 e 23 34 0 e 24 9 PS e 23 47 + 8	i 16 14 e 16 4? e 33 57	PP PP SSS	e 44·1 e 40·1 e 43·0
Strasbourg Zürich Uccle Basle Neuchatel		88·4 88·6 89·0 89·1 89·7	$323 \\ 322 \\ 327 \\ 322 \\ 322$	e 13 11 e 12 54 e 12 4? e 13 4 e 13 4	$^{+16}_{-2}$ $^{-54}$ $^{+6}$	e 23 43 - 2 e 24 33 PS	e 16 14 e 29 47 e 16 28	PP SS PP	42·0 e 42·1
Stonyhurst Kew Paris Clermont-Ferra Bozeman	nd	90·4 90·9 91·2 92·6 96·5	331 329 325 322 34	i 13 6 e 13 8 e 13 26	$-\frac{1}{0}$		e 34 4 ? i 16 38	SSS PP	45·1 e 43·1 e 46·1 e 52·1 e 48·6
Tinemaha Haiwee Mount Wilson Pasadena Riverside	z. z. z.	97.6 98.4 99.4 99.4 100.0	45 45 47 47	e 13 46 e 13 52 e 13 59 i 13 58 e 14 2	$^{+\ 8}_{+11} \ ^{+13}_{+12} \ ^{+14}$	e 24 36 [+12]	e 17 32 — i 17 52	PP PP	e 41·8
Rapid City Granada Tucson Seven Falls Ottawa		101.6 101.9 105.4 109.7 110.4	31 319 45 9 13	e 14 28 = 28	PP +15	e 23 37 ? ? (26 54) PS PS e 27 44 PS e 29 4 ? PS	e 26 21 e 18 30	PS PP	e 50·4 51·5 e 49·8 47·1 47·1
Florissant St. Louis Philadelphia San Juan Bogota		111·7 111·9 115·7 138·5 148·6	27 27 14 11 32	i 19 21 e 19 14 e 19 48 e 19 36 17 54	PP PP PP [+ 8]	e 25 25 [+ 6] e 25 14 [- 6] e 25 38 [+ 3] e 40 45 SS	e 22 21	PKS PKS PP PKP	e 46·4 e 63·5
Huancayo Rio de Janeiro La Plata La Paz	n. n.	160·1 166·8 167·7 168·3	$\begin{array}{c} 61 \\ 265 \\ 179 \\ 62 \end{array}$	e 20 15 e 25 4 19 16 e 20 26	[+14] PP [-52] [+18]	e 44 43 SS (45 4?) SS 25 25 PP	e 24 30 — (30 29)	PP = -	e 70·5 45·1 30·5

Additional readings:—
Zi-ka-wei iN = 2m.38s., iE = 4m.34s., and 4m.52s., iN = 5m.14s., 7m.28s., and 8m.46s.Yokohama e = 5m.5s.Mizusawa ePE = 5m.13s.?

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

43

Calcutta iSN = 10m.4s., iSSN = 10m.45s. New Delhi PPPN = 9m.31s., SSN = 16m.12s., SSSE = 16m.37s., SSSN = 16m.50s., $S_cSN = 18m.2s.$ Brisbane iZ = 10m.11s., iE = 13m.59s. Riverview iP = 10m.45s., iN = 19m.28s., iE = 19m.32s., iN = 19m.54s. College e = 23m.34s., and 25m.46s.Auckland i = 22m.36s.? and 24m.59s.?. Sitka e = 28m.17s. Upsala eE = 22m.30s., 26m.4s.?, and 31m.4s.?. Bucharest iZ=12m.11s., iN=12m.54s., iSE=22m.9s., iPSN=22m.48s., iSS?N= 27m.27s. Helwan eEZ = 12m.43s., SE = 22m.44s.Christchurch PPS = 23m.35s., SS = 27m.49s., SSS = 31m.51s., Q = 34m.4s. Belgrade e = 13m.13s, and 45m.4s. Prague e = 23m.47s. Stuttgart eSS = 29m.4s.?. De Bilt eSS = 29m.34s. Kew iZ = 17m.37s., iPPPZ = 18m.11s., eS = 24m.0s., iPS = 25m.7s., eSSN = 30m.1s., esssen = 34m.21s.Pasadena eZ = 17m.4s. Granada readings are given as PKP and SKKS. Florissant eZ = 25m.1s., eSPE = 28m.49s., eE = 29m.29s. St. Louis ePPZ = 19m.24s., eZ = 19m.40s., ePPPSN = 30m.44s. San Juan e = 24 m. 40 s. and 29 m. 10 s., eSSS = 46 m. 5 s.Huancayo e = 28m.23s., 30m.30s., 39m.30s., 49m.13s., 52m.6s., and 65m.46s. Long waves were also recorded at Arapuni, Wellington, Bermuda, Columbia, Potsdam, Lisbon, Tortosa, and San Fernando.

Feb. 5d. 20h. 2m. 22s. Epicentre 22° ·0S. 170° ·3E. (as on 1943 Sept. 14d.).

A = -.9148, B = +.1564, C = -.3724; $\delta = 0$; h = +4; D = +.168, E = +.986; G = +.367, H = -.063, K = -.928.

		Λ	AZ.	P.	O-C.	s.	$\mathbf{O} - \mathbf{C}$.	Su	pp.	$\mathbf{L}.$
		_	0	m. s.	s.	m. s.	8.	m. s.	2025	m.
Auckland		15.3	166	$\begin{array}{cccc} 4 & 3 \\ e & 3 & 44 \end{array}$	+24	8 28	L	8 43?	Q	9.6
Brisbane		16.6	247	e 3 44	-12		-			e 8·5
Wellington		19.6	172	4 337	+ 1	8 18	+10	4 48	PP	11.1
		20.7	230	i 4 38k		i 8 27	- 4	i 5 8	\mathbf{PP}	e 9·7
Riverview Sydney		20.7	230	e 3 20	3	e 8 17	-14			-
Christchurch		21.6	177	5 9	+15	8 59	+10			11.7
Pasadena	Z.	88.0	52	i 12 53	0		-		-	e 41.6
Mannt Wilcon	Z.	88.1	52	i 12 53	- 1				****	_
Mount Wilson		88.5	52	i 12 54	$-\frac{1}{2}$				_	
Riverside Palomar	z. z.	88.6	54	i 12 53	- 3			7000	-	
Haiwee	Z.	89.1	49	e 13 1	+ 3	-	-		-	
A PRODUCT OF THE STATE OF THE S		89.3	49	i 12 59	0				-	_
Tinemaha	NT	91.3	294	e 16 53	PP	e 23 53	[+13]		-	-
Calcutta	N.	92.7	56	1 Tel	∓ 1					e 46.5
Tucson Florissant		110.5	55			e 43 24	Q		-	e 57·7
St. Louis		110.6	55			e 43 18	Q	30000		e 58·1
Stuttgart	z.	14 A 45 A	55 336	e 19 47	[+1]			======	==	-

Additional readings:—
Auckland PP? = 4m.33s., i = 6m.5s. and 7m.3s.
Brisbane iE = 3m.47s. and 4m.4s.

Wellington $P_cPZ = 6m.6s.$, iZ = 7m.33s., sS? = 8m.38s.Riverview i = 4m.42s., iN = 5m.46s., iZ = 5m.52s., and 8m.30s., i = 8m.34s., iE = 8m.51s.

Long waves were also recorded at Istanbul.

Feb. 5d. Readings also at 1h. (Istanbul (2), Oaxaca, and Tacubaya), 2h. (Istanbul, Palomar, Riverside, Tinemaha, and Tucson), 3h. and 4h. (Istanbul), 6h. (Istanbul (4) and Tucson), 8h. (near Malaga), 9h. (Berkeley, near Branner, Lick, and Fresno), 10h. (near Branner and Lick), 12h. (Granada, Alicante, Toledo, near Tortosa, near Ottawa, Seven Falls, and Shawinigan Falls), 13h. (near Branner and Lick), 14h. (near La Paz, near Branner, and Lick), 15h. (Wellington), 16h. (La Paz, La Plata, near Ottawa, and near Mizusawa), 19h. (Calcutta, New Delhi, and Zi-ka-wei), 22h. (Cape Girardeau), 23h. (near Fort de France).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

44

Feb. 6d. 18h. Undetermined shock.

Fort de France P=41m.41s., $P_r=42m.13s.$, P=42m.38s. Bogota eP=43m.23s., iPP?=43m.33s., i=46m.48s., iS?=47m.19s. Huancayo eP=46m.0s., e=46m.23s., eS=50m.23s., eL=51m.28s. La Paz PZ=46m.28s., eS?N=51m.23s., iN=55m.16s., LN=56m.36s. Cape Girardeau ePN=47m.29s., eN=47m.47s. Florissant ePN=47m.45s., eE=48m.30s. St. Louis ePZ=47m.45s., eZ=48m.2s., eLN=57m.31s. Tucson eP=49m.17s., e=50m.45s., eL=53m.25s. Palomar ePZ=49m.54s. Riverside ePZ=49m.54s. Riverside ePZ=49m.59s. Mount Wilson ePZ=50m.4s. Pasadena ePZ=50m.12s. Tinemaha ePZ=50m.12s. Tinemaha ePZ=50m.12s. Long waves were also recorded at San Juan, Bermuda, and La Plata.

- Feb. 6d. Readings also at 0h. (Pehpei and Istanbul), 2h. (Stuttgart, Riverview, Auckland, Tucson, Haiwee, Palomar, Tinemaha, Riverside, Mount Wilson, Pasadena, and Pehpei), 3h. (Tucson, Huancayo, near San Juan, Bogota, Fort de France, and Zi-ka-wei), 4h. (Riverview, Mount Wilson, Riverside, Palomar, Tucson, La Paz, and La Plata (2)), 8h. (Riverside and Tucson), 13h. and 15h. (Istanbul), 16h. (Bucharest and near Istanbul), 17h. (Bogota, Cheb, De Bilt, Uccle, Kew, Stonyhurst, Aberdeen, Stuttgart, and Scoresby Sund), 18h. (Pasadena, Mount Wilson, Riverside, Palomar, Tucson, Bucharest, and near Istanbul), 19h. (Istanbul), 20h. (La Paz, Bogota, Bucharest, and near Istanbul), 21h. (Bucharest, Ksara, and near Istanbul), 23h. (near Fort de France).
- Feb. 7d. Readings at 6h. (Philadelphia and Istanbul), 7h. (Philadelphia), 8h. (Tucson, Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, and Philadelphia), 9h. (Ksara), 13h. (New Delhi, Calcutta, Bombay, Zi-ka-wei, and Riverview), 14h. (Granada, Kew, De Bilt, Uccle, Stuttgart, Cheb, and Istanbul), 17h. (Florissant, St. Louis, Mount Wilson, Tinemaha, Haiwee, Tucson, near Sitka, and near Tuai, Christchurch, Kaimata, New Plymouth, Takata, Bunnythorpe, and Wellington), 18h. (Philadelphia and Istanbul), 19h. (Belgrade, Harvard, Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Bombay, Riverview, Sydney, and Brisbane), 20h. (Harvard, Strasbourg, Stuttgart, Zurich, Chur, Triest, and Bucharest), 22h. (Riverview and near Istanbul).

Feb. 8d. 12h. 34m. 14s. Epicentre 48° 2N. 9° 0E. (as on 1944 Jan. 5d.).

Intensity IV-V in the vicinity of the epicentre, to the S.E. of Ebingen. Epicentre about 48°·1N. 9°·0E. (macroseismic).

Annales de l'Institut de Physique du Globe de Strasbourg, 2e partie, Séismologie, tome IX 1944, p. 7. Strasbourg 1951.

$$A = +.6609$$
, $B = +.1046$, $C = +.7432$; $\delta = +8$; $h = -5$; $D = +.156$, $E = -.988$; $G = +.734$, $H = +.116$, $K = -.670$.

	Δ	AZ.	Р.	o-c.	s.	$\mathbf{o} - \mathbf{c}$.	Suj	pp.	L.
7711		٥	m. s.	8.	m. s.	8.	m. s.		m.
Ebingen	0.0		i0 1	$\mathbf{P}_{\mathbf{z}}$	i 0 2	S.	_	-	
Ravensburg	0.6	135			e 0 18	SE		_	
Stuttgart	0.6	13	e 0 11	$\mathbf{P}_{\mathbf{g}}$	i 0 18	S.	i 0 13	P*	-
Strasbourg Zürich	0.9	295			i 0 31	S.	-	-	
Basle	0.9	198	i 0 18k		i 0 29	S.		5 <u>1 0</u> 2	
Daoie	$1 \cdot 2$	235	e 0 22	$\mathbf{P}_{\mathbf{z}}$	e 0 38	S	-		

Stuttgart gives also i =0m.22s.

- Feb. 8d. Readings also at 0h. (Istanbul, near Alicante, Malaga, and Granada), 4h. (Istanbul and near Mizusawa), 5h. (Mount Wilson, Tinemaha, and Palomar), 6h. and 13h. (Istanbul), 14h. (Riverview, Pasadena, Mount Wilson, Tinemaha, and Palomar), 15h. (near Toledo), 16h. (Bucharest and near Istanbul (2)), 17h. (2) (Bucharest), 18h. (Istanbul (2)), 20h. (Riverside, Palomar, Tucson, and Riverview), 23h. (Riverview).
- Feb. 9d. Readings at 1h. (Istanbul (2)), 4h. (near Lick), 8h. (near Mizusawa), 12h. (near Stuttgart), 14h. (Bombay, Calcutta, and near Istanbul), 16h. (near Istanbul), 17h. (near Istanbul ad near Alicante (2)).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

45

Feb. 10d. 12h. 5m. 24s. Epicentre 41°.5N. 32°.4E. (as on 2d.).

Felt strongly in the region of Bolu-Adapazar. Epicentre 41°·5N. 32°·5E. Bulletin Météorologique, Séismique et magnétique de l'Observatoire d'Istanbul-Kandilli 1944, Istanbul 1949, p. 45.
Rapport du Ministre de France en Turquie.

	$\mathbf{A} = +$	6343,	B = -	+·4025, C	= + .660	1; $\delta =$	+7;	h=-2.		
		Δ	Az.	The state of the s	0 - C.	. s.	O-C.	Suj	op.	L.
Teta-1-1		0 -	0	m. s.	8.	m. s.	8.	m. s.	***	m.
Istanbul		2.5	260	(0 41)	$-\ \ 2 \\ +\ \ 2$	(1 13)	- 1	(0 50)	$\mathbf{P}_{\mathbf{z}}$	•
Bucharest Ksara		5·4 8·2	304	e 1 26	+ 2	i 2 29	+ 1	i 1 50	$\mathbf{P}_{\mathbf{z}}$	
Belgrade		9.3	159 295	e 1 53 e 2 7	-10	e 4 27	Sg		0	7.25
Helwan		11.6	185	e 2 7 i 2 42k	$-10 \\ -8$	e 4 14 e 5 18	+ 9 SS	i 5 11 3 24	$_{\mathrm{PPP}}^{\mathrm{S}_{\mathbf{g}}}$	7.2
Triest		14.1	293	e 3 14	- 9		11 <u>=1</u>	7 <u>1775</u>		e 7·6
Prague		15.1	310	e 3 37	+ 1	e 6 47	SS	-	-	e 7.4
Cheb		16.3	308	e 2 36?	-76		~~		-	0 . 2
Potsdam		17.0	317	e 4 8	+ 7	e 7 29	+19	e 7 37?	SS	e 9.6
Chur		17.2	296	e 4 6	+ 3	e 7 23	+ 9	_		
Milan	E.	17.3	291	4 16	\mathbf{PP}		1915			10.5
Stuttgart		17.9	303	e 4 11	- 1	e 7 38	+ 8	e 9 0	Q	e 10·2
Zürich		18.0	298	e 4 11	- 2	-		e 4 17	\mathbf{PP}	
Basle		18.7	299	e 4 22	0	e 7 52	+ 4		_	e 10·4
Strasbourg		18.7	302	4 28	+ 6	-		· 	1	_
Neuchatel		19.0	296	e 4 25	- 1				_	-
Copenhagen		19.3	325	i 4 29	0	8 18	SS		3	
Upsala		20.5	338	e 4 51	+ 9	8 30	+ 3	e 9 23	SSS	e 10·1
De Bilt		21.3	310			e 8 59	+16			e 10.6
Uccle		21.4	306	e 4 26	-25	8 49	+ 4	i 4 55	\mathbf{PP}	10.6
Clermont-Fer	rand	21.6	291	i 4 55	+ 1		-	STATE STATE		
Granada		28.0	274	16 OL	+ 5	i 10 46	+ 8	6 16	\mathbf{pP}	14.9
New Delhi	N.	38.5	95	e 9 12	PPP	i 13 31	+ 9	_	-	
St. Louis	Z.	84.7	319	e 12 38	+1		-		-) <u>1653</u>

Additional readings :-

Istanbul iPS = (1m.5s.), readings reduced by 2 minutes.

Bucharest $iS^{\bullet}N = 2m.50s.$, $iS_gN = 3m.10s.$

Belgrade e = 2m.14s. and 2m.34s.

Helwan eE =5m.44s. Potsdam ePN =4m.12s.

Upsala eN = 4m.12

Uccle i = 8m.138.

Granada PP =7m.10s.

Long waves were also recorded at Paris, Kew, Bergen, and Aberdeen.

Feb. 10d. Readings also at 4h. (Riverview and near Malaga (2)), 5h. (near Istanbul), 7h. (near Fort de France), 9h. (Paris), 11h. (Tucson, Riverview, Christchurch, Wellington, and near Tuai), 18h. (near Istanbul (2)), 20h. (Harvard and Riverview), 22h. (Riverview), 23h. (Bucharest and near Istanbul).

Feb. 11d. 6h. 32m. 35s. Epicentre 46°·3N. 13°·8E. (as on 1942 April 12d.).

Intensity V in the region of Villach. Austria. Epicentre in Yugoslavia on the border of the Save, 46°.4N. 13°.6E. (Strasbourg).

E. Trapp.

Makros. Beobachtungen in den Jahren 1941-1945; Anhang 8 zum Jahrbuch für 1947 der Zentralanstalt für Meteorolog. und Geodyn. Wien. Macroseismic chart p. D-51.

$$A = +.6733$$
, $B = +.1654$, $C = +.7206$; $\delta = -5$; $h = -4$; $D = +.239$, $E = -.971$; $G = +.700$, $H = +.172$, $K = -.693$.

	Δ	AZ.	Р.	O-C.	S. () – C.	Sur	p.	L.
	0	٥	m. s.	8.	m. s.	8.	m. s.		m.
Triest	0.7	183	i 0 18	+ 1			-	-	
Ravensburg	3.2	298		· ·	e 1 42	8*		-	-
Zürich	3.7	288	e 0 59	- 1	e 1 53	+ 8			
Stuttgart	4.0	310	e 1 5	+ 1	e 1 50	- 2	e 1 16	Pr	-
Basle	4.4	287	e 1 7	- 3	e 2 21	Se			_
Strasbourg	4.7	302			2 25	S.	-	Printers.	

Stuttgart gives also eSZ = 1m.47s., iSs = 2m.7s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

- Feb. 11d. Readings also at 1h. (near Istanbul, near Apia, and near Lick), 4h. (Istanbul) 6h. (Bogota), 9h. (Copenhagen, Tucson, Palomar, Riverside, Mount Wilson, Pasadena, Brisbane, Christchurch, Wellington, Auckland, Riverview, New Plymouth, and Tuai), 13h. (Istanbul), 15h. (near Mizusawa), 19h. (St. Louis, Tucson, Palomar, Tinemaha, Riverside, Mount Wilson, Pasadena, and La Plata), 21h. (Istanbul), 22h. (near Istanbul) (2)).
- Feb. 12d. Readings at 0h. and 4h. (near Istanbul), 5h. (Tucson, Riverside, Palomar, Tinemaha, Haiwee, La Paz, Huancayo, and near Fort de France), 11h. (Tucson and near Istanbul), 12h. (Bucharest and near Istanbul), 13h. (Pasadena, Mount Wilson, Riverside, Santa Barbara, Haiwee, La Jolla, Palomar, and Tucson), 17h. and 18h. (Palomar), 19h. (Riverview, Auckland, and Istanbul), 20h. (Riverview), 22h. (near Mizusawa).
- Feb. 13d. Readings at 0h. and 8h. (Istanbul), 11h. (Bucharest and near Istanbul), 13h. (near La Paz), 15h. (Stuttgart and Mizusawa), 17h. (Riverview, Wellington, and Auckland), 19h. (Zi-ka-wei), 20h. (Stuttgart, De Bilt, Uccle, Cheb, Upsala, Bergen, Calcutta, and New Delhi), 23h. (Brisbane, Riverview, Sydney, Auckland, Wellington and Christchurch).
- Feb. 14d. Readings at 2h. (Mizusawa and Istanbul), 3h. (Granada, Cheb, Stuttgart, St. Louis, Tucson, Pasadena, Mount Wilson, Riverside, Tinemaha, Santa Barbara, Haiwee, La Jolla, and Palomar), 7h. (Fordham), 9h. (Mount Wilson, Tinemaha, Haiwee, Palomar, St. Louis, Tucson, Puebla, Vera Cruz, Tacubaya, Oaxaca, and Istanbul), 10h. (Ksara and near La Paz), 13h. (Huancayo, Tucson, and Tinemaha), 14h. (2) and 15h. (Istanbul), 16h. (Christchurch, Wellington, La Paz, Huancayo, and Istanbul), 17h. (Istanbul and Riverview), 18h. (La Paz and Istanbul), 21h. (Istanbul), 22h. (La Paz).

Feb. 15d. 5h. 39m. 28s. Epicentre 52° 2N. 32° 0W. (as on 1939 Dec. 25d.).

A = +.5219, B = -.3261, C = +.7882; $\delta = -2$; h = -6; D = -.530, E = -.848; G = +.668, H = -.417, K = -.615.

N. F. S.									
	Δ	Az.	P. m. s.	O – C.	В. т. в.	O-C.	m. s.	pp.	L. m.
Stonyhurst Aberdeen Kew Paris Uccle	17.8 17.9 19.5 22.1 22.5	73 62 79 85 79	i 4 12 i 4 28 a 5 3k	+ <u>1</u> - <u>3</u>	i 7 30 e 8 10 e 8 59 e 9 6	+ 4 + 1 + 1	i 7 32 i 4 40 i 9 12	SS PP	e 8·5 e 9·5 10·5
Clermont-Ferrand San Fernando Granada Strasbourg Basle	23.7 24.1 24.9 25.4 25.7	92 122 116 81 84	e 5 7 e 5 13 i 5 35k e 5 28 e 5 34	- 7 - 5 + 9 - 3 + 1	e 9 29 9 58 —	+ 2 + 11 =		=	e 11.8 12.0 11.6 —
Copenhagen Stuttgart Zürich Cheb Prague	26.0 26.2 26.4 27.6 28.8	63 80 84 76 74	e 5 36 e 5 35 e 5 38 e 5 32? e 8 48	- 3 - 2 - 19 PcP	e 10 17	+ 3 + 8 -	e 11 57	= = ss	e 13·0 e 12·5 e 15·5
Ottawa Chicago St. Louis College Tucson	29·2 38·3 41·9 53·3 58·7	275 278 275 332 283	e 6 6 i 7 55 e 10 3	+ 1 + 1 + 1	e 13 24 e 14 17	+ 5 + 4 —	e 21 1	<u> </u>	e 14.5 e 19.6 e 29.4 e 31.0
Tinemaha Z Riverside Z Palomar Z Mount Wilson Z Pasadena Z	61.3	292 290 288 290 290	i 10 14 i 10 20 e 10 22 i 10 23 e 10 22	+ 6 + 1 + 1					e 33·5

Kew gives also eZ=5m.28s. Long waves were also recorded at De Bilt, Bergen, Upsala, Philadelphia, Harvard, Fordham, Weston, Salt Lake City, and Sitka.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

Feb. 15d. Readings also at 2h. (Istanbul, Ksara, and Bucharest), 3h. (Clermont-Ferrand, Basle, Stuttgart, Zürich, Helwan, and Ksara), 5h. (Riverview), 9h. (near Malaga), 10h. (near Granada and Malaga (2)), 14h. (La Paz and San Fernando), 15h. (Pasadena, Riverside, Palomar, Tucson, and near San Juan), 16h. (Pasadena, Riverside, Palomar, Tucson, St. Louis, and Harvard), 17h. (La Paz and Ksara), 20h. (near Lick, Berkeley, and Branner), 23h. (Wellington and Auckland).

47

Feb. 16d. 11h. Undetermined shock.

College e=14m,35s., 15m,5s., and 16m,4s., eL=18m,27s. Tinemaha ePZ=18m,15s. Haiwee ePZ=18m,26s. Santa Barbara ePZ=18m,36s. Mount Wilson ePZ=18m,37s. Pasadena ePZ=18m,40s., eLN=27·3m. Riverside ePZ=18m,45s. Tucson eP=19m,10s., i=21m,6s., e=24m,27s., eL=29m,31s. St. Louis iPZ=20m,15s., eZ=20m,34s., eSE=27m,27s., eLN=32m,13s. Stuttgart eZ=23m,10s. Basle eP=23m,16s. Zürich eP=23m,16s. Zürich eP=23m,17s. Neuchatel eP=23m,19s. Long waves were also recorded at Bozeman, Chicago, Christchurch, and De Bilt. Long waves were also recorded at Bozeman, Chicago, Christchurch, and De Bilt.

- Feb. 16d. Readings also at 0h. (Balboa Heights), 1h. (Bucharest, Ksara, and Helwan), 3h. (near Pehpei, near Granada, Alicante, Almeria, Malaga, and Toledo), 4h. (near Bogota), 5h. (San Juan and near Bogota), 8h. (Auckland), 11h. (New Delhi and Riverview), 15h. (near Balboa Heights), 19h. (Bogota).
- Feb. 17d. Readings at 0h. (Tucson, Pasadena, Mount Wilson, Riverside, La Jolla, Tinemaha, and Palomar), 4h. (near San Francisco, Santa Clara, Lick, Branner, and Berkeley), 7h. (Huancayo and Tucson), 9h. and 16h. (2) (Istanbul), 17h. (Granada and Helwan), 18h. (Stuttgart and Ksara), 21h. (Istanbul).
- Feb. 18d. 9h. Undetermined shock. Pasadena suggests deep focus.

Suva P? = 13m.58s., iS = 14m.58s., i = 15m.12s. Tuai P = 15m.28s., S = 17m.50s. New Plymouth P = 15m.30s., S = 18m.20s. Wellington P = 15m.44s., S = 18m.39s. Auckland S? = 17m.38s. Christchurch S? = 19m.18s. Santa Barbara iPZ = 23m.28s. Pasadena iP = 23m.32s.a. Mount Wilson iPNZ = 23m.33s.a. Palomar iPZ = 23m.34s.a. Riverside iPNZ = 23m.34s.a. Riverside iPNZ = 23m.34s.a. Tinemaha iP = 23m.41s.a. Tucson iP = 23m.53s., i = 25m.59s. Copenhagen P = 30m.48s. Stuttgart eZ = 30m.55s., 31m.4s. and 31m.21s.

Feb. 18d. Readings also at 0h. (Tucson, Tinemaha, Riverside, Palomar, and Istanbul), 1h. (Istanbul), 3h. (Kodaikanal, Calcutta, and near New Delhi), 4h. (Bombay and near Hyderabad), 7h. (Istanbul), 8h. (Riverview), 9h. (near Ottawa), 15h. (near Mount Wilson, Pasadena, Riverside, La Jolla, and Tucson), 16h. (near Apia), 18h. (Stuttgart), 19h. (Basle, Zurich, Stuttgart, Jena, Copenhagen, Huancayo, La Plata, La Paz, St. Louis, Tucson (2), Pasadena (2), Mount Wilson (2), Riverside (2), La Jolla, Tinemaha (2), Santa Barbara (2), Palomar (2), and near Mizusawa), 20h. (Huancayo, Tucson (2), Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar (2), Stuttgart, Cheb, and Scoresby Sund), 21h. (Wellington, and Scoresby Sund).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

48

Feb. 19d. 11h. 35m. 53s. Epicentre 66° 0N. 22° 0W. Rough.

$$A = +.3792$$
, $B = -.1532$, $C = +.9125$; $\delta = -8$; $h = -11$; $D = -.375$, $E = -.927$; $G = +.846$, $H = -.342$, $K = -.409$.

Reykjavik Aberdeen Bergen Kew Upsala		^° 1.9 12.9 13.4 18.3 18.8	Az. 179 124 99 131	P. m. s. i 0 27 e 3 35 i 4 58 e 4 41	O - C. s. - 7 PP +41 +18	e 6 23 e 7 35	o -c. s. - 4	m. Sur i 6 5 i 5 20	pp. — ** - ** - ** - **	E 11.1 e 0.8 e 7.0 e 9.1 e 11.1
Copenhagen De Bilt Uccle Paris Potsdam		19·4 19·5 20·2 21·5 22·2	$104 \\ 120 \\ 126 \\ 131 \\ 110$	e 4 37 i 4 27 a e 4 29 a e 4 40 e 5 7	$^{+}_{-}^{7}_{4}$ $^{-}_{-}^{10}$ $^{+}_{7}$	8 27 i 8 13 e 8 17 e 8 41 e 9 21	$^{+ 23}_{+ 7}_{- 6}_{+ 21}$	i = 50	PP =	e 9·1 e 9·1 11·1 e 14·1
Strasbourg Stuttgart Cheb Basle Clermont-Ferra	nd	$23 \cdot 4$ $23 \cdot 7$ $23 \cdot 7$ $24 \cdot 2$ $24 \cdot 4$	$\begin{array}{c} 122 \\ 120 \\ 114 \\ 123 \\ 133 \end{array}$	e 5 5 17 e 5 16 e 5 12	$ \begin{array}{c} -61 \\ -61 \\ +3 \\ -3 \\ -9 \end{array} $	e 9 20 e 9 37 e 9 43 e 9 34	$^{-1}_{+10}_{+16}$		=	e 13·1 e 13·1 e 12·1
Prague Zürich Milan Granada Belgrade	E.	$24.5 \\ 24.7 \\ 26.6 \\ 30.8 \\ 31.2$	$\begin{array}{c} 112 \\ 123 \\ 125 \\ 150 \\ 112 \end{array}$	e 5 27 e 5 21k 6 18 i 6 15 a	+ 5 - 3 PP - 5	$\begin{array}{c} {\rm e} \ 9 \ 34 \\ \hline 10 \ 14 \\ {\rm e} \ 11 \ 20 \\ {\rm e} \ 11 \ 59 \end{array}$	-6 -2 -3 $+30$	e 10 7	ss 	e 12·1 - 15·4 e 16·5
Philadelphia Chicago St. Louis Tinemaha Tucson	z.	39·5 42·9 46·7 59·2 60·6	$\begin{array}{c} 256 \\ 271 \\ 270 \\ 292 \\ 284 \end{array}$	e 8 22 e 10 0 e 10 10	-10 -5 -5	e 12 35 e 13 45 e 15 11	$ \begin{array}{r} -62 \\ -42 \\ -11 \\ \hline \end{array} $	e 12 49	= = PP	e 21·1 e 24·7 e 20·4 e 33·6
Mount Wilson Riverside Pasadena Palomar	z. z. z.	61·6 61·8 61·9	291 291 291 289	i 10 22 e 10 21 e 10 24 e 10 25	$\begin{array}{c} & 0 \\ - & 1 \\ + & 1 \\ + & 1 \end{array}$					e 32·1

Additional readings:— Reykjavik iEN = 37s., 40s., and 44s.

Upsala eN = 4m.59s. Copenhagen 8m.37s.

Uccle iZ = 4m.32s. Prague e = 8m.52s.

Long waves were also recorded at Scoresby Sund, Stonyhurst, Tortosa, and other American stations.

Feb. 19d. Readings also at 0h. (near Mizusawa), 5h. (Wellington), 11h. (Tinemaha, Tucson, and La Plata), 12h. (Auckland (2), Christchurch, New Plymouth, Tuai, and Wellington), 13h. (Riverview, Scoresby Sund, Copenhagen, Bergen, Upsala, Aberdeen, Stonyhurst, Cheb, Prague, De Bilt, Kew, Paris, Uccle, Strasbourg, Stuttgart, Clermont-Ferrand, Mount Wilson (2), Pasadena, Palomar (2), Riverside, Tinemaha and Tucson (2)), 14h. (Bozeman and Pasadena), 15h. (near Mizusawa), 16h. (St. Louis, Mount Wilson, Palomar, Riverside, Tinemaha, Tucson, and near Bogota), 17h. (La Paz), 18h. (Harvard and near Apia), 19h. (Auckland, Christchurch, Wellington, Riverview, La Paz, Huancayo, Tucson, Palomar, and Riverside), 20h. (St. Louis, Pasadena, and near Mizusawa).

Feb. 20d. 19h. 32m. 0s. Epicentre 66° 0N. 22° 0W. (as on 19d.).

$$A = +.3792$$
, $B = -.1532$, $C = +.9125$, $\delta = -8$; $h = -11$.

	Δ	Az.	Ρ.	$\mathbf{O} - \mathbf{C}$.	s.	O – C.	Supp.	L.
COURT CONTROL TILING	ъ	•	m. s.	S.	m. s.	8.	m. s.	m,
Reykjavik	1.9	179	i 0 34	0	i 0 43	-16		e 0.8
Aberdeen	12.9	124	i 3 10	+ 3	-	. <u>11.55</u>		6.4
Kew	18.3	131	i 4 11	- 6	e 7 43?	+ 4		e 9·0
Copenhagen	19-4	104	4 43	+13		~~	99 5013 1 (1117- 3)	10.0
De Bilt	19.5	120	i 4 31a	0	e 8 29	+23		e 9·5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

	Λ	Az.	Ρ.	O-C.	s.	O -C.	Sup	p.	L.
	0	•	m. s.	s.	m. s.	8.	m. s.		m.
Uccle	20.2	126	e 4 36a	- 3	e 8 0?	-21			10.0
Jena	22.8	114	e 5 8	+ 3					_
Strasbourg	23.4	122	5 8	- 3				-	
Stuttgart	23.7	120	e 5 15	+ 1	е 9 35	+ 8	· ·	-	e 11.6
Cheb	23.7	114	e 5 32	+18	e 9 52	+25	-	-	e 13·0
Basle	24.2	123	e 5 18	- 1	" <u>==</u> \\			_	
Clermont-Ferrand	24.4	133	e 5 17	4	·	-	-	-	e 12.4
Prague	24.5	112	e 6 0	\mathbf{PP}	e 10 12	+32	=		e 13·0
Zürich	24.7	123	e 5 20	- 4					-
San Fernando E.	31.0	155	e 12 15	3			-	-	-
St. Louis	46.7	270	e 8 26	- 6		_		-	e 24·0

Long waves were also recorded at Scoresby Sund, Bergen, Granada, and Tortosa.

Feb. 20d. Readings also at 2h. (near Istanbul), 4h. (Tucson and Riverside), 5h. (near Bogota) 8h. (Stuttgart, Ksara, Belgrade, near Bucharest, and Istanbul), 9h. (Tucson, Auckland, Wellington, and Christchurch), 10h. (Sitka, Pasadena, La Paz, Huancayo, Riverview, Sydney, and Arapuni), 11h. (De Bilt, Uccle, Stuttgart, San Fernando, Harvard, and near Bogota), 12h. (Bozeman), 17h. (Huancayo), 19h. (Pasadena, Riverside, Palomar, Tinemaha, Tucson, Tacubaya, and Copenhagen), 20h. (near Branner), 21h. (Tacubaya, Oaxaca, and Ksara).

Feb. 21d. 0h. 25m. 59s. Epicentre 66° · 0N. 22° · 0W. (as on 20d.).

h = -11. $\delta = -8$: A = +.3792, B = -.1532, C = +.9125; Supp. L. S. 0-C. $\mathbf{o} - \mathbf{c}$. Az. m. s. m. m. s. 8. m. s. 0.8 i 0 44 i 0 33 179 Reykjavik e 9.0 i 4 31 a 19.5 120 De Bilt e 8 31 e 4 37 20.2 126 Uccle 22.8 e 5 114 Jena e 5 57 e 5 15 120 23.7 Stuttgart z. 8 e 9 55 e 5 22 + 114 23.7 Cheb e 5 16 133 24.4 Clermont-Ferrand + 6 112 24.5 Prague 46.7 270 e 10 27 St. Louis

Long waves were also recorded at Paris, Aberdeen, and Kew.

Feb. 21d. 11h. 28m. 32s. Epicentre 16°.8N. 106°.1W. (as on 1943 Nov. 20d.).

A = -.2656, B = -.9203, C = +.2872; $\delta = -2$; h = +5; D = -.961, E = +.277; G = -.080, H = -.276, K = -.958.

		Δ	Az.	Ρ.	O-C.	s.	o-c.	Suj	pp.	L.
		۰	٥	m. s.	Б.	m. s.	8.	m. s.		$\mathbf{m}_{f \cdot}$
Manzanillo	N.	2.8	37	e 0 30	-17		-	-	_	
Guadalajara	N.	4.7	33	0 57	-17				-	*****
Tacubaya	N.	7.0	68	e 1 42	- 4		<u> </u>			-
Tucson	-7112	16.0	345	i 3 41	- 7	i 6 44	- 2			e 7·6
La Jolla	z.	18.9	331	i 4 39	+15		-			
Palomar	z.	19-1	332	i 4 27	0	_	-	_	-	
Mount Wilson	***	20.4	331	i 4 36	- 5	-			-	
Pasadena		20.4	331	i 4 44	+ 3	i 8 27	+ 2		-	e 10·2
Santa Barbara	Z.	21.4	329	e 4 51	. 0		-	-	_	
Tinemaha	***	22.9	335	i 5 7	+ 1	e 9 15	+ 2	_	_	-
Fresno	N.	23.3	332	e 5 13	+ 3	-	-	(
Salt Lake City		24.4	350	e 5 18	$+ \frac{3}{3}$	e 9 29	-10	e 5 56	\mathbf{PP}	e 12·2
Lick	N.	24.6	329	e 5 28	+ 5			_	_	
Santa Clara		24.8	329	1 5 31	+ 6	e 10 9	+23			
Cape Girardeau	N.	25.1	32	e 5 27	_ 1			e 8 32	8	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

> 1944 50

		Δ	Az.	Ρ.	0 – C.	s.	0 -C.	Su	pp.	L.
		•		m. s.	8.	m. s.	s.	m. s.		m.
Lincoln		25.3	19	e 6 52	3					e 12.4
Berkeley		25.4	329	i 5 35	+ 4	i 10 0	+4	_		e 14.8
St. Louis		25.8	29	i 5 25	- 9	e 9 47	-15	i 5 50	\mathbf{PP}	10.5
Ukiah		26.8	330	e 6 2	+18	e 10 23	+ 4			e 13·1
Rapid City		27.3	5	e 5 50	+ 2	e 9 7	9	e 6 35	\mathbf{PP}	i 13.6
Columbia		28.3	47	e 5 52	- 5	e 10 38	- 5		===	e 16·1
Bozeman		29.1	353			e 10 50	- 6			e 15·0
Chicago		29.6	28	e 6 54	+45	e 10 51	13		-	e 13.9
New Kensington		32.9	39	e 7 37	+59	e 12 30	+34			e 19·4
Victoria		34.7	340			e 12 14	-10			19.5
Saskatoon		35.3	359			e 13 283	8		-	18.5
Philadelphia		35.4	43	e 8 31	\mathbf{PP}	e 12 54	+20		77.00 2	e 15.2
Fordham			43	e 7 3	- 7			-		e 20·1
San Juan		$\frac{36.7}{38.1}$	43 81	e 7 34	+12	e 13 7	- 9	e 15 11	SS	e 17.9
Ottawa		38.2	35	7 15	- 8	13 1	-16	15 28	SS	19.5
Weston		39.1	42	e 7 26	- 5			2	****	
Bermuda		40.5	60	e 7 40	- 5 - 2	<u> </u>	-			e 22.8
Huancayo		41.8	131	e 8 46	+53	e 14 44	+33	e 9 44	\mathbf{PP}	e 18·1
Seven Falls		41.9	36	e 9 28	\mathbf{PP}	e 13 58	-15			21.5
Sitka		46.2	339		_	e 15 8	- Ť	e 18 30	SS	e 23·4
La Paz	Z.	50.0	129	9 17	+19	_	-		-	27.5
Bergen	E.	85.7	27		-	e 22 287	-46			
De Bilt	0.55%	89.3	35		-	e 23 28	[-1]		_	e 49·5

Additional readings :-

Tucson i = 3m.53s., e = 6m.20s., eS = 6m.41s.Berkeley iSZ = 10m.15s., iE = 14m.1s.

St. Louis iZ = 5m.30s. and 6m.0s., eE = 12m.26s., $eS_cPE = 13m.15s.$

Chicago e = 10m.42s.

San Juan e = 12m.32s. Long waves were also recorded at Oaxaca, Seattle, Kew, and Stuttgart.

Feb. 21d. 15h. 26m. 28s. Epicentre 66° 0N. 22° 0W. (as at 0h.).

	Δ	Az.	Ρ.	O-C.	s.	0-C.	Su	pp.	L.
	0	0	m. s.	s.	m. s.	s.	m. s.		m.
Reykjavik	1.9	179	0 4	3	10 000 (10) (10 000 	****	i 0 41	$\mathbf{P}_{\mathbf{f}}$	0.8
Copenhagen	19.4	104	e 4 43	+13	-				9.5
De Bilt	19.5	120	i 4 32 n	+ 1			e 4 55	PPP	e 9.5
Uccle	$20 \cdot 2$	126	e 4 40	+ 1	e 8 32	+11		- 17 A CONT.	e 10·0
Paris	21.5	131	e 4 49	- 3	e 8 47	0			11.5
Jena	22.8	114	e 5 7	+ 2	e 8 39	-32	e 9 38	SS	
Strasbourg	23.4	122	5 12	+ 1	e 9 29	+ 8		-	
Stuttgart	23.7	120	e 5 16	+ 2	e 9 42	+15	===		e 12·1
Cheb	$23 \cdot 7$	114	e 5 25	+11	e 9 52	+25		_	e 14.5
Basle	$24 \cdot 2$	123	e 5 18	- 1	e 9 49	+14	===	-	
Clermont-Ferrand	24.4	133	e 5 12	- 9		-			e 12·0
Prague	24.5	112	e 5 32?	+10			-	-	e 10.5
Zürich	24.7	123	e 5 23k	- 1			===	_	
St. Louis E.	46.7	270	-	-	e 15 7	-15		-	e 23.8
Tucson	60.6	284	e 10 17	+ 2		-	e 30 4	Q	e 34·5

Jena gives also eP?E = 5m.12s., eN = 8m.18s.Long waves were also recorded at Sitka, Scoresby Sund, and at other European stations.

Feb. 21d. 17h. 33m. 43s. Epicentre 66° 0N. 22° 0W. (as at 15h.).

	Δ	Az.	P.	O-C.	s. c	-c.	Supp	. L.
	•	0	m. s.	8.	m. s.	S.	m. s.	m.
Reykjavik	1.9	179	0 31	- 3	i 0 49	-10	i 0 44	P. e 1 · 2
Copenhagen	19.4	104	e 4 42	+12	8 35	+31		- 10.3
De Bilt	19-5	120	i 4 30	- 1				— e 9⋅8
Uccle	20.2	126	e 4 41	+ 2	e 8 17?	- 4		— e 10·3
Strasbourg	23.4	122	5 17	+ 6		•	-	·

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	m.	e. s.	O -C.	S. m. s.	O -C.	m. s.	p.	L. m.
Stuttgart		23.7	120	e 5		0	e 9 41?	+14	_		e 12.5
Cheb		23.7	114	e 8	178	8) 	-	e 15·3
Clermont-Ferrand		24.4	133	e 5	CONTRACTOR OF THE	- 7			-	-	e 12·3
Prague		24.5	112	e 5	28	+ 6		_	-		e 13·3
Zürich		24.7	123	e 5	22	- 2		1	\$1 -11-11	<u>. </u>	-
St. Louis		46.7	270	e 8	22	-10	-	-			e 24·0
Tucson		60.6	284	e 10	12	- 3		_	i 10 15	P	e 34·7
	Z.	61.6	291	i 10	23	+ 1	_	_			
	z.	61.9	289	i 10	17	- 7	\$ 		i 10 24	¥	_

Long waves were also recorded at Aberdeen, Kew, and Paris.

Feb. 21d. Readings also at 0h. (Tacubaya and Wellington), 7h. (Lick), 8h. (Cheb, Prague, Stuttgart, Kew, and De Bilt), 9h. (Bombay, Calcutta, New Delhi, and Istanbul), 10h. (near Granada and Alicante), 11h. (Tacubaya, Tucson, Riverside, Tinemaha, Pasadena, and Palomar), 12h. (Tinemaha, Tucson, Tacubaya, Guadalajara, Manzanillo, and near Alicante), 13h. (near Berkeley, Fresno, Branner, San Francisco, Santa Clara, and Lick (2)), 14h. (De Bilt, Triest, Zürich, Stuttgart, Belgrade, Ksara, Cheb, Prague, Bucharest, and near Istanbul (4)), 15h. (Jena, Stuttgart, Aberdeen, Stonyhurst, and near Alicante), 16h. (2) and 19h. (Istanbul), 20h. (St. Louis, Prague, Stuttgart, Uccle, De Bilt, Kew, Aberdeen, and Balboa Heights), 21h. (Riverview, Prague, Stuttgart, and De Bilt), 23h. (Istanbul (2)).

Feb. 22d. Readings at 0h. (Kew, De Bilt, Stuttgart, and near Istanbul), 1h. (near Bogota), 2h. (Bogota, Aberdeen, De Bilt, Stuttgart, and Istanbul), 3h. (Stuttgart), 4h. (Istanbul and near San Juan), 6h. (Istanbul), 7h. (Tinemaha, Pasadena, Palomar, Tucson, Huancayo, and near Balboa Heights), 16h. (Stuttgart (2) and De Bilt), 21h. (near Ottawa), 23h. (Riverside and Tucson).

Feb. 23d. 12h. 25m. 6s. Epicentre 51°.7N. 178°.5W. (as on 1943 June 28d.).

A = -.6221, B = -.0163, C = +.7828; $\delta = +5$; h = -6; D = -.026, E = +1.000; G = -.782, H = -.020, K = -.622.

		Δ	Az.	P. m. s.	O – C.	S. m. s.	O – C.	m. s.	pp.	L. m.
College Victoria		20.6 34.9 42.6	38 73 60	e 4 47	+_4	e 8 35 e 12 20 e 17 58			Ξ	e 9·9 15·9 25·9
Saskatoon Santa Barbara Pasadena	z.	45.0 46.1	88 87	e 8 19 i 8 27 a	- ⁰	=	=	=	=	e 19·6
Riverside Palomar La Jolla Tucson St. Louis	z.	46.7 47.5 47.6 52.0 59.9	87 88 88 84 65	i 8 31 a i 8 37 a e 8 38 i 9 12 i 10 9	- 1 Accept to 1	= = e 18 14	= -7	10 4 - i 10 34	PP = pP	e 24·9 e 28·6
Harvard Copenhagen Jena Stuttgart Zürich	z.	66.9 72.6 77.4 79.7 81.1	50 355 353 356 356	i 10 54 11 32 e 12 1 i 12 11 e 12 9	- 2 + 1 + 3 - 9					
Clermont-Ferrance Bombay Fort de France	d N.	82·9 86·4 94·5	359 297 59	e 12 30 i 12 47 e 13 23	+ 2 + 2 0	e 23 11	- <u>10</u>		Ξ	=

Additional readings :-

Riverside i = 8m.52s. and iZ = 9m.2s.

Tucson i =9m.36s. and 10m.25s., e=14m.40s. St. Louis iZ =10m.17s. and 10m.25s., eE=18m.33s., esE=18m.54s., eN=19m.41s., eE=19m.54s.

Harvard i = 11m.23s. Bombay eN = 23m.35s.

Long waves were also recorded at Sitka, Wellington, and De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

Feb. 23d. Readings also at 0h. (Tuai and Wellington), 1h. (Kew, Cheb, Prague, Paris, Aberdeen, Stuttgart, De Bilt, Uccle, Clermont-Ferrand, Copenhagen, Bergen, Granada, Istanbul, St. Louis, and Tucson), 2h. (Istanbul), 4h. (Stuttgart), 5h. (Auckland, Wellington, Huancayo, La Paz, St. Louis, and Tucson), 6h. (Kew, De Bilt, Uccle, Granada, New Delhi, Riverview, Christchurch, and Wellington) 11h. (Stuttgart), 12h. (Christchurch and Riverview), 15h. (Istanbul), 20h. (Brisbane, Sydney, Tucson, Pasadena, Riverside, and Tinemaha), 21h. (Istanbul, near Sitka, and near Fort de France), 22h. (near Granada, Alicante, Almeria, Malaga, and Toledo).

52

Feb. 24d. Readings at 1h. (Auckland and Wellington), 2h. (Istanbul), 3h. and 8h. (near Mizusawa), 11h. (near Istanbul), 12h. (Tucson, Pasadena, Riverside, Palomar, Riverview, Christchurch, Wellington, Auckland, and near Apia), 20h. (Huancayo and La Paz).

Feb. 25d. 7h. Undetermined shock.

College eP = 34m.25s., e = 34m.36s., eS = 35m.42s., eL = 36m.7s.Sitka e = 39m.40s., eL = 40m.6s.Tinemaha iPEZ = 40m.13s.a. Pasadena eP = 40 m. 33 s., eLZ = 55.8 m.Riverside iPZ = 40m.36s. Palomar iPZ = 40m.43s. Tucson eP = 41m.8s., i = 41m.31s., eL = 57m.48s.Ottawa eZ = 41m.18s., L = 56m.Shawinigan Falls e = 41m.19s., L = 57m.Florissant ePE = 41m.20s., eSSE = 51m.48s.St. Louis iPZ = 41m.22s., eSSN = 52m.29s., eLE = 56m.3s.Rapid City e = 41m.37s., eS = 47m.34s., eL = 53m.33s.Harvard i = 41m.49s., e = 60m.24s.Stuttgart eZ = 43m.11s. Scoresby Sund 46m.25s., L = 54m. Long waves were also recorded at New Delhi, Bermuda, and at other American stations.

Feb. 25d. Readings also at 0h. (Granada and Helwan), 3h. (Stuttgart, near Basle, and Zürich), 5h. (near Apia), 6h. (St. Louis, Pasadena, Palomar, and Tucson (2)), 14h. (near Fresno), 16h. (near Bacau, Bucharest, Campulung, and Focsani), 17h. (Stuttgart), 20h. (near Strasbourg), 22h. (near Fort de France).

Feb. 26d. 22h. Undetermined shock.

College eP = 24m.32s., eS? = 25m.12s., e = 25m.22s., iL = 25m.32s.Tinemaha iPNZ = 29m.538. Santa Barbara iPZ = 30m.5s. Rapid City e = 30 m.6s., eS = 36 m.34s., eL = 41 m.10s.Pasadena iP = 30m.12s., eLZ = 40.5m. Riverside iPNZ = 30m.16s. Tucson iP = 30m.53s., i = 31m.13s. and 33m.30s., eL = 48m.14s.Florissant ePZ = 31m.27s., eL = 44m.54s.St. Louis ePZ = 31m.27s., eZ = 32m.18s., eLE = 45m.18s.Ottawa e = 31m.40s., L = 46m.Shawinigan Falls e = 31m.46s., L = 46m.Seven Falls e = 31m.51s., L = 46m.Fordham iP = 32m.14s., eL = 49.6m.Weston eP = 32m.16s. Saskatoon e = 33m.36s., L = 37m.Salt Lake City e = 35m.23s., eL = 41m.24s.Long waves were also recorded at Riverview, San Juan, Bermuda, and other American stations.

Feb. 26d. Readings also at 3h. (near Apia), 20h. (Stuttgart and near Buffalo), 21h. and 23h. (Stuttgart).

Feb. 27d. Readings at 4h. and 7h. (La Paz), 20h. (Pasadena, Riverside, near La Jolla, and Tucson), 21h. (Triest), 23h. (Kodaikanal).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

53

Feb. 28d. Readings at 0h. (Kodaikanal), 1h. (Stuttgart, Cheb, Helwan, Tananarive, Bombay (2), New Delhi (2), and Colombo (2)), 2h. (Riverside, Tinemaha, Tucson, Stuttgart, Tananarive, New Delhi, Calcutta, Kodaikanal, and Colombo), 3h. (Huancayo and Istanbul), 4h. (La Paz and near Bogota), 10h. (near Fresno), 15h. (La Paz), 16h. (Pasadena, Tinemaha, Tucson, and St. Louis), 17h. (St. Louis, Tucson (2), Riverside (2), Pasadena, Tinemaha (2), near College, and near La Paz), 18h. (Florissant), 20h. (Riverview), 21h. (Calcutta), 22h. (near La Paz), 23h. (Calcutta).

Feb. 29d. 3h. 41m. 53s. Epicentre 13°.9S. 70°.0W. Depth of focus 0.015. (as on 1943, Feb. 16d.).

A = +.3321, B = -.9126, C = -.2387; $\delta = +11$; h = +6; D = -.940, E = -.342; G = -.082, H = +.224, K = -.971.

		Δ	Az.		0 – C.	s.	0 – C.		pp.	L.
Huancayo Montezuma La Plata Balboa Heights Fort de France		5.5 8.7 23.6 24.6 29.8	289 173 155 338 19	e 2 11 4 52 i 5 15	$egin{array}{cccc} & s. & & & & & & & & & & & & & & & & & $	m. s. i 2 2 e 3 26 8 49 i 9 31 10 35	$ \begin{array}{r} $	m. s. 5 25 e 6 59	PP PP	e 5·3 10·3 1 15·9
Port au Prince San Juan Vera Cruz Tacubaya Bermuda		$32.3 \\ 32.3 \\ 41.8 \\ 43.8 \\ 46.3$	356 8 322 319 7	i 6 22	$\begin{array}{r} + & 3 \\ + & 3 \\ + & 1 \\ + & 3 \end{array}$	i 11 22 i 11 18 12 43 i 14 51	$-{63 \atop -63 \atop 0}$	12 37 e 6 53 e 9 44	PP	i 16.5 i 18.1 i 18.6
Mobile Columbia Georgetown Philadelphia Cape Girardeau	E.	47.6 48.8 52.9 53.8 54.2	$339 \\ 348 \\ 354 \\ 356 \\ 342$	i 8 29 e 8 33 i 9 6 i 9 13 i 9 14	+ 4 - 1 + 1 + 0	i 15 9 i 15 23 i 16 22 i 16 36 e 16 35	$ \begin{array}{r} 0 \\ 3 \\ 0 \\ + 1 \\ - 5 \end{array} $	i 18 7 i 10 5 e 10 5 e 10 4	ScS pP pP PcP	e 21·3 e 21·7
Fordham New Kensington St. Louis Florissant Harvard		54.6 54.9 55.6 55.8 56.1	358 351 341 341 359	i 9 17 e 9 23 i 9 24 i 9 26 i 9 29k	$\begin{array}{c} + & 0 \\ + & 3 \\ - & 1 \\ 0 \\ + & 1 \end{array}$	i 16 44 i 16 51 i 16 54 i 16 58 i 17 4	$ \begin{array}{rrr} - & 1 \\ + & 2 \\ - & 4 \\ - & 3 \\ - & 1 \end{array} $	i 10 18 i 18 52 i 10 21 i 10 23 i 10 20	P _c P S _c S pP pP	e 24·3 e 26·8 e 26·2
Buffalo Chicago Vermont Halifax Ottawa		57·1 57·7 58·1 58·5 59·2	353 344 357 6 356	$\begin{array}{c} 9 & 33 \\ i & 9 & 37 \\ e & 9 & 48 \\ e & 12 & 15 \\ 9 & 50 \\ \end{array}$	- 2 - 2 + 6 PP 0	i 14 7 i 17 17 i 17 29 e 22 77 i 17 45	- 9 - 2 SS - 1	e 10 42 e 10 46 e 15 31 e 10 54	PeP PeP PeP	e 25·8 e 28·0 e 27·1
Shawinigan Falls Tucson Seven Falls La Jolla Boulder City		$60.2 \\ 60.3 \\ 60.7 \\ 64.8 \\ 65.2$	358 323 359 317 321	9 58 i 9 55 10 1 i 10 25k i 10 28	$\begin{array}{cccc} + & 1 \\ - & 2 \\ + & 1 \\ - & 2 \\ - & 2 \end{array}$	17 58 e 17 52 18 5 e 18 52 i 18 59	- 8 - 4 - 2	i 10 38 e 19 27 i 10 56 i 20 3	pP sS PcP ScS	e 25·1 24·9 29·1
Rapid City Riverside Pasadena Salt Lake City Santa Barbara		65.2 66.2 66.8 67.4	335 318 318 327 317	i 10 29 i 10 31k i 10 34k i 10 39 i 10 42k	- 2 - 1	i 18 58 e 19 4 i 19 10 i 19 17	- 3 - 2 - 3 - 3	i 12 40 i 11 13 i 11 21 e 23 57 i 10 57	PP pP SS pP	e 26·8 e 26·5 e 27·5
Logan Tinemaha Fresno Bozeman Lick	N.	$67.5 \\ 68.1 \\ 68.8 \\ 69.9 \\ 70.4$	$328 \\ 320 \\ 319 \\ 331 \\ 318$	i 10 42 i 10 46k i 10 49 e 11 1 e 11 1	- 2 - 2 - 3 + 2 - 1	i 19 24 e 19 34 e 19 59 e 20 1	- 5 - 2 + 2 - 2	i 10 54 i 11 24 e 13 18	pP pP PP	e 28·5 e 28·4
Santa Clara Butte Berkeley Ukiah Saskatoon		70.6 70.9 71.1 72.4 73.0	318 331 318 320 338	i 11 1 1 i 12 14 i 11 4 e 11 13 18	$ \begin{array}{r} $	i 20 4 i 21 17 e 20 6 e 20 16 i 20 31	$ \begin{array}{r} - & 1 \\ + 68 \\ - & 5 \\ - & 10 \\ - & 1 \end{array} $	e 13 50 e 13 40	PP PP	e 29·4 e 30·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

> 54 1944

	Δ	Az.	P. a. s.	O – C.	S. m. s.	O – C. s.	m. s.	pp.	L. m.
Spokane Seattle Lisbon Victoria San Fernando	74·4 77·0 77·2 78·1 78·2	329 i 1	3 55 1 44 1 47	$ \begin{array}{rrr} & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \end{array} $	i 20 46 e 23 19 i 21 27 i 21 29 i 21 40	$ \begin{array}{r} - & 2 \\ + & 8 \\ + & 1 \\ + & 1 \end{array} $	e 16 38 i 13 11	PPP — pP	e 32·7 33·4 33·1
Granada Tortosa Barcelona Clermont-Ferrand Stonyhurst	80·4 84·8 86·2 88·4 88·4	47 e 1 46 42 i 1		$ \begin{array}{c} + & 2 \\ - & 1 \\ + & 2 \\ + & 1 \end{array} $	21 55 i 22 29 i 22 53 i 22 50 i 23 12	$^{+}_{-}\overset{2}{\overset{8}{\overset{1}{3}}}_{1}$	12 45 22 43 i 16 16 i 24 21	$\begin{array}{c} \mathbf{pP} \\ \mathbf{S_cS} \\ \mathbf{PP} \\ \mathbf{PS} \end{array}$	42·8 —
Kew Sitka Paris Aberdeen Scoresby Sund	88.6 89.0 89.2 90.1 90.4	39 i 1 31 i 1	2 38 2 43	${ \begin{array}{c} - & 0 \\ 3 \\ + & 1 \\ - & 20 \\ + & 2 \end{array} }$	i 23 17 i 23 12 e 23 0 i 22 58 i 23 30	$ \begin{array}{r} $	i 13 29 e 16 18 16 21 23 32 24 39	$\begin{array}{c} \mathbf{pP} \\ \mathbf{PP} \\ \mathbf{SeS} \\ \mathbf{PS} \end{array}$	e 46·1 e 34·9 43·1 37·5
Uccle Basle De Bilt Milan Strasbourg	91.0 92.0 92.4 92.4	42 e 1 37 i 1	2 58k 7 34	$^{+}_{+}^{0}_{3}^{+}_{+}^{3}_{+}$	i 23 6 e 23 4 i 23 13 i 23 47	$\begin{bmatrix} -3 \\ -10 \end{bmatrix} \\ \begin{bmatrix} -1 \\ -1 \end{bmatrix} \\ + 6 \\ 0 \end{bmatrix}$	e 13 38 e 13 42	pP pP —	e 39·1
Zürich Chur Stuttgart Bergen Jena N.	$92.5 \\ 93.0 \\ 93.4 \\ 94.9 \\ 95.4$	42 e 1 43 e 1 41 i 1 28 39 e 1	3 1 3 3 k	$+ \frac{2}{1} + \frac{1}{56}$	e 23 17 e 23 18 e 23 53 e 23 34	$\begin{bmatrix} & 0 \\ - & 2 \\ - & 2 \\ [+ & 4 \end{bmatrix}$	e 13 47 e 16 50 e 13 49 e 24 19	PP PP PP S	
Triest Cheb Potsdam Prague Copenhagen	95·5 95·8 96·7 97·0 97·2	45 e 1 40 e 1 37 40 e 1 34 i 1	4 5 7 22	PP + 52 PP + 2	i 23 31 e 23 37 i 23 40 e 24 32 i 24 33	$\begin{bmatrix} - & 2 \\ + & 1 \end{bmatrix}$ $\begin{bmatrix} + & 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} + & 6 \\ + & 5 \end{bmatrix}$	e 25 43 i 24 26 i 25 57 17 51	PS S PS PP	e 40·1
College Wellington Christchurch Arapuni Belgrade	97·4 98·9 99·2 99·8 100·0	$\frac{220}{227}$ 1	6 30 3 20 k 3 24	- 7 - 4	e 23 34 24 39 e 24 15 24 71 23 55	$\begin{bmatrix} -10 \\ -3 \\ [+22] \\ [+11] \\ [-2] \end{bmatrix}$	e 24 20 14 8 e 17 26 e 27 6	$\frac{\mathbf{p}_{\mathbf{P}}^{\mathbf{S}}}{\mathbf{PPS}}$	e 45·2 45·1 27·1
Upsala E. Auckland Bucharest Suva Helwan	100·7 100·9 103·9 105·4 106·5	31 e 1 228 1 47 e 1 247 1 63 e 1	7 54 8 0 7 37	PP PP	i 23 54 24 49 i 24 14 25 22 i 27 34	[- 6] -10 [- 1] -14 PS	i 24 55 27 37 i 19 27 i 28 57? 28 42	PPS PPS PPS	41·1 31·1 43·1
Tananarive Ksara Riverview Mizusawa E. N.	110·4 110·7 118·4 142·8 142·8	59 e 1 218 i 1 318 e 1	4 45 8 15 9 43 9 9? 9 13	SKS [- 2] PP [-10] [- 6]	(24 45) e 24 49 i 29 11 e 22 40 e 22 48	[+ 1] [+ 4] SP PKS PKS	e 34 29 i 30 31	PS SS PPS	34·0 —
Colombo E.	144.0 146.3 149.6 157.7	59 i 1	9 21 9 25 7 37 9 44	[+ 1] [0] [+ 3]	26 17 29 25 29 44 1 30 30		$\begin{array}{c} 22 & 38 \\ 22 & 51 \\ \end{array}$	PP PP	42·7 =
Additional reading La Plata Z = 51 9m.55s. San Juan isP =	n.29s.,							49s., S	SEN =

Bermuda ePP = 8m.56s., i = 9m.14s., epPP = 10m.49s.

Columbia eS = 15m.19s., e = 19m.40s.

Georgetown is S = 18m.36s. Philadelphia e = 9m.35s., i = 12m.11s., $iS_eP = 13m.58s.$, $iS_cS = 18m.43s.$, e = 20m.5s.

Cape Girardeau eE = 14m.16s. and 18m.40s. Fordham e = 12m.18s., i = 14m.0s., 16m.39s., 18m.39s., and 18m.43s., e = 39m.21s.

New Kensington e = 15m.33s. St. Louis iZ =10m.5s., iPcPZ =10m.9s., iZ =10m.53s. and 11m.18s., iPPZ =11m.32s., iZ=12m.14s., ipPPZ=12m.34s., ipPPPPZ=14m.4s., iSE=16m.47s., iE= 17m.20s., iSPE = 18m.5s., iE = 18m.25s., iSSE = 18m.54s., $iS_cSE = 19m.39s.$ iSSE = 20m.50s., esSSIE = 22m.50s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

40m.1s.

Bombay PPN = 22m.41s., SKKSE = 29m.11s., SSE = 41m.6s.

New Delhi iN = 19m.54s. and 30m.2s., SSN = 34m.13s., SSSN = 36m.43s.

```
55
Florissant iZ = 10m.9s., P_cP = 10m.16s., iPPZ = 11m.37s., ipPPZ = 12m.30s., ipPPPPZ
     =14m.5s., iSE =16m.51s., eSPE =17m.38s., iE =18m.9s., isSE =18m.56s.,
     iS_cSE = 19m.42s., iE = 20m.18s., iSSE = 20m.51s. and 21m.0s., eE = 22m.2s.,
     esSS = 22m.39s., eE = 25m.6s.
Harvard is S = 18m.58s., eSS = 20m.59s., eSSS = 23m.1s.
Buffalo ePPP = 10m.23s., e = 10m.41s.
Chicago ePPP = 13m.15s., isS = 18m.38s., i = 19m.9s., e = 21m.7s.
Vermont e = 12m.56s., i = 13m.18s., isS = 18m.59s., iSS = 21m.36s., e = 23m.38s.
Ottawa e = 14m.21s., i = 19m.19s., SS = 21m.41s., SSS = 24m.7s.
Tucson i = 11m.42s., 12m.20s., and 13m.42s., iS = 16m.58s., isS = 19m.27s., e = 21m.22s.
Seven Falls SS = 22m.1s.
La Jolla eS_0SN = 20m.4s., ePKP,PKPZ = 39m.13s.
Rapid City epPP = 13m.42s., i = 22m.58s.
Riverside iZ = 10m.50s., iP_cPZ = 10m.59s., eS_cSEN = 20m.4s., iPKP.PKPZ =
     39m. 11s.
Pasadena iZ = 10m.49s., iP<sub>c</sub>PZ = 11m.2s., isPZ = 11m.45s., eZ = 12m.45s., iS<sub>c</sub>SE =
     20m.5s., isSE = 20m.31s., eSSEN = 23m.39s., ePKP,PKPZ = 38m.38s., iPKP.
    PKPZ = 39m.10s., eZ = 42m.7s., eSKP, PKPZ = 42m.32s.
Salt Lake City e = 12m.34s, and 22m.20s.
Santa Barbara ePKP,PKPZ = 39m.6s.
Logan e = 27m.17s.
Tinemaha iZ = 11m.5s., iS_cSEN = 20m.34s., iPKP,PKPEZ = 39m.1s., iZ = 39m.12s.
     eSKP.PKPZ = 42m.9s.
Bozeman i = 20m.43s., e = 24m.5s.
Butte i = 12m.46s., iS = 21m.20s., eSS = 25m.53s.
Ukiah e = 21 \text{m.1s.}, eSS = 25 \text{m.3s.}
Spokane i = 11m.36s, and 12m.20s.
Seattle eSS = 26m.19s., e = 28m.42s., eSSS = 30m.9s.
Lisbon SZ = 21m.30s., N = 22m.54s., SSE = 27m.25s.
San Fernando eE = 12m.55s., iE = 13m.18s., iE = 22m.51s., isS?E = 23m.50s.
Granada iPP=15m.38s., ipPP=16m.11s., SKKS=22m.16s., iS=23m.11s., PS=
    23m.35s., sS = 23m.57s., SS = 29m.2s., SSS = 33m.10s.
Tortosa iN =13m.23s.
Clermont-Ferrand e = 16m.46s.
Stonyhurst PP = 17m.32s., PPP = 18m.16s., iSKS = 22m.53s., iSKKS = 23m.0s.,
     iS_{c}S = 23m.16s., i = 25m.21s. and 25m.39s., SS = 29m.21s., PKKP = 30m.32s.,
    SSS = 33m.78.?
Kew is PZ = 13m.52s., iPPZ = 16m.17s., iEZ = 17m.21s., and 22m.13s., iSKS = 22m.51s.,
     iSKKS = 23m.10s., iPS = 24m.24s., iPPS = 24m.53s., i = 25m.15s., eEZ =
    27m.54s., eSSZ = 29m.9s., eSSEN = 29m.59s.?, eSSSEN = 32m.59s.?, eSSSZ =
    33m.32s., eQEN = 37m.57s.
Sitka eSKS = 22m.19s., isS = 24m.14s., e = 27m.56s., iSS = 29m.15s., eSSS = 32m.44s.,
     i = 33m.27s.
Aberdeen iEN = 13m.42s. and 24m.37s., iE = 29m.27s.
Scoresby Sund 13m.38s., i = 14m.0s., 16m.59s., iSKS = 23m.5s., 29m.15s.
Uccle ePPEN = 16m.16s., iE = 17m.38s., ePSE = 24m.37s., iEN = 24m.51s. and 26m.9s.,
     essen = 32m.7s.7.
De Bilt iZ = 16m.43s., eZ = 17m.17s., iZ = 17m.47s., ePP = 19m.31s., eZ = 24m.57s.
Zürich ePP = 16m.37s.
Stuttgart ePPZ = 16m.47s., epPPZ = 17m.41s., iSKS = 23m.19s., iSPZ = 25m.17s.,
     iZ = 26m.11s., isSP = 26m.17s., eSS = 30m.23s., esSS = 31m.17s., ePKP,PKPZ =
    38m.27s.
Bergen eN = 26m.15s., eE = 26m.32s., eZ = 26m.59s., eEN = 32m.24s.
Cheb e = 18m.7s.? and 27m.1s.
Potsdam iSKKSE = 24m.4s., iSPE = 25m.52s.
Prague i = 18m.25s., iSKS = 23m.44s., e = 27m.7s., eSS = 31m.7s., eSSS = 35m.7s.
Copenhagen 22m.22s., i = 23m.42s., 25m.52s., and 31m.23s.
College e = 26 \text{m.} 35 \text{s.}, eSS = 31 \text{m.} 9 \text{s.}, e = 33 \text{m.} 53 \text{s.}
Wellington sPZ = 14m.34s., PP = 17m.19s., pPPZ = 18m.15s., SP?Z = 25m.54s., PS?Z =
    26m.31s., SS = 31m.7s.
Christchurch eEZ = 18m.2s., eE = 21m.7s., iZ = 26m.1s.
Belgrade e = 30m.20s.
Upsala iE = 24m.30s., eE = 26m.30s. and 31m.57s.
Auckland SS = 31m.53s.
Bucharest iPPN = 19m.31s., eP<sub>c</sub>PN = 19m.53s., iSSN = 26m.57s., iSSE = 27m.6s.,
    iN = 27m.36s., iS_cSN = 28m.4s., iEN = 28m.34s.
Helwan eEZ = 19m.13s., PKP?E = 21m.52s., SKP?E = 24m.26s., PPP?E = 25m.16s.,
    SKKS?E = 29m.4s.
Tananarive PP = 25m.14s., eS = 29m.7s.
Ksara e = 25m.53s.
Riverview eN = 30m.10s., eE = 30m.17s., eSSE = 35m.51s., eSSN = 36m.5s., eE =
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944 56

Feb. 29d. 16h. 28m. 4s. Epicentre 0°-3N. 75°-3E.

Felt in Ceylon and Southern India. Government of India Seismological Bulletin, Jan. to March 1944, Bombay 1945, p. 3. Epicentre 0°·5N. 75°·5E.

A = +.2538, B = +.9673, C = +.0052; $\delta = +11$; h = +7; D = +.967, E = -.254; G = +.001, H = +.005, K = -1.000.

D = +.967, $E =254$; $G = +.001$, $H = +.005$, $K = -1.000$.											
Bombay	E. N.	∆ 8.0 18.6 25.5	Az. 35 353 30	m. 2 i 4 i 5	8. 0 25 5k	$0 - C.$ 0 $+ \frac{4}{27}$	S. m. s. i 3 16 i 8 3 i 9 58	O-C. s. -17 +17 + 1	m. Sur m. s. 5 47 i 5 18	pP.	L. m: =
New Delhi	E. N.	28·2 28·2 30·0	4 4 5	e 6 i 6 i 6	9 k 0 k 9 k	$+13 \\ + 4 \\ - 3$	i 10 54 i 10 44 i 11 6	$^{+13}_{+3}$	6 43 6 34	PP PP	13·7 13·6 i 15·5
Tananarive Ksara Perth Helwan Johannesburg	725	33·3 49·8 50·0 51·1 52·6	235 316 135 310 237	e 8 i 9 e 9	40 58 58 6k 20	- 1 + 2 0 + 2	11 56 e 16 8 16 16 15 53 e 16 44	$ \begin{array}{r} - & 6 \\ + & 2 \\ + & 7 \\ - & 31 \\ 0 \end{array} $	7 42 10 56 10 47 e 10 50	PP PP PP	16·2 - e 23·1 e 22·3
Zi-ka-wei Istanbul Hukuoka Kumamoto Miyazaki	N.	53·4 58·2 61·3 61·3	51 321 52 53 55	10	23 6 12 22 36	$^{-1}_{+8}^{+8}_{-8}^{+15}$	17 7 18 1 e 18 37 18 53 13 45	+12 + 2 - 2 +14 PPP	13 51 —	PP =	27·2 25·1
Bucharest Hamada Kôti Sumoto Wakayama		$61.8 \\ 63.0 \\ 63.7 \\ 65.1 \\ 65.2$	323 51 53 52 52	i 10 10 10 i 10 10	23 a 36 35 44 46	+ 5 - 1 - 1 + 1	i 18 46 19 12 19 12 19 38 19 42	$ \begin{array}{r} 0 \\ + 11 \\ + 2 \\ + 11 \\ + 14 \end{array} $	i 12 32	PP = =	28·9 —
Kobe Toyooka Siomisaki Belgrade Osaka		65·4 65·4 65·5 65·6 65·7	52 51 54 320 52	10 e 10 i 10 10	46 47 47 47 49	- 1 - 0 - 1 + 1	19 29 19 31 19 32 1 19 28 19 28	- 1 + 1 - 0 - 6	i 13 26	- - PP	e 32·2
Toyama Kohu Hunatu Misima		67.6 68.3 68.4 68.5	50 52 52 53	11 11 11	11 6 4 7	$^{+10}_{-2}$ $^{+1}$	20 8 20 8 19 40 20 18	$^{+11}_{+2}$ $^{-27}$ $^{+10}$		=	
Yokohama Tokyo Triest Hukusima Mizusawa	E.	69·1 69·3 70·2 70·4 71·2	52 52 320 50 49	e 11 i 11 11 11	28 16 15 26 27	+18 + 5 - 2 + 8 + 4	e 20 25 i 20 22 20 33 e 20 38	$ \begin{array}{r} -11 \\ +8 \\ -6 \\ +3 \\ -2 \end{array} $	i 13 56	PP	e 36·2 e 33·9
Prague Mori Miyako Sapporo Cheb		71.7 71.7 72.0 72.5 72.7	324 46 49 45 323	i 11 e 11 e 11 i 11	26 a 9 27 33 34	$^{+}_{-17}^{2}$ $^{-}_{+3}^{1}$ $^{+}_{2}^{2}$	e 20 42 20 23 20 47 20 54 i 21 1	$ \begin{array}{r} -1 \\ -22 \\ -2 \\ -2 \\ 4 \end{array} $	e 14 23 e 14 24	PP = PP	e 31·9 e 35·8 e 39·9
Milan Potsdam Chur Jena Upsala		$73.2 \\ 73.4 \\ 73.5 \\ 74.1$	318 326 320 324 334	i 11 i 11 e 11 e 11	36 35 35 32 36	+ 1 0 - 1 - 4 - 4	i 21 21 i 20 59 e 20 58 e 21 2 21 0	$^{+19}_{-3}$ $^{-3}_{-4}$ $^{-12}$	14 34 1 14 28 e 14 22 1 14 30	PP PP PP	e 34·2 e 28·9 e 35·3 e 34·9
Stuttgart Zürich Copenhagen Basle Neuchatel		74·2 74·2 74·8 74·9 75·1	322 320 329 320 320	i 11 i 11 i 11 e 11 i 11	39 a 40 a 43 44 a 45	- 1 - 1 - 1	i 21 7 e 21 8 i 21 18 e 21 15 e 21 19	- 7 - 6 - 2 - 7 - 5	i 14 16 e 14 25 14 36 e 14 33	PP PP PP	e 42·0
Strasbourg Barcelona Clermont-Ferrand De Bilt Uccle		75·1 77·2 77·4 77·6 77·8	321 313 317 324 323	i 11 i 11 i 12 i 12 i 12	45 a 58 59 0 a	- 1 + 1 + 1 - 1	i 21 16 i 22 0 e 22 23 e 21 46 i 21 50	- 8 +13 PS - 5 - 3	e 14 40 e 15 7 i 12 13 i 12 12	PP PP pP	30·9 31·0 e 43·0 e 35·9 e 37·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Λz.	P. m. s.	O – C. s.	s. m. s.	O -C.	m. s.	p p.	L. m.
Tortosa Riverview Sydney Paris Brisbane	E.	78·3 78·4 78·5 78·5 79·3	$312 \\ 125 \\ 125 \\ 320 \\ 119$	i 12 4 i 12 4 e 11 32 i 12 4 i 12 5	$^{+}_{-32}^{1}_{0}$	$\begin{array}{c} 21 & 59 \\ i & 21 & 56 \\ i & 21 & 56 \\ i & 21 & 56 \\ i & 22 & 0 \end{array}$	- 4 - 5 - 5 - 9	15 12 i 26 47 e 11 56 15 12 i 14 39	PP PP PP	36.8 i 36.1 e 35.9 e 37.0
Bergen Kew Granada Stonyhurst Aberdeen		80·8 80·8 81·0 82·5 82·9	$332 \\ 323 \\ 308 \\ 325 \\ 328$	i 12 4 i 12 18a i 12 21a i 12 25 1 12 29		1 22 22 1 27 48 1 22 56 1 22 47	+ 4 - 3 + 14 + 1	12 14 1 15 24 15 27 1 12 39 1 15 25	PP PP PP	31.9 e 41.4 i 40.2 39.9 36.6
San Fernando Lisbon Scoresby Sund Reykjavik Christchurch	E.	83·0 85·5 92·1 92·9 95·5	307 309 341 335 135	i 12 29 i 12 42k i 13 13 e 17 2 13 26	+ 1 + 1 + 1 PP - 2	e 22 49 i 23 12 24 19 e 32 26 24 40	$\begin{array}{cccc} + & 2 & & & \\ + & 0 & & & \\ + & 6 & & & \\ - & 2 & & & \end{array}$	i 15 53 i 12 54 i 16 59 17 15	PP PP PP	44·4 49·6 e 47·4 43·5
New Plymouth Wellington Auckland Arapuni College		$97.0 \\ 97.3 \\ 97.8 \\ 98.3 \\ 107.9$	130 132 127 129 18	13 40 13 361 13 51 17 38 e 18 59	$^{+\ 5}_{0} \ ^{+13}_{{ m PP}} \ { m PP}$	24 23 24 8 25 13 24 2 e 24 58	[+11] $[-5]$ $+11$ $[-17]$ $[-5]$	$\begin{array}{c} -17 & 16 \\ 17 & 44 \\ 31 & 50 \\ e & 37 & 57 \end{array}$	PP PP SS SS	44·4 43·9 41·9 e 41·7
Sitka Halifax Honolulu Seven Falls La Plata		117.4 122.3 123.9 124.3 124.5	$ \begin{array}{r} 18 \\ 327 \\ 64 \\ 333 \\ 227 \end{array} $	e 14 56 e 18 8 e 20 49 19 0 19 19	$egin{array}{c} \mathbf{P} \\ -49 \\ \mathbf{PP} \\ [-1] \\ [+18] \end{array}$	e 25 51 e 28 20 e 27 36 27 56 27 56	$\{+10\}$ $\{+51\}$ $\{-4\}$ $\{+13\}$ $\{+12\}$	e 20 1 e 48 56? e 37 30 20 44 21 2	PP Q SS PP PP	68·9 68·9 50·2 52·9 57·7
Shawinigan Falls Vermont Saskatoon Ottawa Harvard		125.6 127.4 127.7 127.8 128.0	$334 \\ 332 \\ 2 \\ 335 \\ 329$	e 21 0 e 20 59 i 19 7	[+ 2] PP PP $[-1]$ $[-1]$	e 31 12 e 28 4 31 8 e 26 24	PS {- 1} PS [+ 9]	$\begin{array}{cccc} 21 & 6 \\ i & 38 & 7 \\ e & 38 & 2 \\ & 21 & 9 \\ i & 21 & 12 \\ \end{array}$	PP SS PP PP	e 50·9 e 50·9 e 60·9 e 72·9
Victoria Seattle Bermuda Fordham Buffalo		128 · 8 129 · 8 130 · 2 130 · 4 131 · 1	16 15 315 330 335	e 24 6 e 21 23 e 19 13 19 15	[+26] PPP PP [0] [+1]	28 15 e 32 6 i 33 22	PS PPS	e 39 10 i 21 26 e 21 31	SS PP PP	57·9 e 56·5 e 54·5
Philadelphia Pennsylvania Butte New Kensington Georgetown		131·7 132·4 133·4 133·4 133·5	329 333 7 335 331	e 21 27 i 21 36 e 23 5 e 21 47 i 19 19	PP PP PKS PP [0]	i 28 42 i 22 46 e 29 36 e 33 26	(+12) PKS (+55) PPS	e 38 57 e 40 36 e 22 53	SS PKS	e 55·1 e 66·1 e 58·2
Bozeman Fort de France Chicago Rapid City Ukiah		133.9 134.4 135.3 135.8 137.2	291 343 358 21	e 21 52 e 19 21 e 18 57 i 19 24 e 22 12	PP [+ 1] [-25] [+ 1] PP	i 22 56 e 40 7 e 39 13 e 28 44	PKS SS {-20}	e 39 34 e 22 0 e 22 5 e 40 28	PP PP SS	e 54·4 e 61·2 e 58·4 e 56·2
Logan San Juan Salt Lake City Florissant St. Louis	z.	137.7 137.8 138.6 138.9 139.0	299 8 343 343	e 19 21 e 19 29 e 19 26 e 19 20 e 19 23	[-5] $[+3]$ $[-2]$ $[-9]$ $[-6]$	e 40 7 e 40 39 e 40 21 e 27 8 e 26 43	SS SS [+31] [+5]	i 22 23 e 22 3 i 22 30 e 22 18 i 22 18	PP PP PP PP	e 58·1 e 56·0 e 62·1
Columbia Santa Clara Cape Girardeau Tinemaha Pasadena	z.	139.3 139.3 140.0 140.7 143.5	$330 \\ 21 \\ 341 \\ 17 \\ 19$	e 20 3 i 19 30 e 19 41 i 19 28 i 19 33	[+34] $[+10]$ $[-4]$ $[-4]$	e 29 19 e 23 8 e 41 20	(+ 2) PKS SS	e 22 26 e 38 58 e 22 25 i 22 34 i 22 46	PP SS PP PP	e 56·4 e 75·9 e 55·9
Riverside La Jolla Mobile Tucson Huancayo		143·9 145·0 145·4 147·1 148·6	19 19 335 10 247	i 19 34; i 19 40 i 19 45 i 19 44 e 19 48	[-3] $[+1]$ $[+5]$ $[+3]$	i 26 36 e 26 48	[-14] [-4]	e 22 58 i 23 11 i 23 18	PP PP	e 66·3 e 61·5

Additional readings:—
Bombay PPPN =5m.53s., iSSN =8m.35s.Calcutta iSN =9m.40s., SSN =11m.5s.New Delhi PPPN =6m.54s., P_cPN =9m.18s., SSN =11m.1s., iN =11m.33s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

58

```
Tananarive EN = 6m.51s., i = 8m.18s., SS = 13m.54s., N = 14m.32s., 15m.36s., and
     15m.52s.
Perth SS = 19m.44s. and SSS = 20m.56s.
Helwan PPPE =11m.25s.
Johannesburg eSS?EN = 19m.8s.
Bucharest ePN = 10m.26s., ePcPN = 11m.13s., ePcPE = 11m.16s., iPPE = 12m.35s.,
     iZ = 14m.26s., iS_cS?E = 20m.16s., iS_cS?N = 20m.22s.
Belgrade i = 10m.59s., 14m.1s., and 15m.36s.
Mizusawa eSN = 20m.47s.
Prague e = 15m.2s., ePPP = 15m.59s., ePS = 20m.56s., eSS = 25m.14s.,
     28m.26s.
Sapporo i = 15m.9s.
Cheb ePPP=16m.15s., ePS=21m.26s., eSS=25m.57s., cSSS=29m.46s.
Milan SSE = 25m.27s.
Potsdam iP_ePE = 11m.47s., iP_ePN = 11m.50s., iE = 21m.15s., iSKSE = 21m.38s.,
     iSKSN = 21m.43s., iN = 22m.16s., eSSN = 25m.38s.?
Jena ePN = 11m.36s., eE = 16m.21s., eSSE = 26m.2s., eE = 29m.47s.
Unsala iE = 11m.50s., iPPPE = 16m.22s., PPPN = 16m.32s., iPSE = 21m.21s., iPSN =
     21m.24s., iN = 21m.52s., eE = 25m.36s., eN = 25m.40s., SSE = 26m.0s., eSSS3N = 21m.24s.
     29m.30s., eSSS?E = 29m.34s.
Stuttgart iZ = 11m.42s., iPcP? = 11m.52s., i=12m.32s., iPPZ = 14m.36s., iPPZ =
     16m.26s., iPS = 21m.45s., and 22m.6s., e = 30m.11s., eQ = 35m.26s.?,
    ePKP.PKPZ = 39m.11s.
Zürich ePPP = 16m.15s.
Copenhagen 12m.26s., 15m.17s., 21m.39s., and 26m.8s.
Basle e = 11m.56s.
Strasbourg eP_cS = 17m.42s., eSS = 26m.14s.
Clermont-Ferrand e = 17m.35s.
De Bilt iPP = 15m.6s., iPPPP = 18m.6s., eSS = 26m.56s.?.
Uccle iPP = 15m.4s. and 15m.7s., eZ = 18m.9s.
Tortosa PPN =17m.11s., PSE =22m.31s., SSE =27m.14s., QE =31m.25s.
Riverview iP_cP = 12m.12s., iS_cSN = 22m.18s., iPSE = 22m.35s., iE = 27m.20s., iSSSE =
     30m.22s., eN = 30m.28s., iE = 30m.46s., eQN = 32m.2s.
Paris e = 18m.16s.
Brisbane ePN = 12m.12s., iZ = 16m.3s., iE = 27m.32s., iSSN = 30m.39s., iQE =
    33m.13s.
Bergen eZ = 13m.5s., iPPZ = 15m.21s., eE = 21m.38s., SN = 22m.8s., PPSZ = 23m.20s.,
    SSE = 27m.36s., eN = 27m.53s.
Kew iPcPE = 12m.30s., iEN = 13m.11s., iPPE = 15m.32s., iPPPEN = 17m.3s., ePPPZ
     =17m.33s., iSKSEN =22m.36s., ePSEN =23m.31s., iEN =24m.49s., eSSEN =
     27m.50s., eSSS?E = 31m.26s.?, eSSSNZ = 32m.56s.?.
Granada P_cP = 12m.33s., S_cS = 22m.5s.
Stonyhurst P_cP = 12m.29s., 13m.13s., PP = 15m.48s., PPP = 17m.56s., SKS? = 22m.52s.,
     S_cS_1 = 23m.13s., iPS = 23m.55s., PPS = 24m.13s. and 24m.59s., SS = 28m.5s.
Aberdeen iN = 12m.44s., iE = 19m.22s., iEN = 23m.2s., and 27m.32s., iE = 32m.12s.
San Fernando iE = 14m.9s., ePPPE = 17m.48s., iSE = 23m.20s., iPSE = 24m.3s.,
     eSS = 28m.46s.
Lisbon N = 13m.8s.?, PPE = 15m.52s.? and 16m.3s.?, iPPZ = 16m.14s., N = 16m.36s.,
    16m.48s., and 17m.58s., SE = 23m.17s., SSE = 28m.14s., N = 36m.26s.?
Scoresby Sund i = 19m.7s., 22m.15s., 23m.57s., 24m.35s., 25m.33s., and 30m.26s.
Christchurch iZ = 13\text{m.}35\text{s.}, eE = 23\text{m.}34\text{s.}, SKS = 24\text{m.}0\text{s.}, PPS = 26\text{m.}4\text{s.}, SS =
    31m.8s., SSS = 34m.10s., Q = 38m.44s.
Wellington P_cPZ = 13m.41s., i = 13m.58s., iZ = 17m.51s., PPPZ = 19m.39s., i = 23m.44s.,
    PS? = 24m.59s., PPS = 26m.11s., SS? = 31m.41s., Q = 39m.56s.
Auckland i = 14m.43s., PPP = 19m.26s., PS = 26m.24s., i = 27m.6s., PPPS = 28m.21s.,
    SS = 31m.28s., Q = 38.9m.
Arapuni SSS = 36m.14s.
College e = 28m.21s., 32m.38s., and 34m.20s.
Sitka e = 22m.42s, and 25m.56s., eS = 26m.56s., e = 28m.0s., ePS = 29m.27s., eSS = 28m.0s.
    36m.8s., e = 36m.26s., eSSS = 39m.53s., e = 47m.56s.
Honolulu e = 24m.29s., and 40m.28s.
Seven Falls PPP = 23m.41s., PS = 30m.56s., SS = 38m.26s.
La Plata PKPN = 21m.20s., PPE = 22m.20s., PPPE = 26m.20s., N = 26m.56s., SKKSN =
    30\text{m.}20\text{s.}, PSE = 32\text{m.}26\text{s.}, PSN = 32\text{m.}32\text{s.}, SSN = 37\text{m.}32\text{s.}, SSE = 37\text{m.}56\text{s.},
    QN = 52.7m., true PKP is given as P and PP as PKP, and other phrases are
    wrongly identified.
Vermont iPP = 21m.21s., i = 24m.6s., e = 28m.10s., i = 32m.57s.
Ottawa PPP = 24m.10s., SS = 38m.26s., SSS = 43m.26s.
Harvard ePKS? = 22m.24s., ePPP = 24m.8s., e = 25m.35s., ePS = 31m.16s., ePPS =
    33m.2s., e = 39m.6s.
Victoria SKP = 22m.44s., PS = 31m.24s., PPS = 33m.16s., SS = 38m.19s., SSS = 43m.38s.
Bermuda i = 22m.32s., e = 33m.7s.
Buffalo e = 19m.19s., 19m.25s., 21m.49s., and 22m.9s.
Philadelphia i = 22m.42s., e = 25m.17s., i = 33m.27s., e = 44m.24s.
Pennsylvania i = 22m.34s.
Butte eSSS = 45m.28s.
New Kensington e = 35m.5s.
Georgetown e = 33m.39s, and 33m.43s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

59

Bozeman e = 40m.16s. Chicago i = 22m.51s., e = 32m.0s., 34m.9s., and 45m.9s.Rapid City e = 24m.38s., and 35m.16s. Ukiah e = 24m.19s., 25m.23s., and 34m.4s., eSSS = 45m.48s.Logan i = 19m.38s., e = 25m.12s., and 28m.5s., eSSS = 45m.37s. San Juan e = 21m.59s., 31m.51s., 35m.9s., and 37m.38s.Salt Lake City e = 25m.17s., 32m.36s., and 34m.36s., eSSS = 46m.31s.Florissant iZ = 19m.40s., eSKPZ = 22m.48s., iZ = 23m.13s., ePPPZ = 25m.28s., ePPPPZ = 27m.47s., ePSKSE = 32m.35s., ePPPSZ = 36m.11s., eSSE = 40m.41s., eSSSE = 45m.41s.St. Louis iPKPZ = 19m.29s., iZ = 19m.38s., iSKPZ = 23m.2s., iZ = 23m.30s., iPPPZ = 25m.25s., ePPPPZ = 27m.39s., ePSKSN = 32m.19s., ePPS?N = 34m.22s., eSSN = 40 m. 34 s., ePPSSN = 41 m. 42 s., eSSSN = 45 m. 55 s.Columbia e = 32m.12s., eSS = 40m.37s.Pasadena iPPPZ = 26m.8s., eSKSPEN = 32m.40s., iSSSEN = 47m.17s.Tucson i = 21 m. 56 s., 24 m. 32 s., and 28 m. 58 s., e = 33 m. 9 s., i = 37 m. 23 s., e = 42 m. 6 s.and 43m.7s., eSSS = 47m.18s., e = 53m.30s.Huancayo e = 22m.41s., 29m.27s., and 33m.38s., cPKP,PKP = 40m.59s., e = 41m.54s., 43m.36s., and 51m.36s.

Feb. 29d. Readings also at 3h. (near Mizusawa), 5h. (near Balboa Heights), 19h. (near Apia), 20h. (St. Louis, Tucson, Pasadena, Palomar, and Riverside), 21h. (Ferndale), 23h. (Pehpei).

March 1d. Readings at 4h. (near Toledo), 7h. (Palomar and Tucson), 10h. (near Malaga), 12h. (De Bilt and Cheb), 13h. (St. Louis, Tucson, Tinemaha, Palomar, and Riverside), 14h. (Wellington and near Istanbul), 15h. (Bucharest), 21h. (Stuttgart, Tucson, Tinemaha, Palomar, Riverside, Pasadena, Wellington, Auckland, Riverview, and near Apia), 22h. (Tucson, Riverside, Palomar, and Tinemaha).

March 2d. 11h. 16m. 18s. Epicentre 0°-3N. 75°-3E. (as on Feb. 29d.).

	3.5	Δ	Az.		٠.	O-C.	s.	O -C.	Su	pp.	L.
		0	0	m.	8.	s.	m. s.	s.	m. s.		\mathbf{m} .
Colombo	E.	8.0	35	1	57	- 3	3 24	- 9			-
Kodaikanal	E.	10-1	12	i 1	57	-31	i 3 46	-39			-
Bombay	2222	18.6	353	i 4	1000000	+ 3	18 0	+14	4 49	PP	$9 \cdot 1$
Calcutta	N.	25.5	30	e 5	23	- 9	i 9 48	- 9	i 10 54	SS	
New Delhi	N.	28.2	4	e 5	58	+ 2	e 10 42	+ 1			13
Stuttgart	z.	74.2	322	e 11	45	+ 5	-			-	-
Tinemaha	z.	140.7	17	e 19	42	1 + 101			e 22 46	PP	
Tueson	7.47	147-1	10	i 19	48	[+5]		-		_	2.00

Additional readings :-

Bombay SSN =8m.25s.

Tucson e = 19m.55s., i = 20m.2s., e = 20m.35s. Long waves were also recorded at Riverview.

March 2d. Readings also at 3h. and 4h. (Riverview), 12h. (near Fresno), 13h. (Mizusawa), 16h. (Tucson, Tinemaha, Riverside, Palomar, Pasadena, La Jolla, Santa Barbara, Riverview, and Wellington), 17h. (Stuttgart), 21h. (near La Paz).

March 3d. Readings at 0h. (La Jolla, Palomar, Tinemaha, Riverside, Tucson, and near Branner), 6h. (near Berkeley), 12h. (La Paz), 13h. (Bogota, Riverview, Sydney, and Brisbane), 14h. (Pasadena), 20h. (near Lick and Fresno).

March 4d. Readings at 5h. (Tucson, Pasadena, Tinemaha, and near Mizusawa), 9h. (Huancayo, Balboa Heights, and near Bogota), 13h. (near Apia), 14h. (Tucson and Palomar), 19h. (La Paz).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

60

March 5d. 17h. 16m. 1s. Epicentre 7°·5N. 126°·7E. Depth of focus 0·020. (as on 1940, Sept. 9d.).

A = -.5926, B = +.7950, C = +.1297; $\delta = +2$; h = +7; D = +.802, E = +.598; G = -.078, H = +.104, K = -.992.

		Δ	Az.	P.	O-C.	s.	O-C.	Su	pp.	L.
		0	0	m. s.	в.	m. s.	s.	m. s.		m.
Mizusawa		34.1	19	e 6 30?	- 1	e 11 54	+10		_	1
Calcutta	N.	39.7	297	e 7 21	+ 3	i 13 43	+34	-		7:
Perth	2000	40.6	194	i 12 29	8	i 17 39	3	-		-
Brisbane	N.	43.1	144	i 7 47	+ 1	i 13 55	- 4	e 9 23	\mathbf{PP}	e 19.8
Colombo	E.	46.4	272	8 6	– 6			-		
Riverview		47.2	152	i 8 21 a	+ 3	i 15 4	+ 6	i 18 28	SS	e 24·5
Sydney		$47 \cdot 2$	152	e 14 11	8		-	- 		
Hyderabad		48.0	287	7 23	-61	14 32	-37	18 12	SS	22.4
Kodaikanal	E.	48.7	278	i 8 29	- 1			i 10 29	\mathbf{PP}	_
New Delhi	N.	51.1	302	e 8 47	- 1	e 15 42	-10	10 44	\mathbf{PP}	-
Bombay		53.5	288	e 9 3	- 3	i 16 18	- 6	e 10 54	PP	23-33
Auckland		63.0	139	-		17 593			\- <u>-</u>	ş
Arapuni		64.3	139	e 13 59?	PP			-		
Wellington		65.5	142		-	20 93	+71	30 591	Q	33.0
Christchurch		65-6	145	19 3	s	(19 3)		31 16	Q	$35 \cdot 1$
College		80.7	26	e 12 2	+ 5	e 22 3	+14	e 26 58	SS	e 38·3
Ksara		86.6	303	e 12 30	$^{+}_{+}$ $^{5}_{4}$	e 22 52	+ 4			
Sitka		88-1	33			e 22 56	[+12]	i 23 16	S	e 41.8
Helwan		90.9	300	i 12 47k	0	i 23 35	+ 8	23 14	SKS	-
Copenhagen		$97 \cdot 1$	329	13 15	0					47.0
Cheb		99.4	324		•	e 23 59?	[+13]		-	-
Stuttgart	Z.	101.9	323	e 13 36	- 1					
Pasadena	Z.	106.1	51	i 29 44	PKKP			_		e 44·0
Riverside	Z.	106.7	51	i 18 21	\mathbf{PP}	Santa Para		i 29 41	PKKP	
Tucson		112.5	50	e 16 23	P	e 18 6	PKP	28 33	$\mathbf{s}\mathbf{p}$	e 63·0
Florissant	E.	122.5	34	e 20 12	PP			- 		
St. Louis	5550	122.7	34	e 18 38	[+1]	e 29 47	SP	i 20 11	PP	e 59·2
Harvard		127.5	15	i 18 49	[+3]		-			
Huancayo		157.8	103	e 20 15	PKP,	e 44 40	SP PKP.	e 24 5	PP	e 74.2
La Paz	z.	163.0	123	i 19 46 •	[+ 3]	e 44 40 i 20 44	PKP.	i 24 30	PP	76.0

Additional readings :-

Mizusawa SE = 10m.57s.

Brisbane is SN = 14m.17s., eQN = 17m.11s.

Riverview iEN = 8m.26s., iS_cS?E = 18m.7s., iN = 18m.53s., iE = 19m.1s., eZ = 19m.5s., eQN = 19m.53s.

Hyderabad $S_cSN = 17m.8s$.

New Delhi iN = 18m.27s. and 20m.12s.

Bombay iN = 11m.10s., iE = 12m.22s., iN = 16m.32s., iEN = 16m.52s., SSSE = 21m.17s.

Christchurch $P_cP = 20m.12s.$, $P_cS?EN = 23m.41s.$, eZ = 25m.29s., eN = 27m.39s.

College e = 22m.13s.

Helwan eZ = 14m.45s. and 16m.24s., S?E = 23m.59s.

Tucson ePKP = 17m.44s., e = 19m.4s., 25m.7s., and 29m.16s.

St. Louis eSSE = 36m.59s.

Huancayo e = 24 m. 22 s. and 30 m. 37 s

Long waves were also recorded at other European stations.

March 5d. Readings also at 3h. (La Plata), 4h. (near Mizusawa), 5h. (Riverview and Philadelphia), 7h. (near Mizusawa), 9h. (Tucson, Pasadena, and Riverside), 12h. (Arapuni, Auckland, Christchurch. Wellington, and Riverview), 13h. (New Delhi), 14h. (Sitka), 16h. (near Istanbul), 19h. (Bucharest, Ksara, near Istanbul, Berkeley, Branner, and near Lick).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

61

March 6d. 20h. 9m. 5s. Epicentre 44°-5N. 129°-7W.

A = -.4571, B = -.5506, C = +.6985; $\delta = 0$; h = -3; D = -.769, E = +.639; G = -.446, H = -.537, K = -.716.

		Δ	Az.	P. m. s.	O – C. s.	S. m. s.	о – с.		pp.	L.
Ferndale Ukiah Berkeley Branner Santa Clara		5.6 7.2 8.7 9.1 9.2	132 136 137 139 138	e 1 31 e 1 47 i 2 0 e 2 14 e 2 14	$^{+}_{-}^{4}_{2}^{-}_{0}^{-}_{0}$	e 2 27 e 3 51 e 4 1	- 6 + 1 - 2	m. s.		e 3·1
Lick Fresno Tinemaha Butte Santa Barbara	n. z.	9·4 10·8 11·4 12·2 12·6	137 132 126 77 139	e 2 14 e 2 35 i 2 48 e 4 07 e 3 16	- 4 - 4 + 1 + 13	e 4 8 e 6 43?	+ 1 = 7			e 4·2 e 6·8 e 7·4
Bozeman Logan Pasadena Sitka Salt Lake City		13·3 13·4 13·6 13·6 13·6	78 95 135 347 99	e 3 13 e 3 13 e 3 16 i 3 13 e 3 15	- 1 - 1 - 4 - 2	e 5 45 e 6 0 e 5 53 e 5 43	$^{+3}_{+15}$ $^{+3}_{-7}$			e 6·5 e 6·9 e 5·7 e 6·4 e 6·1
Riverside Palomar La Jolla Saskatoon Rapid City	z. z.	14·2 14·9 15·1 17·1 19·0	133 134 136 56 82	e 3 19 e 3 28 e 3 40 4 2 i 4 19	- 5 - 6 + 4 - 7	- 7 20 e 8 8	+ 8 + 13			e 10.6
Tucson Florissant St. Louis Chicago Honolulu		$19.1 \\ 29.7 \\ 29.9 \\ 30.6 \\ 32.8$	124 87 87 81 235	e 4 26 e 6 11 e 6 9 e 6 16 e 6 41	$ \begin{array}{rrr} $	e 8 0 e 11 13 e 11 12 e 10 41 e 12 32	$^{+}_{+}^{3}_{7}^{+}_{+38}$	e 12 37 e 11 46	ss *	e 8·3 e 15·0 e 14·7 e 16·4 e 13·8
New Kensington Ottawa Shawinigan Falls Philadelphia Seven Falls		36.6 37.6 39.2 40.0 40.3	78 69 66 77 65	7 20 7 37 e 9 2 7 43	$+\frac{2}{6} + 3$	e 12 59 13 9 e 13 42 13 52	$^{+}_{+}$ $^{6}_{1}$ $^{-}$ $^{2}_{+}$ 3	e = 14	PP	e 19·1 18·9 21·9 e 17·1 21·9
Fordham Weston Bermuda San Juan Aberdeen	z.	40·5 41·7 51·1 58·6 69·6	75 72 80 95 28	e 9 20 e 9 41 e 14 43	PP PP	e 14 15 e 16 29 e 18 6 e 28 22	+ 5 + 5 + 2			e 26·1 e 31·6
Copenhagen Stuttgart		$75 \cdot 2 \\ 80 \cdot 4$	$\begin{array}{c} 21 \\ 26 \end{array}$	e 12 17	+ 2	21_36	+11			30·9 e 33·4

Additional readings :--

Ferndale eSE = 2m.36s.

Ukiah e = 1m.58s.

Berkeley iPZ = 2m.7s. and 2m.12s., iE = 3m.37s., iSZ = 3m.56s., iSE = 4m.0s.

Lick eSE = 4m.13s. Tinemaha eEN = 2m.51s.

Pasadena iPEN =3m.26s.

Sitka e = 3m.15s.

Riverside iZ = 3m.31s. Rapid City i = 4m.53s.

Tucson i = 4m.37s., e = 6m.2s. and 7m.28s.

Florissant eE = 11m.40s.

St. Louis eE = 11m.19s., esS?E = 11m.32s.

Honolulu e = 10m.23s, and 11m.12s.

Philadelphia e = 11m.17s.

San Juan e = 16m.18s.

Long waves were also recorded at Auckland, Riverview, College, Columbia, Seattle, and other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

> 1944 62

March 6d. 21h. 5m.51s. Epicentre 44° 5N. 129° 7W. (as at 20h.).

		Δ	Az.	P. m. s.	O -C.	s. m. s.	O – C. s.	m. s.	p.	L. m.
Ferndale Ukiah	N.	$\frac{5 \cdot 6}{7 \cdot 2}$	$\frac{132}{136}$	e 2 29 e 2 19	S Pg	(e 2 29)	4		=	e 3·3
Berkeley Branner	E.	8·7 9·1	$\frac{137}{139}$	i 2 43 i 2 13	P.		\equiv		=	=
Santa Clara	E.	$9 \cdot \hat{2}$	138	e 2 19	+ 3					· ·
Tinemaha Haiwee Butte		$11.4 \\ 12.2 \\ 12.2$	$\frac{126}{129}$	i 2 50 i 3 0 e 3 597	$^{+\ 3}_{+\ 2} \\ _{+\ 61}$	=	=		=	e 6·7
Santa Barbara Bozeman	z.	$12.6 \\ 13.3$	$\begin{array}{c} 139 \\ 78 \end{array}$	e 2 59 e 3 16	$\begin{array}{cc} -& 4 \\ +& 3 \end{array}$				_	e 7·1
Logan Pasadena Sitka Salt Lake City Riverside	z.	$13.4 \\ 13.6 \\ 13.6 \\ 13.6 \\ 14.2$	$\begin{array}{c} 95 \\ 135 \\ 347 \\ 99 \\ 133 \end{array}$	i 3 15 i 3 15 e 3 18 e 3 17 i 3 22	$\begin{array}{c} + & 1 \\ - & 2 \\ + & 1 \\ - & 2 \\ - & 2 \end{array}$	e 6 17 e 5 57	+ 7 + 7			e 6.5 e 6.5 e 6.9
Palomar La Jolla Saskatoon Rapid City Tucson	z.	14.9 15.1 17.1 19.0 19.1	$^{134}_{136} \\ ^{56}_{82} \\ 124$	i 3 32 e 3 35 e 4 7 i 4 23 i 4 28	$ \begin{array}{rrr} - & 2 \\ - & 1 \\ + & 5 \\ - & 3 \\ + & 1 \end{array} $	e 7 54 e 7 44	$-\frac{-3}{-13}$			10·2 i 9·6 e 8·0
College Florissant St. Louis Ottawa Philadelphia		22·8 29·7 29·9 37·6 40·0	340 87 87 69 77	e 5 14 e 6 5 e 6 8 7 20 e 11 11	+ 9 - 5 - 4 + 2	e 9 28 e 11 15 e 11 2 13 9 e 13 49	$^{+17}_{-9}$ $^{-7}_{+1}$	e = 7	PP	e 11·3 e 15·4 19·2 e 17·4
Seven Falls San Juan Granada		40·3 58·6 85·2	65 95 41	e 7 41 e 11 48 12 40 k	+ 1 PP + 1		<u></u> -59		_	e 29·3 44·0

Additional readings :-

Ferndale ePE = 2m.45s.

Berkeley iN =2m.48s., iZ =3m.2s.Bozeman e = 3m.32s. and 6m.30s.

Pasadena iZ = 3m.27s.

Sitka e = 3m.59s. Palomar iZ = 3m.38s.

Rapid City i = 5m.1s. and 5m.26s.

Tucson i = 4m.34s., e = 7m.16s.Long waves were also recorded at Honolulu, De Bilt, Kew, and other American stations.

March 6d. 22h. 51m. 7s. Epicentre 44°-5N. 129°-7W. (as at 21h.).

Tirelicia oct. water		30,000	and Branch		emaa maaa	3.8.1.5.4.28.0 % 2223.622	06.400.0000000000			
		Δ	Az.	P.	O-C.	s.	O-C.	Sup	p.	L.
		0	0	m. s.	s.	m. s.	s.	m. s.		m.
Ferndale	N.	5.6	132	e 2 29	S	(e 2 29)	- 4		-	
Ukiah	(0525)	7.2	136	e 2 18	S Pr	e 3 14	+ 1		1	e 3·5
Berkeley		8.7	137	i 3 58	S	(i 3 58)	+ 8	_	_	i 5.0
Santa Clara		9.2	138	e 2 33	+17	e 5 7	\mathbf{L}	·	· —	(e 5·1)
Tinemaha	z.	11.4	126	i 2 49	+ 2		-		_	
Butte		12.2	77	e 4 12?	+74		-	-	_	e 7·5
Bozeman		13.3		e 3 12	- 1		 .	-	_	e 7·0
Logan		13.4	95	i 3 17	+ 3	e 5 19	-26	-	_	e 6.5
Pasadena		13.6	135	e 3 35	+18	- 1		-		e 6.5
Salt Lake City		13.6	99	e 3 41	+24	e 5 54	+ 4			e 7·3
Sitka		13.6	347	e 3 17	0	-	-	· ·) 	e 6.6
Riverside	Z.	14.2	133	e 3 22	- 2		-	-	_	-
Palomar	Z.	14.9	134	i 3 31	- 3		-		-	(1 1 1 1 1 1 1 1 1 1
Saskatoon	V. HELLER	17.1	56	e 4 6	+ 4	-	_		-	9.9
Rapid City		19.0	82	i 4 23	$^{+}_{-}$ $^{4}_{3}$		3 		-	e 8·7
Tucson		19-1	124	e 4 27	0	e 8 10	$^{+13}_{+29}$		-	e 9·7
College		$22 \cdot 8$	340	-	-	e 9 40	+29	-		e 12·1

Additional readings :--Ferndale ePE =2m.42s. Berkeley iPE =4m.2s. Tinemaha eN =2m.53s.

Long waves were also recorded at Seattle, Philadelphia, De Bilt, and Cheb.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

63

March 6d. 23h. 16m. 26s. Epicentre 44°-5N. 129°-7W. (as at 22h.).

		Δ	Az.	P. m. s.	O – C.	s. m. s.	O – C.	m. s.	pp.	\mathbf{L} . \mathbf{m} .
Ferndale Ukiah Berkeley Santa Clara Tinemaha		5·6 7·2 8·7 9·2 11·4	$132 \\ 136 \\ 137 \\ 138 \\ 126$	e 1 50 e 1 51 i 1 59 e 2 24 e 2 48	P ₆ + 2 -11 + 8 + 1	e 2 44 i 3 59	+ <u>11</u> + <u>9</u>			e 3·2
Haiwee Butte Bozeman Logan Pasadena		$12.2 \\ 12.2 \\ 13.3 \\ 13.4 \\ 13.6$	129 77 78 95 135	e 3 5 e 4 10? e 3 9 i 3 14 e 3 19	$^{+}_{+72}^{7}_{-40}$	e 6 24 e 5 56	+ 1			e 7·2 e 7·0 e 6·7 e 5·8
Salt Lake City Sitka Riverside Palomar La Jolla	Z. Z.	$13.6 \\ 13.6 \\ 14.2 \\ 14.9 \\ 15.1$	$99 \\ 347 \\ 133 \\ 134 \\ 136$	e 3 20 e 3 14 i 3 22 i 3 31 e 3 41	$^{+}$ 3 $^{-}$ 2 $^{-}$ 3 $^{+}$ 5	e 5 59 e 5 54 —	+ 9 + 4 =			e 7·5 e 6·5
Saskatoon Rapid City Tucson College Florissant		$17.1 \\ 19.0 \\ 19.1 \\ 22.8 \\ 29.7$	56 82 124 340 87	e 4 21 e 4 26 e 5 10 7 16	+ 1 - 5 - 1 + 5 PP	e 7 45 e 7 29 e 9 21 e 11 15	$ \begin{array}{r} $	e 4 56 e 5 59 e 13 19	PP SS	e 8.4 e 8.4 e 11.0 e 15.1
St. Louis Ottawa Philadelphia Seven Falls Weston		$29.9 \\ 37.6 \\ 40.0 \\ 40.3 \\ 41.7$	87 69 77 65 72	e 6 11 7 21 e 9 18 e 8 34? e 9 41	- 1 + 3 PP	e 11 15 13 11 e 13 47 e 12 349 e 14 17	$^{+6}_{+3}$ $^{+3}_{+7}$	e 7 13 e 16 34	$\frac{\text{PP}}{\text{ss}}$	e 14.8 18.6 e 19.3 19.6
San Juan Copenhagen Stuttgart Granada		58.6 75.2 80.4 85.2	95 21 26 41	e 10 48 e 12 16 i 12 59k	$^{+47}_{-rac{1}{20}}$	e 17 58 21 34 e 23 16	- 6 + 9 + 7		_ _ pP	e 29·9 31·6 e 38·6

Additional readings :-

Berkeley iPZ = 2m.4s., iPN = 2m.7s., iE = 4m.9s., iZ = 4m.20s.

Bozeman e = 3m.56s.

Sitka e = 3m.37s, and 3m.56s. Tucson e = 4m.36s, and 6m.18s.

St. Louis eSSN = 12m.38s.

Long waves were also recorded at Honolulu and other American and European stations.

March 6d. Readings also at 1h. (near Malaga), 5h. (Mizusawa and Riverview), 6h. (Butte), 8h. (Butte and Mizusawa), 9h. (Haiwee, Tucson, Palomar, Pasadena, Riverside, Tinemaha, and La Paz), 10h. (near Mizusawa), 11h. (Triest), 12h. (Ferndale and La Paz), 14h. (Seattle, Haiwee, Palomar, Pasadena, Riverside, Tinemaha, Tucson, Salt Lake City, Logan, Bozeman, Philadelphia, Rapid City, Santa Clara, Ukiah, San Juan, Stuttgart, near Chur, and Zurich), 15h. (near Bogota), 18h. (Ksara, Bucharest, Basle, Zürich, and Stuttgart), 20h. (Palomar (2), Pasadena, Tucson (2), and Tinemaha), 21h. (Rapid City, Tucson (4), Haiwee, Palomar (3). Pasadena (3), Riverside (3), Tinemaha (3), Santa Clara, near Berkeley, Branner, Fresno, and Lick), 22h. (Palomar (2), Pasadena (2), Riverside (2), Tinemaha, Tucson (2), and Harvard), 23h. (Lick, Palomar, Pasadena, Riverside, Tucson, and Tinemaha).

March 7d. 6h. 9m. 8s. (I) 6h. 45m. 3s. (II) 8h. 21m. 25s. (III) Epicentre 44°·5N. 129°·7W. (as on 6d.).

		Δ	Az.	Ρ.	O-C.	s.	O-C.	Suj	pp.	L.
		o	0	m. s.	8.	m. s.	8.	m. s.		m.
1 Ferndale		5.6	132	e 1 40	P*	-		e 1 57	P_{ϵ}	_
п		5.6	132	e 1 29	+ 2	_	-	e 1 39	₽¥	
III		5.6	132	e 1 39	P*	_	-	_	_	_
I Ukiah		7.2	136	e 2 14	P*	(e 3 3)	-10		-	e 3·0
II		7.2	136	e 2 9	P*		-		_	e 3·4
III		7 - 2	136	e 1 42	- 7	_	_	e 2 13	\mathbf{P}^{\bullet}	e 2·8
1 Santa Clara	N.	9.2	138	e 2 7	- 9				-	e 5·1
II	E.	9.2	138	e 2 15	- 1		-			e 4·8
ш	E.	9.2	138	e 2 18	+ 2					e 4 · 5
I Lick	7944,040	$9 \cdot 4$	137	e 2 16	- 2	-	_	-		
III		9-4	137	e 3 177	+59	-	_	-	_	-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944	64

	Δ	Az.	Р.	O – C.	10/20/2011	0 -C. s.	m. s.	р.	L. m.
I Tinemaha II III Z. I Haiwee II Z.	11.4 11.4 11.4 12.2 12.2 12.2	$126 \\ 126 \\ 126 \\ 129 \\ 129 \\ 129$	m. s. i 2 49 i 2 49 e 2 46 i 2 59 e 3 1 e 2 56	*** - ** - ** - ** - ** - ** - ** - **	m. s.				
I Butte I Santa Barbara II I Bozeman II	12.2 12.6 12.6 13.3 13.3 13.3	77 139 139 78 78	e 4 12? e 3 1 e 3 2 e 3 16 e 3 12 e 3 14	$ \begin{array}{r} +74 \\ -2 \\ -1 \\ +3 \\ -1 \\ +1 \end{array} $	e 7 24 ==	<u>?</u>			e 8·5 e 6·3 e 6·8 e 7·0
I Logan II III Pasadena III	13·4 13·4 13·6 13·6 13·6	95 95 135 135 135	e 3 16 i 3 15 i 3 15 e 3 17 e 3 13 e 3 13	$\begin{array}{c} + & 2 \\ + & 1 \\ + & 1 \\ - & 4 \\ - & 4 \end{array}$	e 6 2 e 5 53 (e 5 453) (e 5 48)	$+\frac{17}{8} \\ -\frac{5}{2}$			e 6·3 e 6·6 e 6·3 e 5·8 e 5·8
II Sitka III II Salt Lake City III	13.6 13.6 13.6 13.6	347 347 99 99	e 3 34 e 3 18 e 3 19 e 3 17	$^{+17}_{+1}_{+2}$	e 6 10 e 5 59 e 6 1 e 5 59	+20 + 9 + 11 + 9		_	e 6.6 e 6.9 e 6.9 e 6.9
I Riverside II III I Palomar Z. II Z. III Z.	$\begin{array}{c} 14 \cdot 2 \\ 14 \cdot 2 \\ 14 \cdot 2 \\ 14 \cdot 9 \\ 14 \cdot 9 \\ 14 \cdot 9 \end{array}$	133 133 134 134 134	i 3 22k e 3 21 i 3 21 i 3 31 i 3 31 i 3 29	- 2 - 3 - 3 - 3 - 5					
I La Jolla II I Saskatoon II	15·1 15·1 17·1 17·1 17·1	136 136 56 56 56	e 3 35 e 3 34 e 4 4 e 4 4	- 1 - 2 + 2 + 2 + 2	e 7 28 e 7 27	+ 16 + 15			9·9 10·0 9·6
I Rapid City II III I Tucson II	19·0 19·0 19·1 19·1 19·1	$82 \\ 82 \\ 82 \\ 124 \\ 124 \\ 124$	i 4 23 i 4 20 i 4 21 i 4 27 e 4 27 i 4 26	- 3 - 6 - 5 0 - 1	e 8 28 e 8 11 e 8 6 e 8 10 e 8 8	$+33 \\ +16 \\ +9 \\ +13 \\ +11$			e 9·4 e 11·4 e 10·3 e 10·1 e 9·7 e 9·3
III College I Florissant III I St. Louis III	22·8 29·7 29·7 29·9 29·9	340 87 87 87 87	e 5 11 e 6 11 e 6 10 e 6 11 e 6 12	+ 6 + 1 - 0 - 1 - 0	e 9 36 e 11 12 e 11 13 e 11 34 e 11 42 e 11 12	$^{+25}_{+6} \\ ^{+7}_{+25} \\ ^{+33}_{+3}$			e 11·3 e 15·5 e 15·7 e 15·4
I Ottawa II III I Bogota	37 ·6 37 ·6 37 ·6 62 ·7	69 69 112	e 7 19 e 7 21 7 21 i 10 29	+ 1 + 3 + 3	1 <u>3</u> 16	+ = 8			20·9 21·0 20·6

Additional readings :-Tinemaha I iZ = 2m.57s. Bozeman III e = 4m.31s. Pasadena I iEN =3m.24s. Riverside I iZ = 3m.32s. Palomar I iZ =3m.38s. La Jolla I i = 3m.41s.

Rapid City I i=4m.51s., II i=4m.55s.
Tucson I e=5m.14s. and 7m.29s., II e=6m.6s., III i=4m.43s., e=7m.28s.
Long waves were also recorded at Seattle I, II, and III, Weston I and III, Sitka I, Harvard III, and Honolulu III.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

65

March 7d. Readings also at 0h. (Clermont-Ferrand, Paris, Auckland, Wellington, and Riverview), 1h. (Haiwee, Palomar, Pasadena, Riverside, Santa Barbara, Tinemaha, and Tucson), 2h. (Haiwee, Palomar, Tinemaha, Brisbane, and Riverview), 3h. (Palomar, Tinemaha, and Tucson), 4h. (Haiwee, Palomar, Pasadena, Riverside, Santa Barbara, Tinemaha, Tucson, Auckland, and Wellington), 5h. (Tucson, Haiwee, Palomar, Pasadena, Riverside, Tinemaha, Copenhagen, and Stuttgart), 8h. (Haiwee, Palomar, Pasadena, Riverside, Tucson, and Tinemaha), 11h. (Tucson, Palomar, Riverside, and near Bogota), 13h. (Haiwee, Palomar, Pasadena, Riverside, Tinemaha, Tucson, and Kodaikanal), 14h. (near Alicante (4)), 15h. (Riverview, near Alicante (2), and near Mizusawa), 19h. (Auckland, Christchurch, Wellington, and Riverview), 20h. (Auckland, Wellington, Riverview, Mizusawa, Hyderabad, Bombay, Calcutta, Colombo, New Delhi, Ksara, Bucharest, Cheb, Palomar, Pasadena, Riverside, and Tucson), 21h. (De Bilt), 22h. (Bucharest and near Istanbul), 23h. (Istanbul, Tucson, Palomar, Pasadena, Riverside, Haiwee, and Tinemaha).

March 8d. Readings at 4h. (near Granada, Alicante, and Toledo), 5h. (Bombay, Calcutta, Kodalkanal, New Delhi, and Mizusawa), 7h. (Tucson), 9h. (near Mizusawa), 11h. (Riverview and near Mizusawa), 12h. (near Seven Falls, Shawinigan Falls, and Ottawa), 14h. (Tucson, Palomar, and near Alicante), 21h. (Stuttgart and near Fresno), 22h. (Bucharest and Istanbul), 23h. (Apia (2), Arapuni, Auckland, Wellington, Brisbane, Riverview, Sydney, Huancayo, Palomar, Pasadena, Santa Barbara, Tinemaha, Tucson, Copenhagen, Stuttgart, and Granada).

March 9d. 22h. 3m. 43s. Epicentre 42°.5N. 82°.5E. (as on 1940, March 17d.).

A = +.0965, B = +.7332, C = +.6731; $\delta = -4$; h = -3; D = +.991, E = -.131; G = +.088, H = +.667, K = -.740.

	Δ	Az.	. P.	o – c.	S.	0 – C.	Suj	op.	L.
Dehra Dun N. New Delhi E. Calcutta N. Bombay N. Hyderabad N.	12.6 14.5 20.5 24.9 25.2	199 164	m. s. e 4 2 e 3 37 e 4 47 i 5 35 5 34	** + 9 + 5 + 5	m. s. i 6 30 i 8 48 i 10 19 10 25	+19 $+21$ $+32$ $+33$	m. s. 3 47 6 37 6 11	PP PPP PP	m. e 7·7 i 12·6 13·6
Kodaikanal E. Colombo E. Ksara Bacau Istanbul	32·5 35·5 37·3 39·2 39·3	185 272	e 6 27 e 7 173 e 7 23 e 7 47 8 17	$ \begin{array}{r} -7 \\ +17 \\ +7 \\ +16 \\ +45 \end{array} $	e 13 17 13 1 13 22 13 43	$+\frac{9}{18} + \frac{18}{9}$			
Focsani Bucharest Campulung Upsala E. N.	39·5 40·3 40·6 42·3 42·3	293 295 318	e 7 34 e 7 44 e 7 50 7 53 e 7 49	+ 4 + 7 - 4 - 8	i 13 57 i 14 18 i 14 12	+ 8 - 1 - 7	e 10 9 9 32 9 33 e 9 41	PP PP PP	21·7 21·2
Helwan Copenhagen Prague Potsdam Cheb	42.6 45.8 46.2 46.3 47.4	313 306 307	i 8 5k e 8 22a e 8 29 e 8 32 e 8 43	+ 6 - 3 + 1 + 3 + 5	e 14 35 15 8 e 15 17 i 15 19 e 15 40	$^{+12}_{-1}$ $^{+2}_{+3}$ $^{+8}$	e 9 42 10 24 e 10 25 i 19 43	PP PP SSS	e 19·8
Jena N. Triest Bergen Stuttgart Chur	47.6 48.1 48.3 49.8 50.3	300 321 305	e 8 37 i 8 43 i 8 40 i 8 55k e 9 0	- 2 - 5 - 1	e 15 35 i 15 43 i 16 41 i 16 9 e 16 15	+ 1 - 4 + 3 + 2	e 10 27 e 10 43 e 10 16	PP PP PcP	25·8
Zürich Strasbourg De Bilt Basle Neuchatel	50.7 50.8 51.0 51.3 51.9	305 310 304	e 9 2 e 9 3 i 9 3 e 9 7 e 9 11	- 1 - 1 - 3 - 1	e 16 23 i 16 23 e 16 30	+ 3 + 1 + 4			e 26·3
Uccle Paris Kew z. Clermont-Ferrand Scoresby Sund	52·7 53·8 54·3 54·8 55·1	309 307 311 303 338	e 9 11 1 9 25 1 9 23 e 9 29	- 7 - 7 - 7 - 5	i 16 36 i 17 2 e 17 6	$-10 \\ + 1 \\ - 1 \\ - 6$	1 <u>7</u> 22	PS —	25·3 —

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Λz.	1	٠.	O-C.	s.	O-C.	Suj	pp.	L.
		0	000	m.	S.	8.	m. s.	8.	m. s.	TELLOWIN	m.
Tortosa		58.9	299	i 10	3	0	18 13	+ 5	18 48	\mathbf{PS}	-
Granada		63.6	298	i 10	35 a	0	i 19 11	+ 3	23 3	SS	_
San Fernando		65.7	298	i 10	47	- 1	e 19 40	+ 6	-	_	_
Harvard		92.2	341	e 13	1 7 7 7	- 9		10 200		· ·	1
St. Louis		99.0	355	e 13	and the Control of th	- 9	e 24 11	[-11]	e 26 15	$\mathbf{s}\mathbf{p}$	-
Pasadena	Z.	101.4	17	e 13	47	- 8	-	-		-	-
Riverside	Z.	101.7	17	e 17	57	\mathbf{PP}	-	1.	-	-	
Palomar	Z.	102.5	16	e 13	48	-12		_	e 17 46	\mathbf{PP}	*****
Tucson	. (525.)	104.6	16	e 13		-13	-	_	e 18 21	\mathbf{PP}	3.7
La Paz	Z.	143.9	307	19		[-4]			_	-	_

Additional readings:— New Delhi SSE = 6m.52s.

Bombay SSN =11m.42s.

Bucharest iZ = 9m.26s., iE = eN = 9m.29s.

Upsala ePPPN = 10m.14s., SSN = 16m.47s.

Helwan eZ = 11m.56s. Prague eSS = 18m.23s. Stuttgart iZ = 9m.4s.

Kew iZ = 9m.34s., eZ = 16m.38s., ePPSZ = 17m.32s.

Tortosa iN = 11m.21s.

Pasadena iZ = 16m.37s and 17m.7s.

Riverside iZ = 19m.27s.

Tucson e = 16m.59s. and 22m.10s. Long waves were recorded at Reykjavik.

March 9d. 22h. 12m. 57s. Epicentre 42°-5N. 82°-5E. (as at 22h. 3m.).

$$A = +.0965$$
, $B = +.7332$, $C = +.6731$; $\delta = -4$; $h = -3$; $D = +.991$, $E = -.131$; $G = +.088$, $H = +.667$, $K = -.740$.

		Δ	Az.	P. m. s.	0 – C. s.	s. m. s.	O –C.	m. s.	op.	L. m.
New Delhi Bombay Hyderabad Zi-ka-Wei Colombo	E. N. E.	14·5 24·9 25·2 32·9 35·5	199 202 190 97 185	m. s. e 3 44 i 5 36 5 36 e 6 27 7 28	$^{+16}_{+10}$ $^{+7}_{-11}$ $^{+28}$	i 6 26 i 10 22 10 27 11 39 13 2	$^{+15}_{+35}_{+35}_{-17}_{+26}$	6 52 6 25 6 16 15 13	SS PP PP SS	17·3 18·2
Ksara Kumamoto Hukuoka Bacau Istanbul		$37.3 \\ 38.0 \\ 38.3 \\ 39.2 \\ 39.3$	272 89 88 297 287	e 7 24 e 7 21 e 7 15 e 7 9 7 33	$^{+}_{0}^{8}_{0}^{-}_{-22}^{9}_{+}^{1}$	e 13 22 13 5 13 3 13 41	$^{+18}_{-9}_{-16}$	= = 9 17	- - PP	19·4 21·0
Focsani Miyazaki Bucharest Campulung Koti		39·5 39·9 40·3 40·6 40·7	296 90 293 295 86	7 40 7 43 i 7 45 a e 7 50 7 29	$^{+}_{+}^{6}_{6}$ $^{+}_{+}^{5}_{7}$ $^{-}_{15}$					21·0 21·0 21·0
Sapporo Kobe Aikawa Upsala Helwan	E.	$\begin{array}{r} 41.3 \\ 41.3 \\ 42.1 \\ 42.3 \\ 42.6 \end{array}$	$68 \\ 83 \\ 77 \\ 318 \\ 271$	e 7 36 e 7 34 8 2 i 7 55 i 8 5	$ \begin{array}{r} -13 \\ -15 \\ +7 \\ -2 \\ +6 \end{array} $	e 14 4 14 4 14 4 e 14 36	$-12 \\ -13$	<u>=</u>	PP	21·3 e 20·6 e 18·1
Maebasi Shizuoka Mizusawa Belgrade Tokyo	E.	43·4 43·6 43·7 44·0 44·2	79 81 74 295 80	e 8 9 7 58 e 7 56? i 8 14 8 17	$^{+\ 3}_{-\ 10} \ ^{-\ 12}_{+\ 3} \ ^{+\ 5}$	15 2 14 13 16 468 i 15 17 15 3	$^{+27}_{-25}$ $^{+127}_{+34}$ $^{+17}$	10 1	PP	e 23·8 15·1
Yokohama Copenhagen Prague Potsdam Cheb	E. N.	44·3 45·8 46·2 46·3 46·3 47·4	306 307 307 306	13 36 i 8 13k i 8 31 a i 8 33 i 8 33 e 8 47		e 15 1 i 15 22 i 15 19 e 15 43	-72 -74 $+6$ $+3$ $+11$	i 10 8 10 22 e 18 15	PP PP SS	21·7 e 21·5 e 24·0 e 21·0 e 24·0
Jena Triest Bergen Stuttgart Chur	E.	47.6 48.1 48.3 49.8 50.3	307 300 321 305 302	i 8 39 i 8 45 i 8 42 i 8 57k e 9 0	+ 2 - 3	i 15 37 i 15 47 15 39 i 16 9 i 16 15	+ 2 + 5 - 6 + 3 + 2	e 10 29 10 20 10 26 e 10 43	PP PP PP	22·2 e 24·4 e 24·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

67

		Δ	Az.	P. m. s.	0 -C.	S. O-	-C. s. s.	upp.	L. m.
Zürich Strasbourg De Bilt Milan Basle		50.7 50.8 51.0 51.1 51.3	304 305 310 300 304	e 9 4 a i 9 3 k i 9 8 e 9 8	+ 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 6 11 8 12 8	PP	e 24·0
Neuchatel Uccle Aberdeen Paris Kew		$51.9 \\ 52.7 \\ 53.0 \\ 53.8 \\ 54.3$	304 309 318 307 311	e 9 11 i 9 12k i 7 33 i 9 26 i 9 28	$-{1\atop -}{6\atop 6}$	i 16 58 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PP	e 24·0 25·0 27·0 27·0
Clermont-Ferran Scoresby Sund Barcelona Reykjavik Tortosa	d N.	54·8 55·1 57·5 58·4 58·9	303 338 299 331 299	e 9 34 i 9 30 e 9 55 e 10 41 i 10 3	$^{-\ 6}_{+\ 2}^{+\ 2}_{+\ 0}$	e 17 16 + i 17 13 - i 17 51 + e 19 57 i 18 12 +	5 11 37 1 e 15 59	PP	e $27 \cdot 1$ e $35 \cdot 5$ 28 \cdot 1
Granada San Fernando College Lisbon	z. E.	63·9 65·7 66·0 66·3	298 298 22 302 302	i 10 35 a i 10 49 e 10 39 10 52 a 10 54	$^{+1}_{-11}$	i 19 37 + e 19 17 -	21 e 14 27 14 i 13 17	PPP PP PP	$30.7 \\ 33.5 \\ 27.9 \\ \hline 34.6$
Tananarive Saskatoon Victoria Seattle Halifax		69·1 85·4 86·5 87·6 88·1	216 7 18 17 337	11 16 12 36 12 43 e 16 0	+ 6 - 4 - 3 PP	22 50 [- 22 58 [-	25 14 (13] — 13] — PS e 37 41 5] —		34·1 37·0 36·0 e 40·1 42·0
Shawinigan Falls Seven Falls Ottawa Vermont Butte	1	88·8 89·2 90·7 90·9	343 343 346 343 10	12 50 12 46 12 58 e 14 18 e 13 48?	-7 -11 -1 $+41$	23 23 [- 23 25 [- 23 26 [-	23		50·0 37·0 41·0 38·7 e 36·6
Bozeman Harvard Weston Rapid City Fordham		91·4 92·2 92·3 93·6 94·4	341 341 4 342	e 13 25 i 13 6 e 13 7 e 13 14 i 13 18	+16 - 7 - 6 - 5 - 5	e 24 14 [+ e 23 47 [+ e 23 58 [+ i 23 48 [-	5] 16 59	PP	e 40.8 e 44.9 e 41.8
Philadelphia Logan Chicago Ukiah New Kensington		95·0 95·1 95·5 95·5 95·6	343 11 354 20 347	e 14 37 i 13 19 e 14 4	- ³ 7 + 36	e 23 56 [-	13] e 31 25 8] e 34 41	SSS	e 41.5 e 37.4 e 43.7 e 41.3 e 45.3
Honolulu Salt Lake City Berkeley	N. E. Z.	95·6 96·1 96·9 96·9	54 11 19 19	e 13 27 i 13 40 e 13 56 i 13 27	$ \begin{array}{r} - & 4 \\ + & 6 \\ + & 22 \\ - & 7 \end{array} $		10] e 34 24 12] e 31 8 5] — 9] i 17 14	88	e 43·9 e 33·8 ————
Santa Clara Tinemaha Fresno Riverview Florissant	N.	97·1 98·5 98·5 98·6 98·7	19 17 18 129 355	e 17 28 e 13 36 e 13 39 e 13 35	- 3 - 3 - 7	i 24 8 [- i 24 14 [- e 24 9 [- e 24 20 [i 24 8 [-	4] e 33 27 6] i 17 28 11] e 17 28 0] e 25 12 13] e 17 40	PP PP S	e 44·4 e 50·2
St. Louis Haiwee Bermuda Cape Girardeau Santa Barbara		99.0 99.5 99.6 100.2 101.4	355 17 332 354 18	i 13 35 e 13 39 e 14 59 e 13 49	$ \begin{array}{r} - 9 \\ - 7 \\ + 73 \\ - 6 \end{array} $	e 25 1 — i 24 16 [— e 24 17 [— e 23 16 i 24 22 [—	g	PP PKKP PPP	e 47·3 e 45·0
Pasadena Riverside Columbia Palomar La Jolla	z. z. N.	101·4 101·7 102·4 102·5 102·8	17 17 346 16 17	e 13 46 e 13 47 e 18 7 e 13 51	- 9 - 9 - 9 - 9		10] e 17 50 1 30 2 12] (e 32 23 5] i 17 55	PKKP SSP	e 40·5 e 32·4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

O-C.

8.

P.

m. s.

L.

m.

Supp.

m.

O-C.

1944

Δ

Az.

```
e 18
                                                                              PP
                                                                                    e 41.0
                    104.6
Tucson
                                                                                    e 48.3
                                                                              PS
                                                                    e 29 12
                            328
                    112.9
San Juan
                                                                               SS
                                                                      36 39
                                                                                      50.0
                                                             +57
                    115.2
                            118
Auckland
                                                                                      57.0
                                                                      53 37
                                                             +50
                    117.7
Wellington
                                            \mathbf{PP}
                    131 \cdot 2
                            276
Rio de Janeiro
                                                                                      66.0
                                                     29 27 {-17}
                    143.9
La Paz
                                                                              PP
                                                                      23 35
                                                                                      59.4
                                            -101
                                 e 19 27
                            321
                    144.0
Huancayo
                                                                                      63.4
                                  19 45
                 N. 148·4 272
                                               01
La Plata
  Additional readings :-
    Bombay iE =5m.44s., iN =5m.51s. and 6m.10s.
    Hyderabad SSN =11m.33s., S<sub>c</sub>SN =15m.41s.
    Zi-ka-wei iN = 11m.49s.
    Istanbul SS = 16m.39s.; traces of two quakes confused.
    Bucharest iN = 12m.6s.
    Upsala i = 8m.7s., SS = 16m.12s., iN = 13m.17s., eE = 16m.9s.
    Helwan e = 8m.48s.
    Mizusawa SN = 16m.41s.
    Belgrade i = 16m.17s. and 18m.20s.
    Copenhagen i = 10m.24s.
    Potsdam iN = 11m.44s., iE = 13m.5s., iN = 13m.34s.
    Cheb PP = 9m.50s., e = 13m.13s. and 14m.50s., SSS = 19m.46s.
    Jena iSSN = 19m.19s.
    Bergen SSE = 19m.14s., eSSZ = 19m.17s., SSN = 19m.23s.
    Stuttgart iZ = 9m.7s., eP_cPZ = 10m.13s.
    Strasbourg eSS = 20m.39s.
    Basle e = 27m.28s. and 28m.6s.
    Aberdeen PSEN = 16m.45s., iEN = 18m.36s., iSSE = 20m.43s.
    Kew e = 10m.6s. and 12m.6s.?, ePPPN = 12m.36s.?, e = 19m.33s.?.
    Scoresby Sund i = 12m.38s.
    Tortosa PPPN = 13m.13s., PcSE = 15m.17s., PSE = 18m.41s., ScSN = 20m.53s., SSE =
         22m.7s... SSSE? = 23m.12s...
    Granada S_cS = 20 \text{m.} 20 \text{s.}, SS = 22 \text{m.} 51 \text{s.}
    San Fernando iSE = 19m.42s., PSE = 20m.56s., SSE = 24m.19s., SSSE = 26m.19s.
    College e = 24m.22s.
    Lisbon N = 14m.10s., S_cSE = 20m.51s., SSSN = 26m.9s., SSSE = 26m.52s.?, SSSN = 26m.9s.
         27m.17s., E = 31m.0s., Z = 32m.38s.
    Tananarive P_cP = 11m.30s., SS = 25m.17s.
    Butte e = 25m.57s. ?
    Bozeman e = 25m.4s., e = 29m.34s. and 34m.4s.
    Harvard i = 13m.28s.
     Weston SS = 29m.20s.
     Rapid City i = 24m.14s., e = 25m.22s.
     Fordham e = 14m.22s.
     Philadelphia e = 16m.54s., 26m.37s., and 29m.40s.
     Logan e = 16m.56s, and 25m.23s.
    Chicago e = 25m.55s, and 35m.41s.
     Honolulu e = 43m.34s.
     Salt Lake City e = 25m.48s.
     Riverview ePSZ = 26m.43s., eSSEN = 32m.15s., eE = 37m.0s., eQN = 43m.51s.
     Florissant eSPZ = 26m.25s., eSSSE = 36m.9s.
     St. Louis eZ = 14m.0s., iSKSN = 24m.9s., iSPN = 26m.25s., eSSN = 32m.37s., ePSSN =
         35m.29s.
     Bermuda ePS = 26m.48s., e = 32m.41s., eSSS = 35m.12s.
     Pasadena eZ = 16m.46s. and 19m.51s., ePSNZ = 26m.47s., iPKKPZ = 30m.3s., eSSEN =
         31m.21s. ?
     Tucson i = 14m.6s., e = 17m.36s., ePS = 27m.40s., e = 29m.40s.
     San Juan e = 26m.10s., eS = 27m.7s.
     Auckland SSS = 43m.3s. ?
     Wellington PP?Z = 30m.18s., PPP?Z = 31m.1s., SKS = 36m.8s. ?, SS = 43m.33s., SS?Z =
         47m.488.?, ScS, ScS? = 49m.338.
     La Paz iSKP = 22m.59s., iZ = 23m.27s. and 26m.12s., PSKS = 32m.59s., PPSZ = 35m.25s..
         SSEN = 41m.42^{\circ}.
     Huancayo ePKP=19m.35s., e=29m.43s., eSS=41m.8s., e=51m.30s.
     La Plata PN=19m.51s., PZ=19m.56s., Z=20m.4s., N=21m.9s., EN=29m.45s.,
         E = 30m.27s.
     Long waves were also recorded at Sitka and Dehra Dun.
```

March 9d. Readings also at 0h. (Kew, De Bilt, and Cheb), 4h. (near Balboa Heights and La Paz), 5h. (Bogota), 7h. (Philadelphia), 8h. (Tucson), 9h. (Tucson, Palomar, Pasadena, Riverside, La Jolla, Santa Barbara, Tinemaha, and Wellington), 10h. (Riverview), 16h. (Logan, Tucson (3), St. Louis, Florissant, Butte, Riverside (2), Palomar (3), Pasadena (3), Ferndale, Santa Clara, Berkeley, and Brisbane), 17h. (St. Louis, Florissant, Pasadena, Palomar, and Tucson), 19h. (Basle, Neuchatel, Zürich, Strasbourg, Pehpei, and Wellington), 20h. (Tucson, Riverside, Pasadena, Palomar, and Balboa Heights).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

69

March 10d. 6h. 39m. 53s. Epicentre 40°.9N. 142°.7E. (as on 1943, June 14d.).

Scale V at Miyako; IV at Hatinohe, Morioka, Aomori, Mizusawa, Kushiro, and Hakodate; II-III at Sendai, Urakawa, and Isinomaki. Epicentre 40°·5N. 142°·7E. Macroseismic radius 300km.

Seismological Bulletin of Central Met. Obs., Japan, for 1944, Tokyo, 1951, p. 7, with Macroseismic Chart.

A = -.6030, B = +.4594, C = +.6522; $\delta = +2$; $\hbar = -2$; D = +.606, E = +.795; G = -.519, H = +.395, K = -.758.

D = +.606, $E = +.795$; $G =519$, $H = +.595$, $K =756$.										
Hatinohe Miyako Aomori Morioka Mizusawa	E. N.	0.9 1.4 1.5 1.7 2.1	Az. 247 203 267 224 214 214	P. m. s. 0 23k 0 22k 0 40k 0 32k i 0 41 0 37	O-C. 8. + 3 - 5 + 12 + 1 + 4	S. m. s. 0 37 0 37 0 47 0 49 1 3 0 58	O-C. + 3 - 9 - 5 - 1 - 6	m. Sur	ър. = =	L. m.
Akita Sendai Nemuro Hukusima Aikawa		3·0 3·2 3·6	239 208 41 209 232	0 41 0 47 1 9k 0 57 1 25	+ 1 - 3 - 1 - 1	1 13 1 23 1 44 1 48 2 50	+ 4 - 4 + 6 + 8			
Mito Tukubasan Maebasi Kumagaya Nagano		5·1 5·3 5·4	202 204 214 210 221	1 14 1 16 1 22 1 23 1 26	- 1 - 4 - 1 + 1	2 45 2 45 2 51 2 28 2 54	- 6 S: S:			
Tokyo Wazima Yokohama Toyama Kohu		5.7	205 234 204 227 213	1 27 1 31 a 1 26 1 33 1 35	- 1 + 3 - 5 + 1	2 58 2 41 2 55 3 1 2 53	S* + 6 S* + 5			=
Mera Misima Osima Shizuoka Gihu		6·4 6·5 6·6 7·2	$\begin{array}{c} 202 \\ 208 \\ 204 \\ 211 \\ 222 \end{array}$	1 30 1 37 1 32 1 41 1 48k	- 8 - 2 - 9 - 3 - 1	3 23 3 7 3 0 3 7 3 29	S _e + 12 + 2 + 4 + 16			
Omaesaki Hamamatu Hikone Toyooka Osaka		7·2 7·3 7·6 8·2 8·4	211 214 225 232 224	$\begin{array}{cccc} 1 & 49 \\ 1 & 44 \\ 1 & 52 \\ 2 & 4 \\ 2 & 11 \end{array}$	- 6 - 3 + 1 + 5	3 39 3 33 3 23 3 50 3 57	S* S* +12 +14			
Kobe Sumoto Siomisaki Hamada Koti		8.6 9.0 9.3 10.3 10.3	226 226 219 238 228	2 7 k 2 26 2 17 2 34 2 33	$^{-2}_{+13}$	3 56 4 29 4 37 5 2 4 35	+s* ** + 5			
Hukuoka Kumamoto Miyazaki Unzendake College		$12.2 \\ 12.5 \\ 12.7 \\ 12.9 \\ 45.3$	237 234 229 235 35	3 0 3 2 3 30 3 18 e 8 30	$^{+}_{0}^{0}_{+25}^{0}_{+11}^{+}_{+9}$	6 44 6 34 7 11 6 53 e 15 3	L L L + 1	e 18 27	= = ss e	(6·7) (6·6) (7·2) (6·9) 22·4
Calcutta New Delhi Hyderabad Bombay Kodaikanal	N. N. E.	48.9 54.1 59.4 62.8 64.7	266 279 267 272 262	i 9 8k e 9 24 e 10 5 e 10 30 e 10 35	$^{+18}_{-5}$ $^{-1}_{0}$ $^{-7}$	i 16 15 e 17 4 18 15 19 18 e 19 23	+22 - 1 PS PS + 1	i 19 27 17 21 18 34 12 48	SS 6 PS PPS PP	24.2
Scoresby Su Brisbane Upsala Bozeman Tinemaha	nd z.	68 · 4 68 · 7 69 · 9 71 · 6 72 · 8	355 170 334 46 56	e 11 9 e 10 57 e 13 52 e 11 32	$+\frac{3}{-10}$ $-\frac{10}{0}$	20 4 e 20 7 8 e 20 46 e 21 5	$-3 \\ -17 \\ +2 \\ +7$	e 24 51 i 11 46	SS e	31·1 34·1 29·0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

		Δ	Az.	P. m. s.	0 -C.	S. m. s.	O – C.	m. Sur	p.	L. m.
	Z. Z.	73.2 73.5 73.5 74.7 74.8	340 56 59 58 173	i 11 49 e 11 37 e 11 47 e 11 43	$+14 \\ +11 \\ +11 \\ 0$	21 18 = 1 17 e 21 17	$+\frac{16}{2}$ $-\frac{2}{3}$	e 25 7 7 2 e 31 22	= SS	e 41·1 e 31·1 e 37·2
	z. z.	$74.9 \\ 75.3 \\ 76.0 \\ 76.1 \\ 76.8$	334 58 58 59 44	i 11 47a e 11 45 e 11 51 e 12 0 e 11 56	$\begin{array}{ccc} + & 3 \\ - & 2 \\ 0 \\ + & 9 \\ + & 1 \end{array}$	21 24 — i 21 40	+ 2	14 34 1 11 54 1 12 3	PP PcP PcP	38.1
Bucharest Aberdeen Prague Jena Ksara	N.	77.8 77.9 78.7 79.1 79.7	$319 \\ 342 \\ 329 \\ 331 \\ 306$	$\begin{array}{cccc} e & 12 & 1 \\ e & 12 & 16 \\ e & 13 & 7 \\ e & 12 & 17? \end{array}$	$ \begin{array}{r} 0 \\ + 10 \\ + 59 \\ + 6 \end{array} $	e 21 49 i 22 32 e 21 48 e 22 28	$-{4\atop +38\atop -15\atop -15\atop -15}$	e 14 59 e 27 14	SS =	e 36·6 e 36·1
Belgrade De Bilt Tucson Stuttgart Uccle		80·3 80·3 80·5 81·7 81·7	$322 \\ 335 \\ 56 \\ 331 \\ 335$	e 12 17 i 12 18a e 12 15 i 12 23a e 12 23a	$\begin{array}{c} + & 3 \\ + & 4 \\ 0 \\ + & 1 \\ + & 1 \end{array}$	e 22 20 e 22 24 e 21 52 e 22 47	$^{+}_{+}^{1}_{\overset{4}{-}30}$	e 15 9 e 15 23 e 15 30 e 15 27 i 14 13	PP PP PP PP	e 47·4 e 38·1 e 37·8 e 43·0 e 39·1
Strasbourg Kew Auckland Zürich Chur		$82.4 \\ 82.5 \\ 82.8 \\ 83.1 \\ 83.2$	$332 \\ 338 \\ 156 \\ 331 \\ 330$	e 12 28 1 12 29a e 12 28 e 12 31	$\begin{array}{c} + & 3 \\ + & 3 \\ - & 1 \\ + & 2 \end{array}$	i 22 45 22 49 —	+ 3 + 4	i 15 40	PP	e 47·1 e 40·1 e 45·8
Basle Neuchatel Paris Arapuni Milan	3.	83·4 84·0 84·0 84·2 84·5	$331 \\ 335 \\ 154 \\ 329$	e 12 32 e 12 35 i 12 36 12 77 22 56	+ 2 + 2 + 3 - 27	— — (22 56)				40·1
Helwan Chicago Clermont-Ferrand Wellington Z Florissant	ž.	85·2 85·9 86·5 86·8 87·1	306 36 333 157 39	e 12 49 e 12 57 a e 12 51	$\begin{array}{r} - \\ + \\ 3 \\ + \\ 10 \\ + \\ 2 \end{array}$	i 23 17 e 23 10 e 23 26 23 22 e 23 44	$^{+}_{-}_{6}^{8}_{+}_{-}^{8}_{3}_{+}_{+}^{16}$	e 16 27 e 16 17 e 16 23	PP	e 45.6 e 45.2 43.1 e 41.1
St. Louis Seven Falls Ottawa Christchurch Vermont		87·3 87·4 87·5 88·3 89·1	$\begin{array}{r} 39 \\ 23 \\ 27 \\ 159 \\ 26 \end{array}$	e 12 49 13 1 e 12 50 12 48	$-1 \\ +11 \\ -1 \\ -7$	e 23 28 23 32 e 23 27 23 26 e 23 48	$\begin{array}{c} - & 1 \\ + & 2 \\ - & 4 \\ - & 13 \\ + & 2 \end{array}$	$ \begin{array}{r} 13 & 2 \\ 32 & 37 \\ \hline 15 & 54 \\ \hline \end{array} $	PP PP	e 40·7 43·1 39·1 41·1 e 45·5
Granada San Juan Huancayo La Paz		$96.4 \\ 115.2 \\ 136.0 \\ 144.0$	333 30 60 56	i 17 42k — 19 39	PP — [+ 2]	28 23 e 35 36 e 28 56 23 23	$\mathbf{ss}^{?}_{\{-1\}}$	e 39 51		52·7 e 47·4 e 64·0 70·1

```
Additional readings :-
  Calcutta iSSSN = 20m.35s.
  New Delhi SSN = 20m.38s., SSSN = 21m.36s.
  Bombay PcPN=11m.15s., PPE=12m.52s., PSE=19m.23s., iN=22m.22s., iSSN=
      22m.52s.
  Brisbane iZ = 11m.5s.
  Upsala eN = 28m.51s.
  Pasadena i = 11m.52s.
  Copenhagen 21m.48s.
  Palomar eZ = 11m.58s.
  Tucson e = 12m.21s., i = 12m.29s.
  Stuttgart ePP = 15m.36s.
  Kew iZ = 12m.55s., iS_cSEN = 23m.7s., eSSEN = 27m.53s.
  Wellington iZ = 14m.42s., SS? = 28m.57s.?
  Florissant eSE = 23m.56s., eSSE = 29m.15s., eSSSS?E = 35m.46s.
  St. Louis pPPZ = 16m.28s., eSSE = 29m.18s., eSSS? E = 35m.50s.
  Christchurch SSEN = 28m.57s., QEN = 35·1m.
```

Long waves were also recorded at Bermuda, Cheb, and Lisbon.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

71

- March 10d. Readings also at 0h. (Haiwee, Pasadena, Palomar, Riverside, Tucson, and near Berkeley), 1h. (Haiwee, Pasadena, Tucson, Mizusawa, San Juan, La Paz, La Plata, near Huancayo, and Rio de Janeiro), 2h. (Balboa Heights, La Plata, and Uccle), 4h. (La Paz), 7h. (near Mizusawa), 8h. (Haiwee, Palomar, Pasadena, Riverside, Tinemaha, Tucson, and near Mizusawa (2)), 10h. (near Mizusawa), 12h. (La Paz, Tucson, Pasadena, Riverside, and near Mizusawa (2)), 13h. (near Istanbul, near Lick, and near Mizusawa), 14h. (near Mizusawa), 16h. (Balboa Heights, La Paz, Huancayo, Tucson, Palomar, Riverside, and Tinemaha), 18h. (Haiwee, Palomar, Pasadena, Riverside, Tinemaha, Tucson, Mizusawa, and near Apia), 19h. and 22h. (near Mizusawa).
- March 11d. Readings at 4h. (near Branner), 5h. (Bogota), 6h. (Cheb, De Bilt, Stuttgart, Uccle, Calcutta, New Delhi, Zi-ka-wei, Haiwee, Tinemaha, Branner, near Berkeley, and Lick (2)), 7h. (Tinemaha, Tucson, Haiwee, Palomar, Riverside, and Granada), 8h. (near Apia and near Mizusawa), 9h. (near Istanbul, and near Mizusawa), 11h. (Haiwee, Palomar, Riverside, Tucson, and Tacubaya), 13h. (Pehpei, and near Istanbul), 15h. (near Alicante), 17h. (Haiwee, Palomar, Riverside, Tinemaha, Pasadena, Tucson, Stuttgart, Brisbane, and Wellington), 20h. (near Uccle), 22h. (near Tananarive), 23h. (near Apia).
- March 12d. Readings at 0h. (Bogota and near Uccle), 4h. (La Plata and Calcutta), 5h. (Bombay), 6h. (near Granada), 7h. (Bogota), 8h. (Tacubaya, Tucson, and Palomar), 13h. (Palomar, Pasadena, Riverside, Tinemaha, Brisbane, Riverview, Sydney, Auckland, and Wellington), 14h. (De Bilt, Uccle, and near Santa Clara), 15h. (Ebingen and Stuttgart), 18h. (Haiwee, Palomar, Tucson, Pasadena, Riverside, Tinemaha, St. Louis, La Paz, and La Plata), 21h. (near Bacau, Campulung, Bucharest, and Focsani).
- March 13d. Readings at 7h. and 8h. (Kew), 13h. (near Lick), 14h. (Bucharest, near Istanbul), 5th (2), Fresno, Branner, near Berkeley, Lick, and near Uccle), 16h. (Istanbul), 21h. (near Berkeley), 22h. (near Apia), 23h. (Istanbul).

March 14d. 23h. 59m. 26s. Epicentre 41°-6N. 23°-8E. (as on 1937 Sept. 8d.).

Institut météorologique central do Bulgarie. Bull. Seismologique p. 22, Sofia 1945. Epicentre 41°·5N. 23°·9E. Intensity VI-VII near Nevrokop. Macroseismic radius 200km.

$$A = +.6862$$
, $B = +.3029$, $C = +.6614$; $\delta = -5$; $h = -2$; $D = +.404$, $E = -.915$; $G = +.605$, $H = +.267$, $K = -.750$.

		Δ	Az.	P.,	O-C.	s.	O-C.	Suj	pp.	L.
Sofia		1.2	343	m. s. e 0 26	s. + 2	m. s. i 0 41	s. 0	m. s. i 0 44	$S_{\mathbf{z}}$	m.
Bucharest Belgrade		3·3 4·0	$\begin{array}{c} 31 \\ 325 \end{array}$	e 0 50 e 1 1	- 3	i 1 46	Sg	i 1 14	$\mathbf{P}_{\mathbf{g}}$	-
Istanbul		4.0	96	1 10	+ 6	-	+ 8	2 13	Pg Sg	_
Triest		8.3	302	e 2 6	+ 2	e 4 16	s•			
Prague Chur		10.7 11.5	326 302	e 3 4 i e 2 4 8	+26	4	-			e 5·1
Cheb		11.6	321	e 1 34?	3	e 6 4	s _*		\equiv	_
Zürich Stuttgart		$12.3 \\ 12.5$	303 310	e 3 6 e 2 59	$^{+}_{-}$ $^{7}_{3}$	e 6 44	S.			- -
Basle		13.0	304	07:07P(.) T970	11 TES	- 7 10	CI	\$500()	_	e 6·8
Helwan	z.	13.2	150	e 3 5 i 3 7	- 4	e 7 10	S _e			i 6·1
Strasbourg		13.3	307	e 4 27	ş	e 5 34	- 8	S ****	-	~ ~

Additional readings :-

Sofia iN = 32s.

Bucharest ePN =54s., iP*NZ =1m.4s.

Belgrade i = 1m.13s., i = 2m.13s.

Long waves were also recorded at Potsdam, De Bilt, Kew, Neuchatel, and Granada.

March 14d. Readings also at 1h. (Istanbul, and near Berkeley), 3h. (near Uccle), 4h. (near Berkeley), 7h. (College, Pasadena, Tucson, Florissant, and St. Louis), 11h. (Tucson, Brisbane, Riverview, Sydney, Christchurch, Wellington, New Plymouth, near Auckland, and near La Paz), 12h. (Pasadena and Tucson), 13h. (near Apia), 18h. (Palomar, Pasadena, Riverside, Santa Barbara, Brisbane, Riverview, Sydney, Helwan, Ksara, and La Paz), 23h. (Berkeley, near Branner, Lick, Fresno, and near Istanbul).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

March 15d. 1h. 30m. 7s. Epicentre 47°.5N. 15°.0E. (as given by Strasbourg).

Intensity V at Vordernberg and Trofaiach, radius of macroseismic area 25kms.

E. Trapp.

Makros Beobachtungen in den Jahren 1941-45. Anhang 8, Jahrbuch für 1947, der Zentralanstalt für Meteorologie und Geodynamik, Wien, macroseismic chart, p. D.50.

A = +.6550, B = +.1755, C = +.7350; $\delta = +5$; h = -4; D = +.259, E = -.966; G = +.710, H = +.190, K = -.678.

	Δ	Az.	P. m. s.	0 -C. s.	S. O-C. m. s. s.	m. s.	L. m.
Triest	2·0 3·7	205 260	i 1 7 e 1 1	+81	$(i \ \frac{1}{1} \ 5) + \frac{5}{5}$	e 1 9 P•	
Ravensburg Stuttgart Jena	3·7 4·0 4·1	$\frac{283}{290}$ $\frac{328}{328}$	e 1 5 e 1 21	+ 1 P ₈	e 1 49 - 3 e 2 10 S*	e 1 21 P _s	i 2·2
Zürich Strasbourg Basle Neuchatel	4·4 4·9 5·0 5·5	270 285 271 269	e 1 9 e 1 17 e 1 25	$-\frac{1}{0}$	e 2 17 S• 2 38 Sg e 2 39 S• e 2 21 - 9	e 1 21 + 3 e 1 43 P*	=

Stuttgart gives also $eS_g = 2m.7s$. Long waves were also recorded at Potsdam.

March 15d. 5h. 3m. 53s. Epicentre 39°.5N. 73°.0E. (as on 1943, April 5d.).

$$A = +.2262$$
, $B = +.7399$, $C = +.6335$; $\delta = -6$; $h = -1$; $D = +.956$, $E = -.292$; $G = +.185$, $H = +.606$, $K = -.774$.

		Δ	Az.	P. m. s.	0 -C.	s. m. s.	O -C.	m. s.	op. L. m.
New Delhi Bombay Calcutta	E. N.	11·4 20·5 20·5 21·4	161 182 182 140	e 2 43 e 4 51 e 4 48 i 4 57	- 4 + 9 + 6 + 6	i 4 58 8 44 8 48 i 8 52	$^{+}_{+17}^{2}_{+21}^{+17}$	2 48 8 32 5 13 1 9 34	PP 5.8 PcP — SS 10.7
Hyderabad Kodaikanal Colombo Bucharest Helwan	N. E.	22.5 29.4 33.0 34.8 35.3 38.7	168 169 294 267 295	5 8 e 7 37 e 3 17 e 7 1 i 7 1k i 7 28	+ 6 * + 7 + 2 + 1	9 20 — — 12 41 e 18 18	+15 + 8 + 8	e 14 44 8 25	— 12·0 — — — SS 24·1 PP — — — (e 18·3)
Belgrade Upsala Prague Potsdam Copenhagen Cheb		39·8 41·9 42·4 42·5 43·2	319 305 308 314 305	i 8 48 e 7 43 i 7 57 e 8 9	PP -11 - 2 + 5	e 9 28 e 17 7 14 20 e 14 39	PP SS - 2 + 7	e 15 47 e 16 43 9 33 i 9 51	SS e 23·1 PP = 22·1
Triest Jena Stuttgart Chur Bergen		43·2 43·6 45·5 45·7 45·9	299 306 304 302 321	i 8 2 e 8 6 i 8 22 e 8 23 e 9 58	- 2 - 2 - 1 - 1 PP	e 14 43 e 15 14 e 15 7	$+\frac{11}{9}$ $-\frac{4}{4}$	e 9 52 e 9 42 e 10 7 e 17 58	PP e 21.8 PP e 21.8 SS e 22.8
Zürich Strasbourg Basle De Bilt Neuchatel		46.2 46.5 46.8 47.2 47.4	302 305 303 310 302	e 8 26 e 8 29 e 8 32 i 8 37 e 8 36	$ \begin{array}{rrr} $	e 19 12 e 15 29		e 10 27	PP e 24·1
Uccle Paris Aberdeen Kew Scoresby Sund		48 · 1 49 · 8 50 · 2 50 · 7 55 · 0	308 305 317 310 337	e 8 42 e 9 2 e 9 1 9 31	$-\frac{1}{6}$ $-\frac{2}{4}$	e 19 12 e 16 33 e 16 15 17 25	+22	i 10 37 e 10 54 e 20 43 e 10 59	PP e 25·1 SSS i 26·6 PP e 25·1
Granada San Fernando	E.	58·4 60·6	$\frac{294}{294}$	i 9 59 e e 11 18	$^{-1}_{+63}$	i 18 26 18 43	$^{+24}_{+13}$	10_20	PP e 32·3 — 36·1

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

73

NOTES TO MARCH 15d. 5h. 3m. 53s.

Additional readings:—
New Delhi SSN = 5m.4s.
Bombay SN = 9m.20s.
Upsala iN = 13m.4s., eE = 13m.13s., eN = 15m.2s.
Prague e = 20m.1s. and 21m.13s.
Cheb e = 17m.43s.
Triest SS = 17m.44s.
Stuttgart ePPPZ = 11m.14s., ePPPP?Z = 12m.15s., eSZ = 15m.24s., eZ = 16m.45s., eSS = 18m.30s., eSSZ = 18m.39s., e = 20m.34s.
Bergen eZ = 17m.22s., eN = 20m.29s., eZ = 21m.24s.
De Bilt eSS = 19m.9s.
Kew eSS?N = 19m.37s., eSSEZ = 20m.7s.?.
Granada P_cP = 10m.38s., PP = 13m.29s., P_cS = 14m.4s., SS = 22m.45s., sSS = 24m.29s.
Long waves were also recorded at Milan, St. Louis, Florissant, Tucson, and Pasadena.

Epicentre 39°.5N. 73°.0E. March 15d. 5h. 50m. 48. (as at 5h. 3m.). 6h. 17m. 22s. (II) S. 0 - C. Supp. L, 0 - C. Ρ. Az. m. S. s. 8. m. s. m. m. s. SS 5 56 47 161 e 4 11.4I New Delhi e 5 0 +42 48 11.4 161 11 SS 88 9 20 46 +19e 4 43 182 20.5 I Bombay Ν. SS 44 +179 17 e 4 46 182 20.5 п (i 12·6) (i 8 49) i 8 49a S + 4 140 21.4I Calcutta N. $(12 \cdot 2)$ \mathbf{s} (9 14)22.5 168 9 14 I Hyderabad N. $(12 \cdot 2)$ 25) 9 25 168 22.5 E. п $\mathbf{P}\mathbf{P}$ e 6 38 173 29.4 II Kodaikanal E. e 12 56? +5933.0 169 I Colombo e 22·0 15 56? SS 319 39.8N. I Upsala SS 19 50 305 41.91 Prague e 22.6 SS 20 20 e 16 38 41.9305 11 PP e 9 51 e 8 -143.2 299 II Triest e 8 19 45.5 304 Z. 1 Stuttgart e 25·1 \mathbf{PP} e 10 12 e 15 8? e 8 21 304 45.5 11 e 8 22 - 2 302 45.7 II Chur e 23·2 PPP321 e 11 28 45.9 II Bergen e 8 29 + 1 46.2302 II Zürich

Additional readings:—
New Delhi I iSN = 4m.59s., II eSN = 5m.3s.

Bombay I iN =4m.47s., PcPE =8m.37s., II iN =4m.50s.

Calcutta and Hyderabad record S as P and L as S.

Upsala I eE = 17m.42s.

Stuttgart II eSS = 18m.38s. Long waves were also recorded at Kodaikanal (I) and other European stations.

March 15d. 8h. 14m. 43s. Epicentre 37° · 0N. 121° · 5W.

Intensity V at Aptos and San Jose; IV at Salinas, San Leandro, and San Francisco; macroseismic area 2000 sq. miles.

R. R. Bodle.

United States Earthquakes, 1944, Washington, 1946, p. 15.

$$A = -.4183$$
, $B = -.6826$, $C = +.5992$; $\delta = -4$; $h = -1$; $D = -.853$, $E = +.522$; $G = -.313$, $H = -.511$, $K = -.801$.

		Δ	Az.	Р.	o-c.	s.	$\mathbf{O} - \mathbf{C}$.	Sur	p.
		0	•	m. s.	8.	m. s.	s.	m. s.	
Lick		0.4	340	e 0 12	- 1	i 0 19	- 2	_	
Santa Clara		0.5	314	i 0 8	- 6	i 0 14	- 9		2
Branner		0.7	307	i 0 17	0	i 0 27	- 1		-
Berkeley		1.1	325	e 0 22	0	i 0 38	- 1		_
San Francisco		1.1	315	0 173	- 5	_		() - 1	-
Fresno	N.	1.4	101	e 0 28	+ 1	i 0 48	+ 2	i 0 32	$\mathbf{P}_{\mathbf{c}}$
Tinemaha		2.6	88	e 0 44	0	i 1 22	+ 5		
Santa Barbara		2.9	151	10 48	0	i 1 38	S	-	
Haiwee		3.0	107	i 0 53	+ 3	i 1 36	+ 9	_	-
Pasadena		3.9	135	i1 2	0	i 1 45	- 5		****
Tucson		10.0	115	e 2 33	+ 6		_	e 5 37	$\mathbf{S}_{\mathbf{z}}$

Berkeley gives also iPN =25s., iZ =41s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

74

March 15d. 8h. 56m. 52s. Epicentre 24°-7N. 123°-2E. Depth of focus 0.010.

$$A = -.4981$$
, $B = +.7611$, $C = +.4155$; $\delta = +2$; $h = +3$; $D = +.837$, $E = +.547$; $G = -.227$, $H = +.348$, $K = -.910$.

		Δ	Az.	P.	O - C.	s.	O-C.	Su	pp.	L.
		0	0	m. s.	s.	m. s.	8.	m. s.	and the second	m.
Zi-ka-wei Mizusawa	**	20.9	346	e 1 34	- 3	1 2 38	-15	i 3 38	SSS	_
Calcutta	E.	California (1992) 1 (1994)	43	(4 51)	+15	4 51	P	2.	-	7
	N.	INCOME OF A CO.	273			e 11 25	+ 3	e 14 42	¥	-
New Delhi	N.		286	i 13 37 a	s	(i 13 37)	- 4	14 14	PPS	
Hyderabad	E.	42.2	269	-		14 0	+ 3		-	-
Bombay		46.9	273	10 37	$\mathbf{p}\mathbf{p}$	15 6	+ 1	(-	
Helwan		79.6	297	11 59	+ 1	i 21 42	- 9	i 12 26	$P_{c}P$	
Copenhagen		80.8	327	i 12 5k	+ 1				- 6-	
Scoresby Sund		81.7	349	12 9	, õ	22 16	+ 4	22.00	0.33	
Stuttgart		86.2	323	e 12 31	– ĭ	e 22 48	$[+\hat{2}]$	e 22 58	s	e 39·1
Zürich		87.3	322	e 12 35	- 2	r=3				
Basle		87.8	322	e 12 38	- 1		100	JEE .		
Tinemaha		95.6	45	i 13 17	1 1					
Haiwee	z.	96.4	45		T 1		1995			
Pasadena	z.	97.4	47	i 13 20 i 13 24	T 1	-	-			
1 decentrate	u.	91 2	21	1 10 24	U	-	-	-		-
Riverside	z.	98.0	47	i 13 27	+ 1	-	_		-	_
Palomar	Z.	98.8	47	i 13 31	+ 1		-	_		
Tucson	57350	103-4	44	e 13 52	+ 2			i 18 1	\mathbf{PP}	
St. Louis	Z.	W 40 W 40	27	e 18 50	PP				-	

Additional readings :—

Zi-ka-wei iE = 4m.6s., iN = 4m.32s.

New Delhi PcP = 16m.41s., iS = 18m.11s., readings wrongly identified.

Stuttgart e = 23m.27s.

Long waves were also recorded at Prague, Uccle, and De Bilt.

March 15d. Readings also at 0h. (near Sofia (2) and Bucharest (2)), 7h. (La Plata), 10h. (near Uccle), 13h. (Pasadena), 18h. (Prague), 19h. (Riverview), 20h. (Tucson, Pasadena, and Palomar), 22h. (Wellington, Riverview, and Brisbane).

March 16d. 12h. Undetermined shock.

Auckland P = 33m.15s.?, S = 37m.32s., R = 40m.13s.Wellington P = 33m.57s., S? = 38m.36s.?, Q = 40m.55s.?, R = 42m.Brisbane eZ = 34m.458. Riverview iN = 38m.38s., iE = 41m.7s., eL?N = 43m.54s.Pasadena ePZ = 39m.28s., eN = 58.0m., eZ = 60m.Riverside ePZ = 39m.31s. Tucson iP = 39m.53s., i = 39m.56s.Christchurch QE = 41m.48s., RZ = 43m.25s.Uccle ePNZ = 47m.43s. Stuttgart eZ = 47m.47s. and 47m.50s. Clermont-Ferrand PKP = 47m.48s. Zürich eP = 47m.51s. Chur eP = 47m.53s. Helwan iZ = 48m.6s., 48m.26s., and 52m.0s.Granada iP = 48m.36s.k, $P_cP = 48m.57s.$, S = 58m.30s.Strasbourg e = 49m.45s., 49m.59s., and 53m.15s.Long waves also recorded at Kew.

March 16d. Readings also at 6h. (Brisbane), 7h. (Tucson and Palomar), 9h. (near Helwan, Ksara, Bucharest, De Bilt, and Stuttgart), 12h. (Stuttgart), 17h. (near Bogota), 22h. (near Bogota and near Apia), 23h. (Auckland, Christchurch, Wellington, Brisbane, Riverview, Sydney, and Stuttgart).

March 17d. Readings at 8h. (La Plata), 9h. (Palomar and Tucson), 10h. (Riverview), 11h. (La Paz and near Mizusawa), 16h. (Brisbane and Riverview), 23h. (near Fort de France).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

75

March 18d. Readings at 0h. (near Fort de France), 7h. (near Malaga), 10h. (Tucson, La Paz, and La Plata), 11h. (Riverview), 13h. (Zürich (2), near Berkeley, Branner, and Lick), 14h. (Brisbane and near Istanbul), 19h. (Istanbul (2), Belgrade, Triest, near Bucharest, and Sofia), 20h. (Calcutta, Bucharest, Sofia, Stuttgart, De Bilt, Uccle, and Merida).

March 19d. Readings at 1h. (near Uccle), 8h. (Haiwee, La Jolla, Pasadena, Palomar, Riverside, Tinemaha, Santa Barbara, Tucson, near Triest (2), and near Mizusawa), 9h. (Tucson and Palomar), 10h. (Triest), 11h. (near Granada), 13h. (Pasadena, Palomar, Riverside, and Tucson), 17h. (Mizusawa), 20h. (Riverview and Kew).

March 20d. Readings at 8h. (Dehra Dun), 9h. (Tucson, Pasadena, Palomar, Riverside, near Haiwee, and Tinemaha), 10h. (near Apia), 18h. (near Almeria and Malaga).

March 21d. 22h. 9m. 46s. Epicentre 41° 0N. 143° 3E. (as on 1943, June 13d.).

Scale VI at Okayama; V at Hatinohe and Aomori. Epicentre 40°-9N. 43°-1E.; depth 50km.

Radius of macroseismic area greater than 300km. Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1944, Tokyo, 1951, p. 8, with macroseismic chart.

A = -.6069, B = +.4523, C = +.6535; $\delta = -3$; h = -2; D = +.598, E = +.802; G = -.524, H = +.391, K = -.757.

		Δ	Az.	P. m. s.	O – C. s.	S. m. s.	0 - C.	m. s.	pp.	L. m.
Hatinohe Miyako Aomori Morioka Mori		1·4 1·7 1·9 2·1 2·3	251 216 264 232 298	m. s. 0 24 k 0 20 0 45 0 33 k 0 41	$ \begin{array}{r} $	0 35 0 41 0 54 0 55 1 1	-11 -13 - 5 - 9 - 8			<u>-</u>
Mizusawa Sapporo Nemuro Sendai Hukusima	E.	$2.5 \\ 2.5 \\ 2.9 \\ 3.3 \\ 3.9$	222 325 44 214 214	i 0 41 0 48 1 2 0 52 0 54	$-2 \\ +5 \\ +14 \\ -1 \\ -8$	$ \begin{array}{cccc} 1 & 5 \\ 1 & 18 \\ 1 & 39 \\ 1 & 25 \\ 1 & 36 \end{array} $	$ \begin{array}{r} -9 \\ +4 \\ +15 \\ -10 \\ -14 \end{array} $		=	
Onahama Aikawa Mito Utunomiya Kakioka		4·5 4·9 5·1 5·2 5·3	$\begin{array}{c} 205 \\ 234 \\ 206 \\ 212 \\ 208 \end{array}$	1 26 1 15 1 18 1 22 1 19	$^{+ 15}_{- 2} \\ ^{+ 2}_{+ 1} \\ ^{- 3}$	2 22 2 11 2 18 2 26 2 38	$^{+17}_{-$			
Kumagaya Nagano Tokyo Wazima Yokohama		5·7 5·9 6·0 6·1 6·3	213 224 209 236 208	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	- 4 - 1 - 3 - 1	2 33 2 53 2 39 2 38 3 1	$- \begin{array}{c} - & 2 \\ + & 13 \\ - & 4 \\ - & 7 \\ + & 11 \end{array}$			
Toyama Hunatu Misima Shizuoka Omaesaki		6·4 6·5 6·8 7·2 7·5	229 213 211 214 214	$\begin{array}{cccc} 1 & 39 \\ 1 & 41 \\ 1 & 38 \\ 2 & 5 \\ 2 & 4 \end{array}$	$^{+}_{+}^{1}_{2}$ $^{-}_{+}^{6}$ $^{+}_{+}^{16}$	3 24 2 56 2 58 2 28 3 33	$^{+31}_{-5}$ $^{+15}$ $^{+13}$			
Gihu Hamamatu Hikone Kyoto Osaka		7·6 7·7 8·0 8·4 8·8	224 217 226 227 227	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2 + 9 - 2 - 2	3 25 3 34 3 21 3 42 4 8	$^{+}_{+}^{2}_{9}$ $^{-}_{-}^{12}$ $^{+}_{+}^{15}$		<u>=</u>	
Kobe Sumoto Siomisaki Koti Kumamoto		$9.0 \\ 9.4 \\ 9.6 \\ 10.8 \\ 13.0$	228 228 221 229 235	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 1 \\ - & 1 \\ + & 12 \\ - & 4 \\ - & 5 \end{array}$	3 57 4 19 4 22 4 47 5 7	$-1 \\ +12 \\ +10 \\ +5 \\ -28$			

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

> 76 1944

Myazaki			Δ	Az.	Р.	O-C.	s.	O-C.	Suj	pp.	L.
College 45-0 35 c 8 41 +22 c 15 4 6 — — c 18-6 Calcutta N. 49-4 266 e 8 57 + 4 c 15-57 - 3 —	33703.024-0-1-0-1-0-1-0-1		0	6	m. s.	s.	m. s.	s.			m.
College	Miyazaki		13.2	230	3 9	- 2	5 49	+ 9		-	-
New Delhi			45.0	35	e 8 41	+22	e 15 4	1 10	_	-	e 18.6
New Delhi	Calcutta	N.	49.4	266	e 8 57	+ 4	e 15 57	- 3			
N. 63-3 272 10 37 + 4 18 57 - 7 - - -	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	N.	54.5	279	9 28	- 4	i 17 3	- 7		-	-
N. 63-3 272 10 37 + 4 18 57 - 7	Bombay B	E.	63.3	272	10 30	- 3	18 57	- 7	19 12	PS	_
Scoresby Sund Coresby Sund Cor		N.	63.3	272	10 37	+ 4	18 57	- 7		-	
Tinemaha		Е.	65-1	262	e 10 48	+ 3		-		-	_
Tinemaha Santa Barbara N. 72·3 56 e 11 40 +11 — <td>Scoresby Sund</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>+ 2</td> <td>20 40</td> <td>$_{\mathrm{PS}}$</td> <td>$31 \cdot 2$</td>	Scoresby Sund				-			+ 2	20 40	$_{\mathrm{PS}}$	$31 \cdot 2$
Santa Barbara 73·0 59 11 52 +19 —		Ε.			-	-	e 20 19	- 7	-	-	e 34·2
Pasadena Riverview 74·2 58 e 11 45 + 5 i 21 14 0 i 12 0 PcP c 34·1 Copenhagen 75·0 334 e 11 47a + 2 — — — 14 35 PP — La Jolla 75·6 59 e 12 16 +28 — — — — PP — Palomar 75·6 59 e 12 16 +28 — </td <td></td> <td>Ν.</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td>		Ν.					-	_			
Riverview	Santa Barbara		73.0	59	11 52	+19	*****		-		
Riverview	Pasadena		74.2		e 11 45	+ 5	The state of the s	0	i 12 0	P_cP	e 34·1
Palomar 75.6	Riverview						e 21 19	- 1	-	_	e 32·4
Palomar 75.6	Copenhagen		75.0		e 11 47a			_	14 35	\mathbf{PP}	_
Potsdam N. 77·5 332 — — e 22 8 +18 — — e 45·2 Bucharest 78·8 319 e 12 0 — 2 i 21 52 — a e 14 46 PP 40·2 Prague 78·8 329 e 12 24 +18 e 22 3 — 1 e 15·20 PP e 36·2 Ksara 80·0 306 e 12 12 — 1 e 22 30 +13 — — — — 2 38·0 De Bilt 80·1 36 i 12 17 +2 e 22 19 — — — e 38·2 Stonyhurst 81·0 340 — — e 22 22 — — — e 38·2 Stonyhurst 81·0 340 — — e 22 30 — — — e 38·2 Stutigart 81·9 332						+28	? 5	-		-	_
Bucharest 78.0 319 e 12 0	Palomar		75.6	58	e 12 0	+12	i 21 32	+ 3	i 12 9	\mathbf{pP}	-
Bucharest 78.0 319 e 12 0	Potsdam	Ň.	77.5	332	-		e 22 8	+18	-	_	e 45·2
Ksara 80·0 306 e 12 12	Bucharest	- 30.00.00	78.0	319	e 12 0	- 2	i 21 52		e 14 46		40.2
Tucson 80·1 56 i 12 18 + 5 — — — — e 38·0 De Bilt 80·4 335 i 12 17 + 2 e 22 19 — — — e 38·2 Stonyhurst 81·0 340 — — — e 22 22 — 5 22 54 SKS e 40·2 Uccle 81·8 335 e 12 21a — 1 e 22 30 — — — — e 38·2 Stuttgart 81·9 332 i 12 23 0 e 22 33 — 3 i 12 39 PP 43·2 Strasbourg 82·5 332 12 30 + 4 — — 13 30 PP — Kew 82·7 338 e 12 27 0 — — e 12 44 PcP 40·2 Triest 82·7 327 e 13 40 +73 e 22 36 — 8 — — — Chur 83·3 331 e 12 30a 0 — — — —	Prague		78.8	329	e 12 24	+18	e 22 3	- 1	e 15 20	\mathbf{PP}	e 36·2
De Bilt 80·4 335 i 12 17 + 2 e 22 19 - 2 e 38·2 Stonyhurst 81·0 340 e 22 22 - 5 22 54 SKS e 40·2 Uccle 81·8 335 e 12 21a - 1 e 22 30 - 5 - e 38·2 Stuttgart 81·9 332 i 12 23 0 e 22 33 - 3 i 12 39 PP 43·2 Strasbourg 82·5 332 i 12 30 + 4 i 13 30 PP e 12 44 PcP 40·2 Kew 82·7 338 e 12 27 0 e 12 44 PcP 40·2 Triest 82·7 327 e i 3 40 + 73 e 22 36 - 8	Ksara		80.0	306			e 22 30	+13		_	
Stonyhurst 81.0 340 — — e 22 22 — 5 22 54 SKS e 40.2 Uccle 81.8 335 e 12 21a — 1 e 22 30 — — — — e 38.2 Stuttgart 81.9 332 i 12 23 0 e 22 33 — 3 i 12 39 PP 43.2 Strasbourg 82.7 338 e 12 27 0 — — e 12 44 PcP 40.2 Kew 82.7 327 e 13 40 +73 e 22 36 — — — — e 12 44 PcP 40.2 Triest 82.7 327 e 13 40 +73 e 22 36 — 8 — — — Chur 83.3 331 e 12 30a 6 —	Tucson		80.1	56	i 12 18	+ 5			3	200	e 38·0
Stonyhurst 81.0 340 — — e 22 22 — 5 22 54 SKS e 40.2 Uccle 81.8 335 e 12 21a — 1 e 22 30 — — — — e 38.2 Stuttgart 81.9 332 i 12 23 0 e 22 33 — 3 i 12 39 PP 43.2 Strasbourg 82.7 338 e 12 27 0 — — e 12 44 PcP 40.2 Kew 82.7 327 e 13 40 +73 e 22 36 — — — — e 12 44 PcP 40.2 Triest 82.7 327 e 13 40 +73 e 22 36 — 8 — — — Chur 83.3 331 e 12 30a 6 —	De Bilt		80.4	335	i 12 17	⊥ 9	6 99 19	_ 9	_	-	0 38.9
Uccle 81·8 335 e 12 21a - 1 e 22 30 - 5 e 38·2 Stuttgart 81·9 332 i 12 23 0 e 22 33 - 3 i 12 39 PP 43·2 Strasbourg 82·5 332 12 30 + 4 - - e 12 39 PP 43·2 Kew 82·7 338 e 12 27 0 - - e 12 44 PcP 40·2 Triest 82·7 327 e 13 40 +73 e 22 36 -					11211	T		_	99 54	STE	
Stuttgart 81.9 332 i 12 23 0 e 22 33 -3 i 12 39 PP 43.2 Strasbourg 82.5 332 12 30 + 4 - - 13 30 PP - Kew 82.7 338 e 12 27 0 - - e 12 44 PcP 40.2 Triest 82.7 327 e 13 40 +73 e 22 36 - 8 -					e 12 21.	1			22 34	200000000000000000000000000000000000000	
Strasbourg 82.5 332 12 30 + 4 — — — 13 30 PP — Kew 82.7 338 e 12 27 0 — — e 12 44 PcP 40.2 Triest 82.7 327 e 13 40 +73 e 22 36 — 8 — — — Chur 83.3 330 e 12 31 + 1 — — — — — Zürich 83.3 331 e 12 30a 0 — — — — — Basle 83.5 331 e 12 30a 0 — — — — — Neuchatel 84.2 331 e 12 36 + 2 — — — — — Helwan 85.5 306 i 12 41k 0 23 26 +14 23 2 SKS — Clermont-Ferrand 86.6 333 e 12 49 + 3 — — — — e 42.2 St. Louis z. 86.9 39 i 12 51 + 3 i 23 29 + 3 e 13 6 pP e 40.2 O						4.0			1 12 39		
Kew 82·7 338 e 12 27 e 13 40 e 22 36 e 22 36 e 8 e 22 36 e 2 e 22 36 e 2 e 22 26				The State of the Control of the Cont		- 3520	0 22 00				40 2
Triest 82·7 327 e 13 40 +73 e 22 36 - 8										375	- 22
Chur									e 12 44	$P_{c}P$	40.2
Zürich Basle 83·3 331 e 12 30 a 83·5 331 e 12 32 + 1				The second secon			e 22 36	- 8			
Basle 83.5 331 e 12 32 + 1					e 12 31		-	_	_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								•	-	-	-
Helwan Clermont-Ferrand S6.6 S33 e 12 49 + 3	Basie		83.5	331	e 12 32	+ 1		_		_	-
Helwan Clermont-Ferrand Florissant St. Louis St. Louis St. 27 e 12 52 + 3 St. 28 e 14 e 15 e 17 e 18								-		_	-
Florissant S6·7 39 e 13 4 +17 e 23 15 - 9 e 29 10 SS e 42·2 St. Louis z. 86·9 39 i 12 51 + 3 i 23 29 + 3 e 13 6 pP e 40·2 Ottawa 87·2 27 e 12 52 + 3 47·2				306	The second secon		23 26	+14	23 2	SKS	-
St. Louis z. 86·9 39 i 12 51 + 3 i 23 29 + 3 e 13 6 pP e 40·2 Ottawa 87·2 27 e 12 52 + 3 — — 47·2							-				e 42.2
St. Louis z. 86·9 39 i 12 51 + 3 i 23 29 + 3 e 13 6 pP e 40·2 Ottawa 87·2 27 e 12 52 + 3 — — 47·2					the second secon	+17	e 23 15	- 9			
	St. Louis	Z.	86.9	39	i 12 51	+ 3	i 23 29	+ 3	e 13 6		e 40·2
Granada 96.5 333 e 13 33a + 1 i 25 50 + 59 i 17 33 PP 49.3						+ 3				-	
	Granada		96.5	333	e 13 33a	+ 1	i 25 50	+59	i 17 33	\mathbf{PP}	49.3

Additional readings :-

Mizusawa SN = 1m.8s.Bombay iN = 10m.41s., iE = 10m.44s., PPS = 19m.22s., SSE = 23m.12s.

Upsala eN = 20m.39s.Palomar iNZ = 12m.24s.

Potsdam eE = 22m.15s. Bucharest eN = 15m.17s., iPSEN = 22m.18s.

Prague ePS = 22m.22s.

Tucson i = 12m.33s., e = 14m.55s.

Stuttgart ePS = 23m.14s.

Helwan iZ = 12m.56s.

St. Louis eZ = 14m.18s., ePPZ = 16m.32s., eSSE = 29m.11s.Granada ePPS = 30m.59s.

Long waves were also recorded at Bergen, Cheb, Paris, San Fernando, and Wellington.

March 21d. Readings also at 6h. (Bucharest), 8h. (Tucson, Palomar, Riverside, and Pasadena), 12h. (La Paz and Bogota), 14h. (near Alicante), 15h. (Tucson, Palomar, Bozeman, St. Louis, and College), 16h. and 17h. (near Malaga), 18h. (near Berkeley), 19h. (Kodaikanal and near Malaga), 21h. (Huancayo), 22h. (near Berkeley and Mizusawa (2)), 23h. (near Neuchatel (2), Basle (2), Zürich (2), Chur (2), Stuttgart, and Strasbourg).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

March 22d. 0h. 43m. 9s. Epicentre 8°-3S. 123°-4E. Depth of focus 0.015.

A = -.5448, B = +.8262, C = -.1435; $\delta = +1$; h = +6; D = +.835, E = +.550; G = +.079, H = -.120, K = -.990.

	D = +	835, E	= + ·	550;	1 = + .01	9, n = - ·	120, B	330.		
Perth Brisbane Riverview Sydney	N.	∆ 24.6 33.9 36.0 36.1	Az. 195 128 139 139	P. m. s. 5 11 i 6 28 i 6 51 k i 6 51	O - C. + 1 - 5 + 1	S. C m. s. 9 26 e 11 43 i 12 19 i 12 15) - C. s. + 8 - 4 - 0	m. s. 5 51 7 46 i 7 27 i 12 3	PP PP PP	E. m. e 15·6 18·0
Miyazaki Hukuoka Kobe Shizuoka Kohu Calcutta	N.	40.7 42.2 44.2 45.3 46.0 46.0	10 8 14 17 17 312	7 43 7 59 8 5 8 14 e 8 16	$ \begin{array}{ccccc} & - & 3 \\ & + & 1 \\ & + & 2 \\ & + & 2 \\ & + & 4 \end{array} $? 4 5 + 15 + 6			17·4 =
Colombo Tokyo Toyama Sendai Kodaikanal	E.	46.0 46.4 46.6 49.1 49.3	287 18 16 18 291	8 11 8 17 8 17 8 36 i 8 31	$\begin{array}{cccc} - & 1 \\ + & 2 \\ 0 & 0 \\ - & 7 \end{array}$	14 45 14 49 15 25 e 14 6	- 1 - 6 - 5	10 56 1 9 29 —	PP PeP	
Mizusawa Hyderabad Hatinohe Mori Sapporo	E. N.	50·0 51·3 51·4 52·6 53·7	$^{18}_{300}_{18}_{16}$	8 46 9 24 e 8 54 7 59 (9 8)	$^{+\ 3}_{+\ 31} \ ^{0}_{-\ 64} \ ^{-\ 3}$	15 40 (16 26) 15 57 e 15 16 (16 35)	$^{-\ 2}_{+\ 26}^{-\ 5}_{-\ 62}^{-\ 2}$	(11 25) —	PP	
Auckland Christchurch Arapuni Wellington Bombay	z.	54·5 55·3 55·5 56·0 56·7	$130 \\ 138 \\ 131 \\ 135 \\ 299$	$ \begin{array}{r} 8 & 51? \\ 9 & 22 \\ \hline 9 & 25k \\ 1 & 9 & 33 \end{array} $	$-{26 \atop 0} \\ -{3 \atop 1}$	16 38 16 53 17 3 16 56 1 17 8	- 6 - 1 - 6 - 8 - 5	$ \begin{array}{c} 9 & 19 \\ 10 & 2 \\ \hline 10 & 1 \\ 10 & 13 \end{array} $	pP pP pP	26·9 29·5 25·9 24·9
New Delhi Dehra Dun Apia Tananarive	N. N.	57·7 58·0 63·7 74·0	$311 \\ 314 \\ 101 \\ 253$	i 9 39 k e 9 38 i 10 24 11 25	$\begin{array}{c} - & 0 \\ - & 4 \\ + & 2 \end{array}$	i 17 20 e 17 30 e 18 38 i 20 46	- 6 - 4 + 2	10 14 e 20 3 12 4	SS pP	i 24-3
Honolulu Ksara Helwan College Bucharest		$82.6 \\ 92.5 \\ 95.8 \\ 96.9 \\ 101.0$	$\begin{array}{r} 67 \\ 302 \\ 299 \\ 25 \\ 313 \end{array}$	i 12 8 e 13 13 i 13 13k e 17 10 e 13 37	$^{-}_{+}\overset{2}{\overset{3}{\overset{0}{0}}}_{0}$	e 22 2 e 23 21 [23 36 [e 23 31 [i 24 57	$ \begin{array}{r} -13 \\ + 41 \\ \hline -101 \\ -3 \end{array} $	e 23 15 e 37 3 e 31 0 e 17 48	SS PP SS PP	34·3 — 42·9
Sitka Upsala Prague Copenhagen Potsdam	E.	103.0 105.0 108.5 108.6 108.9	33 329 320 326 323	18 12 e 15 38 14 12 i 18 52	PP P PP	e 24 10 [25 32 e 24 57 [24 39 [e 27 51	- 1] - 1 + 21] + 3] SP	e 27 12 e 43 51? e 19 9 18 38 e 29 3	PS Q PP PP SPP	49·9 i 53·9 41·9
Triest Cheb Jena Bergen Victoria		109 ·6 109 ·8 110 ·1 110 ·7 111 ·6	$316 \\ 320 \\ 321 \\ 332 \\ 41$	e 17 51 e 18 51? e 18 31 17 32 20 51?	[-24] PP [+15] [-45] PP	24 41 1	$[-3] \\ [-50] \\ [-4] \\ PPS$	e 27 519 e 18 51 19 5	PS PP PP	e 56·8
Stuttgart Chur Milan Zürich Strasbourg		$112.1 \\ 112.3 \\ 112.8 \\ 112.8 \\ 113.0$	319 317 316 318 320	e 14 26 e 17 41 19 12 e 18 12 19 14	P PP [-10] PP	e 26 38 24 47 29 51 24 57	S [-5] PS [+3]	e 15 23 — — 28 51	PP = SP	54·0 —
Ukiah Basle De Bilt Scoresby Sur Berkeley	ıd	113.3 113.4 113.7 114.1 114.2	$50 \\ 318 \\ 324 \\ 348 \\ 52$	e 19 23 e 18 33 e 14 34 i 19 19	PP [+10] P P PP	e 26 57 1 26 55 24 56	S S [- 2]	e 28 45 e 15 30 18 27 28 42	SP PP PKP SP	53·9 ——
Uccle Santa Clara Neuchatel Aberdeen Paris	N.	114.6 114.6 114.9 115.6 116.3	52 318 331		PP PP PP	i 28 55	[- 2] 	(e 28 31) (e 28 31) 35 6	SP SS	e 54·9 e 28·5 55·3

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

78

```
Δ
                                             0 - C.
                              Az.
                                                               O-C
                                                                              Supp.
                                                                                            L,
                                                S.
                                     m. s.
                                                       m. s.
                                                                         m.
                                                                                            m.
Santa Barbara
                      116.8
                                              [ + 3]
                                                                                   _{\rm PP}
Clermont-Ferrand
                      116.9
                                               \mathbf{PP}
                                                                                  PPS
Kew
                      117 \cdot 1
                              324
                                                P
                                                                                   SS
                                                                                           57.9
Stonyhurst
                      117-3
                              328
                                    i 19
                                                                                  pPP
                                                                                           53.9
Tinemaha
                      117.5
                                    i 18 34
                                                  3]
                                                                                   PP
Haiwee
                      117.9
                                     18
                                                  4]
                      118-1
Pasadena
                                   i 18
                                                                                   PP
                                                                                           46.9
                                   i 18 35a
Riverside
                      118.6
                               55
                                                      e 25 20
                                                                        e 28 51 PKKP
La Jolla
                      119 \cdot 1
                                   i 18 35
                                                  1]
                                                                                   \mathbf{p}\mathbf{p}
Palomar
                      119.3
                                   i 18 35a [+ 1]
                                                                        i 28
                                                                             53 PKKP
Tortosa
                      120.1
                                  e 19 20
                                              [+45]
                                                        25 10 [-10]
Saskatoon
                      120.3
                                             SKKS
                                   e 26 39
                                                      e 36 21
                                                                       e 29
                                                                 SS
                                                                                   _{\rm PS}
                                                                                           49.9
                      120.4
Bozeman
                                   e 19 16
                                                      e 25 13
                                               \mathbf{PP}
                                                               [-8]
                                                                       e 20
                                                                                   \mathbf{PP}
                                                                                         e 56.3
                      121 \cdot 2
                               45
Logan
                                   e 18 43
                                                 6]
                                                                       e 20
                                                      e 30 59
                                                               PPS
                                                                                   \mathbf{PP}
                                                                                         e 49.7
                      124 \cdot 2
Granada
                              310
                                   i 18 42a
                                                        25 14 [-19]
                                                 1]
                                                                                pPKP
                                             [-
                                                                         19
                                                                                           69.0
Tucson
                      124.5
                                  i 18 46
                                                 2]
5]
                                                      e 25 25 [-10]
                                             [+
[+
                                                                                   \mathbf{PP}
                                                                       e 20 29
                                                                                         e 51.5
Rapid City
                      126 \cdot 1
                               40
                                                      e 27·19
                                   e 18 52
                                                                       e 20 44
                                                                                   PP
                                                                                         e 59·3
                      126.4
                              309
San Fernando
                                   e 18 32
                                             [-16]
                                                        26 18
                                                               [+38]
                                                                                   _{\mathrm{PP}}
                                                                                           65.3
                      127.9
                                     18 53?
Lisbon
                              313
                                             [+
                                                 2]
                                                        38
                                                                        i 20 59
                                                                                   \mathbf{PP}
                                                                 SS
                                                                                           53.7
                      136.8
                               34
Chicago
                                   e 21 53
                                               \mathbf{PP}
                                                                       e 39 35
                                                                                   SSS
                                                                                         e 60·0
La Plata
                      137.0
                              179
                                     19
                                                 5]
                                                        26
                                                                                   \mathbf{P}\mathbf{P}
                                                                                           64.9
Florissant
                               39
                      137 \cdot 1
                                   i 19 13
                                                           32
                                                 5]
                                                      e 28
                                                              SKKS
                                                                                   _{
m PP}
St. Louis
                      137.3
                               39
                                   i 19 10
                                                      e 28
                                                 1]
                                                           30
                                                                                  PP
                                                              SKKS
                                                                        i 21 53
                  N. 138.5
Cape Girardeau
                               41
                                   e 19 14
                                                 31
                                                      e 22 35
                                                                       e 22 50
                                                               SKP
                                                                                  pPP
Shawinigan Falls
                      139.4
                               16
                                  e 19
                                                 9]
                                                                       e 21 51
                                                                                  PP
Seven Falls
                      139.5
                                         92
                               14
                                   e 19
                                                 31
                                                     e 40 21
                                                                 SS
                                                                       e 22
                                                                                  \mathbf{PP}
                                                                                           56.9
Ottawa
                      139.5
                                                                              9
                               20
                                     19
                                             [-10]
                                                       41
                                                                 88
                                                                         22
                                                                                  \mathbf{PP}
                                                                                           61.9
                                  e 22 16
                      141 \cdot 2
                               18
Vermont
                                               \mathbf{P}\mathbf{P}
                                                      e 40 43
                                                                 SS
                                                                       e 45 14
                                                                                  SSS
                                                                                         e 64·1
                      143.5
                               17
Harvard
                                   i 19 17
                                                 2]
Weston
                      143.7
                               17
                                   e 19 18
                                                 2]
                                                                   91
                                                                                  PP
Fordham
                      144 \cdot 1
                                   i 19
                                        20
                                                               SKKS
                                                                                  PP
                                                           12
                                  i 19 21
i 19 19
Georgetown
                      144.4
                                                            9
                                                 01
                                                              SKKS
                                                                       i 22 40
                                                                                  \mathbf{PP}
                      144.6
                               23
Philadelphia
                                                 2]
                                                      e 29
                                                           11
                                                              SKKS
                                                                                  PP
                                                                                         e 63·9
Columbia
                      145.9
                               36
                                   e 19 25
                                                      e 29
                                                           19
                                                              SKKS
                                                                                   ss
                                                                                         e 54·0
                             203
Rio de Janeiro
                  N. 146.3
                                  e 19 19
                                                 5]
                                                     e 29 30 SKKS (e 42 11)
                                                                                         e 42·2
                      152.5
                                   i 19 41
Huancayo
                             137
                                                      i 30
                                                              SKKS) e 33 36
                                                                                  PS
                                                                                         e 43·0
La Paz
                      152.6
                                                 5]
                             156
                                    19
                                       39
                                             [+
                                                       26
                                                           21 [-6]
                                                                         20 51 pPKP
                                                                                           76.7
                      154.9
Bermuda
                               15
                                  e 19 53
                                             [+15] e 30 47 SKKS
                                                                       e 23 41
                                                                                         e 71.6
                                                       30 54 SKKS
Bogota
                      162 \cdot 2
                             100 119 50
                                             [ + 3]
San Juan
                     166.4
                              42 e 19 56
                                             [+6]
                                                     e 44 55
                                                                SS
                                                                                  \mathbf{PP}
                                                                                           79.1
                     172.2
                              34 e 19 33
Fort de France
                                             [-20]
                                                                       e 25 0
                                                                                  PP
  Additional readings :-
    Brisbane iSZ = 11m.34s., iSSN = 13m.16s., iQN = 13m.37s.
    Riverview iPP = 8m.14s., iP<sub>c</sub>P = 9m.14s., isSE = 13m.17s., isSN = 13m.20s., iZ =
         14m.19s., iE = 14m.30s., iSSE = 14m.52s., iN = 15m.51s.
    Calcutta is SN = 15m.52s.
    Mizusawa SN = 15m.43s.
    Hyderabad P_cPN = 10m.39s., S_cSN = 18m.58s., SSN = 20m.9s.
    Sapporo readings increased by 15 minutes.
    Auckland P_cP = 9m.42s., sS = 17m.46s., S_cS? = 18m.46s., Q = 23m.21s.
    Christchurch PPZ = 11m.23s., iZ = 14m.2s., sSN = 18m.7s., S_cSEN = 20m.0s., SSNZ =
         22m.39s., QEN = 25m.27s.
    Wellington sP?Z=10m.40s., iZ=10m.51s. and 11m.25s., sPPZ=12m.19s., PPP?=
         13m.3s., S_cPZ = 13m.59s., iZ = 17m.13s., sSZ = 17m.41s., i = 18m.2s., S_cS = 17m.41s.
         18m.51s., sSS = 21m.41s., Q = 22m.51s.
    Bombay PcPE = 10m.23s., PPE = 11m.37s., PPPN = 13m.7s., SPN = 17m.17s., SPPE =
         17m.30s., SSN = 18m.17s., iN = 20m.18s., iE = 20m.21s.
    New Delhi PcPN = 10m.35s., PcPE = 10m.38s., PPE = 11m.55s., PSN = 18m.2s., PSE =
         18m.9s., sSEN = 18m.29s., S_cSN = 19m.8s., SSN = 21m.15s., SSE = 21m.22s.,
        sSSN = 22m.21s., SSSN = 23m.15s., iN = 23m.49s.
    Tananarive is S = 21 \text{m.} 56 \text{s.}, SS = 26 \text{m.} 19 \text{s.}, SSS = 29 \text{m.} 18.
    Ksara e = 23m.59s., e = 25m.13s.
    Helwan PSZ = 25m.39s., PPSZ = 26m.19s.
    College e = 26m.47s.
    Bucharest eP?Z = 12m.39s., iE = 17m.45s. and 18m.27s., iN = 23m.59s., iEN =
        24m.32s.
    Sitka e = 30 \text{m.} 26 \text{s.}
    Upsala i = 24m.16s., eN = 25m.28s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

79

Prague ePKP=18m.34s., ePPP=22m.3s., eSKKS=25m.33s., ePS=28m.9s., ePPS= 29m.9s., eSS = 33m.51s., eSSS = 37m.57s.Copenhagen 19m.40s., 22m.1s., 25m.30s., 26m.4s., 27m.19s., 27m.49s., 28m.15s., and 28m.50s. Potsdam iPS?N = 28m.26s., iSSN = 33m.52s.Bergen SKKSN = 26m.5s., eE = 27m.38s., PKKPZ = 28m.12s., PKKPN = 28m.32s., PKKSN =31m.48s., eE =33m.7s. and 35m.9s. Stuttgart ePKPZ =17m.45s., iPPZ =19m.3s., ipPPZ =20m.3s., eSKS =24m.41s., eSKKS = 25m.24s., e = 27m.44s., iSP = 28m.41s., ePKKPZ = 29m.14s., eZ = 29m.24s., ePPSZ = 29m.41s., iZ = 30m.39s., eSS = 34m.59s., i = 35m.35s., iSSS = 29m.24s.36m.41s. Ukiah eSS = 34m.49s. De Bilt iPP = 19m.23s., iZ = 20m.5s., eZ = 20m.23s., iN = 28m.5s., iPS? = 28m.37s.Scoresby Sund 19m.20s., 20m.19s., 21m.58s., eN = 22m.46s., 28m.43s., 29m.54s.Berkeley iN = 26m.50s., iSKSE = 28m.12s.Uccle iEZ = 19m.32s., iZ = 20m.10s., eSSN = 35m.4s., iN = 36m.11s.Clermont-Ferrand e = 20m.34s., and 23m.0s.Kew eZ = 15m.49s., i = 19m.48s. and 20m.39s., eEZ = 22m.20s., e = 23m.16s., iE = 22m.20s.26m.21s., iEN = 27m.21s., eEN = 28m.33s., i = 29m.4s., e = 30m.17s., eZ = 36m.21s., eEN = 36m.50s., and 39m.51s.?, eZ = 41m.51s.?. Stonyhurst ePKS = 22m.19s., ePPP = 23m.7s., eS? = 27m.42s., iPKKP = 29m.12s., i = 29m.30s. and 29m.49s., iPS = 30m.25s., $iS_cSP = 31m.1s.$, eSS = 36m.3s., iSKKS = 37m.8s., i = 38m.59s.Tinemaha iEZ = 19m.46s. Pasadena iZ = 18m.41s. and 18m.51s., ipPPZ = 20m.43s., iSKPZ = 21m.50s., iSN = 27m.24s., iPKKPZ = 28m.56s., eSPE = 29m.13s., iSPPEN = 30m.27s., eSSN = 35m.39s.7. Riverside iZ = 19m.39s., iSKPZ = 21m.53s.Palomar iEZ = 19m.54s., iSPN = 29m.36s.Tortosa SE = 26m.55s., PPSE = 30m.42s., iE = 39m.10s., SSSE = 40m.24s.Bozeman e = 29m.31s, and 30m.45s., eSS = 36m.6s., e = 38m.14s. Logan e = 21m.18s., 26m.32s., 32m.36s., 36m.24s., and 37m.26s. Vermont epPP = 23m.45s., e = 28m.44s., 32m.33s., and 51m.0s.Granada iPP = 20m.29s., pPP = 21m.15s., PPP = 23m.23s., sPPP = 24m.7s., SKKS = 26m.52s., sS = 30m.35s., SP = 31m.21s., PS = 31m.39s., PSS = 36m.4s., eSS = 36m.4s.40m.22s. Tucson e = 18m.33s., 24m.5s., and 28m.31s., esS = 29m.34s., e = 32m.10s., eSS = 37m.1s.Rapid City eSS = 37m.29s. San Fernando SE = 28m.32s., PSE = 30m.58s., PPS = 31m.53s. Lisbon E = 20m.40s., Z = 20m.54s., ePPN = 21m.2s., E = 21m.40s., Z = 23m.31s., N = 20m.40s.28m.39s., and 33m.22s., E = 33m.26s., Z = 33m.29s.Chicago e = 28m.23s, and 31m.43s. La Plata PKPE = 19m.27s., PPZ = 21m.51s., PPE = 21m.57s., PKS?N = 22m.26s., N = 23m.33s., and 27m.15s., SKKSE = 27m.51s., SKKSN = 28m.27s., E = 31m.51s., N = 31m.57s., PSN = 33m.57s., Z = 35m.9s., SS?E = 39m.21s., SS?N = 39m.33s.Florissant eSKPZ = 22m.29s., esSKPE = 23m.38s., eZ = 31m.29s., ePPSE = 34m.25s., ePPPSE = 35m.38s., eSS = 39m.51s., eSSSE = 44m.52s.St. Louis eZ=18m.56s., iPKP?Z=19m.1s., iSKPZ=22m.23s., ipPPZ=22m.38s.. iZ = 22m.57s., isSKPE = 23m.40s., ePPPZ = 24m.49s., esSKKSE = 29m.43s., esSN = 31m.57s., ePPSE = 34m.41s., eE = 35m.31s., eSSZ = 39m.44s., ePPSS?N = 40m.50s., eSSSE = 45m.50s., eN = 53m.30s.Shawinigan Falls e = 31m.9s. Seven Falls e = 32m.21s. Ottawa SKP = 22m.31s., PPSN = 34m.15s.Columbia e = 33m.1s. Weston e = 23m.12s. and 25m.55s., eSKKS = 29m.5s., e = 32m.32s. and 33m.33s.. eSS = 41m.14s.Fordham i = 20m.22s, and 42m.6s. Philadelphia epPP = 33m.39s., e = 35m.30s., eSS = 41m.0s., eSSS = 47m.1s.Huancayo i = 20m.16s. and 21m.51s. La Paz PKP₂Z = 19m.59s., PP = 24m.5s., PPP = 27m.29s., SKKS = 30m.11s., PSKS = 33m.25s., SS = 44m.7s.Bermuda e = 20m.7s., eSS = 44m.13s., e = 48m.45s. and 52m.44s.Bogota ipP = 20m.38s., e = 23m.25s. and 31m.29s. San Juan e = 20m.54s. and 33m.9s.

- March 22d. Readings also at 0h. (near Mizusawa), 2h. (near Chur and Zürich), 7h. (Pehpei), 8h. (Tucson and near Almeria), 12h. (Brisbane and Riverview), 17h. (Tucson (3), Pasadena (2), Palomar (3), St. Louis (2), La Jolla, and Tinemaha (2)), 19h. (Tucson, Pasadena, Palomar, Florissant, St. Louis, Huancayo, Arapuni, Wellington, Apia, Riverview, and Brisbane), 20h. (Kew, Uccle, and Stuttgart), 21h. (near Fort de France), 22h. (Tacubaya).
- March 23d. Readings at 0h. (near Harvard), 1h. (Merida), 5h. (Tacubaya), 11h. (near Granada, Alicante, Almeria, and Malaga), 12h. (Tacubaya, Merida, Florissant, St. Louis, Tucson, Haiwee, Palomar, Riverside, and Tinemaha), 15h. (Granada), 16h. (near Uccle), 17h. (near Alicante), 19h. (Stuttgart (2), Tucson, Pasadena, Tinemaha, near Ottawa, and near Mizusawa).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

March 24d. 17h. 1m. 51s. Epicentre 8°·1N. 83°·2W. (as on 1942 April 22d.).

A = +.1172, B = -.9832, C = +.1400; $\delta = +2$; h = +6; D = -.993, E = -.118; G = +.017, H = -.139, K = -.990.

		Λ	Az.	P.	O-C.	s.	$\mathbf{O} - \mathbf{C}$.	Suj	pp.	L.
			0	m. s.	8.	m. s.	8.	m. s.		\mathbf{m} .
Balboa Heights		3.7	78	i 1 6	+ 6	i 1 50	+ 5	i 2 0	S_R	-
Bogota		9.7	110	i 2 35	+13	_	-	(A <u>1114)</u>		
San Juan		19.5	56	e 4 34	+ 3	e 8 18	+12		(e 10·5
St. Louis		31.1	349	i 6 16	- 6	e 11 16	-12			-
Tucson		35.1	317	e 6 55	- 2	-			*****	e 17·3
La Jolla	z.	40.0	313	i 7 37	- 1		200	22-32		
Palomar	755	40.0	314	i 7 33	- 5	_	-		5.00 m	- TOTAL
Riverside	z.	40.7	315	e 7 42	- 2		-	-		
Pasadena	343	41.3	315	i 7 48	- 1	_		-	_	
Tinehama		42.9	318	i8 2	0	2	-		_	-

Additional readings:—
San Juan i=4m.41s.
Tucson e=10m.44s.

- March 24d. Readings also at 0h. (Ksara), 1h. (near Mizusawa), 3h. (near Port au Prince), 13h. and 14h. (near Alicante), 19h. (Tucson), 21h. (Basle), 22h. (Brisbane, Riverview, Stuttgart, Basle, Chur, Neuchatel, Zürich, Tucson, Palomar, Pasadena, Riverside, and Tinemaha).
- March 25d. Readings at 3h. (near Apia), 4h. (La Plata, St. Louis, Tucson, Riverside, and Tinemaha), 5h. (Tucson and Tinemaha), 6h. (Bogota), 8h. (Pasadena, Riverside, Tucson, Tinemaha, and Triest), 11h. (Ksara), 12h. (Tucson and Tinemaha), 14h. (Auckland, Wellington, and Riverview), 16h. (Tucson, Tinemaha, and near Apia), 17h. (Wellington, New Plymouth, near Monowai, and near New Delhi), 19h. (St. Louis), 20h. (Pasadena, Riverside, Tinemaha, Tucson, and near Alicante), 21h. (Auckland and Riverview), 23h. (Belgrade).
- March 26d. Readings at 3h. (near Mizusawa), 4h. (La Paz), 8h. (near Bogota), 13h. (near San Juan), 16h. (Arapuni, Wellington, Brisbane, Riverview, Bombay, and Calcutta), 17h. (Pasadena, Bacau, and near Bucharest), 20h. (near Istanbul), 21h. (Tucson and Riverside), 22h. (Stuttgart), 23h. (Kodaikanal, Florissant, St. Louis, Calcutta, Pasadena, Tucson, Riverside, and Tinemaha).
- March 27d. Readings at 0h. (Riverview and near Fort de France), 6h. (Wellington), 7h. (Riverview, Auckland, and Wellington), 8h. (near Malaga (2)), 13h. (Tacubaya), 14h. (Huancayo, La Plata, La Jolla, Tucson, Riverside, Pasadena, and near Malaga), 15h. (De Bilt, Uccle, Stuttgart, Kew La Paz, Riverview, and Wellington), 16h. (Bogota), 17h. (De Bilt and Stuttgart), 20h. (De Bilt, Uccle, Jena, Cheb, Potsdam, Prague, Clermont-Ferrand, Zürich, Triest, Strasbourg, Upsala, Granada, Belgrade, Bucharest, and Sofia), 22h. (Stuttgart).
- March 28d. Readings at 1h. (Triest), 2h. and 7h. (near Bogota), 10h. (Christchurch, Riverview, Pasadena, Tucson, and Stuttgart), 11h. (Huancayo and St. Louis), 12h. (Kew), 13h. (Riverview, Auckland, Christchurch, and Wellington), 18h. (Riverview), 19h. (Harvard), 20h. (Kew), 22h. (Pasadena, Riverside, Tinemaha, Tucson, Arapuni, Auckland, Christchurch, Wellington, Brisbane, Riverview, Sydney, and near Apia), 23h. (Auckland, Huancayo, St. Louis, and Granada).
- March 29d. Readings at 0h. (Kew), 1h. (Istanbul, Strasbourg, Neuchatel, near Basle, Zurich, Stuttgart, and near Uccle), 2h. (near Harvard), 5h. (near Lick), 13h. (De Bilt, Kew, Uccle, Stuttgart, and Ferndale), 14h. (near Harvard), 15h. (Auckland, Wellington, and Riverview), 16h. (Brisbane and Riverview), 20h. (near La Paz and near Ottawa), 21h. (near Lick).
- March 30d. Readings at 1h. (near Ravensburg, Basle, Chur, Zürich, Neuchatel, and Stuttgart), 2h. (Riverview), 7h. (Bucharest), 10h. (Huancayo, La Paz, La Plata, Haiwee, Tucson, Tinemaha, Riverside, and Pasadena), 15h. (Calcutta, New Delhi, Helwan, Ksara, Bucharest, Cheb, Uccle, De Bilt, Stuttgart, and Kew), 16h. (Helwan and Ksara), 18h. (Huancayo and near Bogota (2)), 19h. (Stuttgart, Jena, Tucson, Tinemaha, La Paz, and near Bogota), 20h. (near Bogota (2)), 23h. (Tacubaya).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

March 31d. 2h. 51m. 44s. Epicentre 5°.6S. 131°.0E. Depth of focus 0.005.

A = -.6530, B = +.7512, C = -.0969; $\delta = +10$; h = +7; D = +.755, E = +.656; G = +.064, H = -.073, K = -.995.

	D = +	755, E		556; G	= + .00	94, H = -	013, I	L = - 333.		
		Δ	Az.	P. m. s.	O – C. s.	\mathbf{m} . s.	O – C.	m. s.	p.	L. m.
Perth Brisbane Riverview Sydney Miyazaki		29.8 30.2 33.8 33.8 37.3	207 139 150 150 2	6 48 i 6 3k i 6 37k e 5 58 7 7	PP - 3 - 1 - 40 - 1	11 46 i 10 53 i 11 58 e 11 4 12 53	$^{+52}_{-7}_{+2}\\ ^{+2}_{-52}\\ +3$	7 34 i 6 54 i 6 48	PPP PP pP	i 13·9 i 16·1 e 13·9
Hukuoka Koti Kobe Hamada Nagoya		$39.0 \\ 39.0 \\ 40.3 \\ 40.3 \\ 40.9$	359 3 5 1 8	e 7 22 e 7 22 e 7 32 7 31 7 42	$\begin{array}{c} & 0 \\ 0 \\ 0 \\ - & 1 \\ + & 5 \end{array}$	13 14 13 17 13 37 13 33 13 40	$ \begin{array}{cccc} $			
Kumagaya Toyama Nagano Hukusima		41.6 42.3 42.5 42.6 44.0	10 10 8 9 11	e 7 47 e 7 55 7 51 7 49 e 8 3	$^{+}_{+}$ $^{4}_{0}$ $^{-}$ $^{0}_{0}$	13 55 14 19 14 8 13 54 14 29	$^{+\ 1}_{+14} \ ^{0}_{-15} \ 0$			
Sendai Mizusawa Calcutta Auckland Arapuni	N.	44.6 45.5 50.2 50.6 51.8	11 306 134 135	e 8 17 (i 8 56a) 9 1	- 4 + 2 + 5 + 7	14 33 14 52 (i 16 8) 16 6 16 34	$ \begin{array}{r} -5 \\ +1 \\ +1 \\ +3 \\ +15 \end{array} $	(i 16 48) 16 46	ss S	23·3 22·3
Colombo Christchurch Wellington Kodaikanal Hyderabad	E,	52·5 52·6 52·7 55·6 56·7	$\begin{array}{c} 283 \\ 143 \\ 140 \\ 287 \\ 295 \end{array}$	8 51 9 6 9 8k i 9 39 a 9 37	$ \begin{array}{rrr} -18 \\ -3 \\ -2 \\ +8 \\ -2 \end{array} $	16 35 16 31 16 26 1 17 24 17 27	$^{+}_{+}$ $^{6}_{-}$ $^{+}_{5}$ $^{+}_{+}$ $^{14}_{2}$	$ \begin{array}{r} $	pP pP PcP	$26.8 \\ 23.3 \\ 25.9 \\ 27.3$
New Delhi Bombay Honolulu Tananarive College	N.	$61.9 \\ 62.2 \\ 74.7 \\ 82.0 \\ 91.3$	307 295 67 252 25	i 10 15 e 10 18 e 11 54 e 14 45	$+\frac{1}{20}$	i 18 32 i 18 37 e 21 39 e 22 36 e 23 45	+ 1 SP + 14 - 6	10 55 12 27 e 17 34 e 25 7	PcP PP SS PS	30·5 e 31·4 e 37·2
Ksara Helwan Bucharest Victoria Ukiah		97·3 101·1 104·5 104·5 105·8	303 299 314 41 51	e 13 46 e 18 4	- 24 + 2 PP	e 24 6 24 22 i 25 52 e 26 28 e 24 44	[+ 9] [+ 6] +10 +46 [+ 6]	e 18 24 e 28 51	pP pPP	51·3 43·3 e 44·2
Upsala Berkeley Santa Clara Tinemaha Haiwee	E. Z. Z.	106.4 106.6 106.9 109.9 110.3	331 53 53 53 53	e 18 36 e 19 36 e 26 0 e 18 28 e 18 29	PP 8 [+ 4] [+ 4]	e 24 42 (e 26 0)	[+ <u>1</u>] - <u>2</u>	e 33 16? i 23 49 i 19 3 e 19 9	PP PP	e 52·3 e 48·7
Pasadena Copenhagen Riverside Potsdam Prague	z.	110.3 110.4 111.0 111.2 111.2	56 328 56 324 322	e 17 31 e 19 6 e 19 6 e 19 21	[- 54] PP PP PP PP	e 28 16? e 28 34 e 28 38	PS PS PS	i 19 16 34 30 — e 29 16	PP SS — PPS	e 44.8 56.3 e 53.3 e 50.3
Cheb Scoresby Sur Triest Bozeman Logan	nd	112.4 112.9 112.9 113.4 113.9	$322 \\ 350 \\ 317 \\ 42 \\ 46$	e 18 36 19 28 i 19 24 e 19 46	PP PP PP	e 28 53 28 58 i 28 54 e 26 17 e 28 32	PS PS PS SKKS	e 19 29 35 14 e 28 52 e 35 41	PP SSP PS SSP	56·3 e 50·1 e 46·4
Saskatoon Salt Lake Ci Stuttgart Chur Zürich	ty	113.9 114.1 114.8 115.3 115.7	$\begin{array}{r} 34 \\ 47 \\ 322 \\ 320 \\ 321 \end{array}$	e 18 35 e 18 36 e 18 38	[+ 1] [+ 1] [+ 3]	e 29 167 e 26 18 e 27 16 —	SKKS S	e 29 7 e 19 32	PS PP	e 46·6
De Bilt Strasbourg Milan Basle Tucson		115.8 116.0 116.3 116.7		i 19 43 19 40 19 41 e 18 34 e 18 40	PP PP [- 3] [+ 3]	29 35 e 29 13	PS PS	e 19 49 e 22 37	PP PPP	e 48·3 — — e 54·1

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

82

```
O-C.
                            Az.
                                                            O - C.
                                                                         Supp.
                                                                                       L.
                                             S.
                                                                                       m.
                                                    m. s.
                                                                     m. s.
Aberdeen
                                             \mathbf{PP}
                     116.9
                            333
                                                              PS
                                                                    e 35 56
                                                                               ss
                                                                                      56.8
Neuchatel
                     116.9
                            321
                                               0]
                                                   e 26 16? SKKS
Uccle
                     116.9
                            325
                                                                   e 29 163
                                                                               _{\rm PS}
                                             \mathbf{PP}
                                                                                     e 57·3
Paris
                     118.8
                            323
                                             PP
                                                                                     e 65·3
                                                   e 25 37 [+ 6]
Kew
                                                                    e 26 16 SKKS
                    119.1
                            328
                                            PP
                                                                                     e 59·3
Rapid City
                    119 \cdot 1
                                            PP
                                                   e 26 43 SKKS
                                                                                     e 59.8
                     119.8
                                             \mathbf{PP}
Clermont-Ferrand
                            320
                                                                                     e 65·3
Granada
                                                     27 53 SKKS
                                             \mathbf{P}\mathbf{P}
                     128 \cdot 1
                            313
                                                                      23 30
                                                                              PPP
                                                                                       71.8
Florissant
                     130.1
                             42 e 21 18
                                             \mathbf{P}\mathbf{P}
                                                   e 22 34
                                                            \mathbf{SKP}
                                                                    e 23 58
San Fernando
                     130 \cdot 2
                            313
                                e 21 21
                                            PP
                                                   e 22 25
                                                            SKP
                                                                      38 1
                                                                                       72.3
St. Louis
                     130.3
                                e 19 19
                                                            SKP
                                           [+15]
                                                   i 22 25
                                                                    e 21 39
                                                                               \mathbf{PP}
                                                                                     e 63·7
                            318
Lisbon
                     131 \cdot 2
                                   21 24a
                                                     22 29
                                                            SKP
                                                                      24 19
                                                                             PPP
                                           PP
                                                                                      64.1
Cape Girardeau
                 N. 131.4
                                                   e 22 33
                                                            \mathbf{skp}
                             44
                    134.0
                             25
                                e 19 13
                                           [ + 3]
                                                   e 22 35
                                                                    e 39 16?
                                                                               SS
Ottawa
                                                            SKP
                                                                                     e 56.3
Seven Falls
                     134.6
                                                                                      56.3
                             20
                                 e 22 16
                                            PP
                                                                    e 39 46
                                                                               SS
Fordham
                     138.4
                                 e 20 13
                                                   e 22 34
                                                            skp
                                           [+55]
                                                                              SSP
                                                                    e 41 6
                                                                                    e 73.3
                     138.4
                                 e 19 22
Weston
                                           [+4]
                                                                                    e 56.8
                     138.5
                                                              PS
Philadelphia
                             30
                                e 22 10
                                                   e 32 36
                                                                               SS
                                           PP
                                                                                    e 54.7
                     138.8
                                           SKP
                            168
                                  22 52
                                                     28 52
La Plata
                                                           SKKS
                                                                                      75.3
                    148.5
                            124
                                e 19 43
Huancayo
                                           [+7]
                                                   e 23 50
                                                            skp
                                                                                    e 62·7
                                                   e 42 43
i 23 25
Bermuda
                     149.6
                             26
                                                              SS
                                e 21 11
                                                                                    e 72.8
                                  19 46
                                           [+6]
La Paz
                    151.0
                            140
                                                            SKP
                                                                      33 21 PSKS
                                                                                      74.9
                 N. 151·1
                            191
                                e 20 16
                                          pPKP
Rio de Janeiro
                     155.0
                                e 19 51
                                                                    e 20 14 pPKP
Bogota
                             90
                                           [+5]
                                           [+5]
                    159.0
San Juan
                             50
                                e 19 56
                                                                    e 44 39
                                                                               SS
  Additional readings :—
    Perth PPP = 8m.46s., SS = 13m.16s.
    Brisbane iE = 6m.33s., iN = 7m.2s., iP<sub>c</sub>P?N = 8m.54s.
    Riverview is N = 12m.20s., iSSE = 13m.39s., iN = 14m.17s., E = 14m.22s.
    Calcutta iSSN = (19m.57s.), readings increased by one minute.
    Auckland i = 16m.26s., S_cS? = 19m.41s., pS_cS? = 20m.34s., Q = 21m.56s.
    Christchurch PPE = 11m.44s., iN = 17m.8s., iNZ = 17m.28s., ScSZ = 19m.24s., SSEN =
         21m.32s., QEN = 22m.36s.
    Wellington sPZ = 9m.36s., P_cPZ = 10m.21s., PPP?Z = 12m.3s., iZ = 13m.24s., sS = 12m.24s.
         17m.6s., Q = 21m.41s.
    Hyderabad PPN = 11m.31s., PSN = 17m.34s., ScSE = 19m.27s.
    New Delhi PSN = 18m.41s., S_cSN = 20m.7s., iN = 21m.18s., SSN = 22m.27s., SSSN = 28m.27s.
         24m.8s.
    College eSS = 29m.53s.
    Helwan eZ = 17m.22s., PP?Z = 17m.52s., eZ = 20m.12s., eN = 25m.41s., 26m.34s., and
         27m.34s.
    Bucharest iN = 20m.38s., iE = 21m.25s., and 25m.22s.
    Upsala eN = 25m.16s.?.
    Pasadena eE = 25m.58s.?, eSSN = 34m.28s.?.
    Copenhagen 25m.59s.
    Prague eSS = 34m.46s., eSSS = 38m.52s.
    Scoresby Sund 28m.10s., 38m.58s.
    Bozeman eS = 26m.52s., eSS = 35m.8s.
    Logan e = 29m.24s.
    Salt Lake City e = 39m.29s.
    Stuttgart eZ = 20m.18s., 22m.10s., 22m.39s., and 24m.5s., ePS = 29m.5s., ePKKPZ =
         29m.16s.?, e = 29m.45s., ePPS = 30m.49s.
    Tucson e = 19m.3s., 26m.29s., 36m.44s., and 43m.51s.
    Kew ePSZ = 30m.37s., ePPSZ = 31m.37s., eSSEN = 36m.27s., eSSSNZ = 40m.46s.
    Granada PS = 31m.23s., SS = 41m.11s., SSS = 45m.47s., readings wrongly identified.
    Florissant eSE = 38m.37s.
    St. Louis eZ = 19m.33s., i = 22m.33s., eE = 23m.8s., ePPPE = 24m.0s., eSE = 29m.56s.
         eSSE = 38m.36s., eSSSN = 44m.2s., eN = 54m.34s.
    Lisbon PPN = 21m.29s., PPE = 21m.36s., SKPE = 22m.35s.
    Philadelphia e = 29m.25s., eSS = 35m.36s.
    Huancayo e = 27m.46s. and 43m.29s.
    Bermuda e = 22m.26s., 29m.4s., and 53m.48s.
    La Paz iZ = 20m.6s. and 20m.30s., PPS = 36m.16s.
    Bogota e = 20m.48s.
    San Juan e = 26m.0s., 28m.41s., and 31m.35s.
    Long waves were also recorded at Chicago and Harvard,
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

March 31d. 20h. 35m. 4s. Epicentre 0°.5S. 80°.0W. (as given by U.S.C.G.S. and Strasbourg). Felt at Guayaquil and Quito.

Annales de l'Institut de Physique du Globe de Strasbourg, 2e partie, Séismologie, tome IX 1944, p. 9. Strasbourg 1951.

83

A = +.1736, B = -.9848, C = -.0087; $\delta = +4$; h = +7; D = -.985, E = -.174; G = -.001, H = +.008, K = -1.000.

		Δ	Az.	P.	0 - C.	s.	o –c.	Table 1 (1997)	pp.	L.
Bogota Balboa Heights Huancayo La Paz San Juan	z.	7·8 9·4 12·4 19·7 23·2	50 3 158 144 35	m. s. i 1 56 i 2 20 i 3 3 i 4 36k i 5 10	8. - 2 + 2 + 2 + 1	m. s. i 3 53 e 4 4 i 5 9 i 8 17	8. S* - 3 - 12 + 7	m. s. i 2 4 e 6 18 i 5 48	P* SSS PPP	e 4·7 e 6·8 11·5 i 10·2
Fort de France Tacubaya Columbia Bermuda Cape Girardeau	n. n.	23·4 27·3 34·3 35·8 38·6	51 318 359 23 348	e 4 38 i 5 47 e 8 8 e 7 24	$-33 \\ -1 \\ PP \\ -2$	i 8 56 e 11 36 e 12 49	$-\frac{25}{41} + \frac{8}{8}$	e 13 56 e 9 7	PP'	e 14·4 e 17·4
La Plata Philadelphia Fordham Chicago Weston	Ε.	39·9 40·5 41·5 42·7 43·4	151 7 8 352 11	e 7 40 e 7 51 e 9 29 e 8 7	- 2 + 1 PP + 1	e 13 43 e 14 11 e 14 28	$+13 \\ -9 \\ +4 \\ -7$	e 9 10 e 9 35 e 17 33	PP PP SS	e 16.9 e 23.9 e 21.2
Harvard Tucson Ottawa Seven Falls La Jolla		43.5 43.7 45.9 48.1 48.3	$322 \\ 5 \\ 9 \\ 318$	i 8 7 e 8 8 8 24 8 44 e 8 45	- 0 + 1 0	e 14 43 15 8 15 41	+ 4 - 3 - 1	i 8 14 • 9 40 10 11 —	PP PP	e 21.9 e 18.2 e 22.9 24.9
Rapid City Riverside Pasadena Salt Lake City Haiwee	z.	49.0 49.7 49.7 50.2 50.7	339 319 319 329 320	i 8 50 i 8 51a i 8 56a e 9 0 e 9 9	+ 0 0 0 + 6	i 15 56 e 16 23 e 16 12	+ 1 - 2 + 1	i = 29	=	e 20·1 e 22·2 e 28·8
Santa Barbara Logan Tinemaha Bozeman Santa Clara	z. z.	50.9 51.0 51.5 53.5 54.0	$317 \\ 330 \\ 321 \\ 334 \\ 320$	e 9 6 e 9 20 i 9 9 8 e 14 27 e 10 30	$^{+\ 1}_{+14} \ ^{0}_{PeS} \ P_{eP}$	e 16 17 e 17 10	- <u>5</u> + <u>13</u>	i 10 33	P _e P	e 27·0 e 27·2
Berkeley Saskatoon Victoria Granada Scoresby Sund		54·5 57·0 61·5 79·5 80·2	320 342 329 52 17	i 9 32 i 12 13 12 24	$+\frac{3}{10}$	i 17 13 e 17 43 e 18 41 i 22 11 22 19	+ 3 0 - 1 0	e 17 30 - 12 20 22 48	PeP Ps	e 24.9 33.9 29.9 41.5
College Kew Paris Uccle De Bilt		81 · 2 84 · 0 85 · 4 86 · 8 87 · 4	337 39 41 39 38	e 12 40 e 12 47 e 12 51	- 0 0 1	e 22 37 e 22 57 e 23 21 e 23 30	+ 8 0 - 4 0	e 31 37 e 23 15 — i 13 0	SSS ScS PcP	e 43·4 e 41·9 e 42·9 e 37·9
Strasbourg Stuttgart Copenhagen Cheb Triest		88.9 89.8 91.8 91.9 93.0	41 41 34 40 44	e 13 9	+11 -1		- 1 - 1 - 1 {+ 1}	e 24 10	s _c s	e 44·7 e 44·9

Additional readings:—
Bogota i = 2m.13s., $iP_g = 2m.48s.$, i = 4m.46s., $iS_g = 5m.2s.$

Cape Girardeau eN = 7m.37s.

Fordham iP = 8m.0s. Tucson ePPP = 10m.29s.

Tucson ePPP = 10m.29s. Ottawa SSS = 18m.56s.

Tinemaha iZ = 10m.3s. Berkeley iPN = 9m.42s.

Granada SS = 27m.9s. Stuttgart e = 29m.38s.?, eQ = 42.9m.

Long waves were also recorded at Riverview and Butte.

March 31d. Readings also at 3h. (near Bogota (2)), 6h. (La Plata and La Paz), 7h. (La Paz), 9h. (Kodaikanal), 12h. (near Istanbul), 18h. (Mizusawa), 19h. (Tucson, Riverside, Pasadena, and Tinemaha), 22h. (Tacubaya and Kodaikanal).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1944

84

REYKJAVIK.

Earthquake readings for 1944 January, February, and March. A large number of local earthquakes were recorded at Reykjavik during this period. Many of these were actually experienced in Iceland but few were recorded instrumentally more widely. A complete list is added of the times of first recorded phase for each of these, which also includes any shock which has been treated in more detail in the text of the present number.

Feb. 4d. IP 18 33 5	Date January 1d.	iP 6	m. s. 17 43	Date Feb. 22d.	i 12 eP 13	m. 8. 47 41 25 45	Date Feb. 23d.	i 18 iP 19	m. s. 54 46 10 4
19d. PP 23	6d. 10d.	iP 18 iP 17 iP 3 iP 20	33 5 6 44 20 21 3 36		e 13 e 14 e 15 iP 15 eP 16	45 25 0 37 20 41 45 15 6 47		e? 20 i 21 i 21	$\begin{array}{ccc} 2 & 16 \\ 1 & 14 \\ 25 & 31 \end{array}$
Part 19 46 1 23d. e 0 30 22 1 0 59 50 50 10 10 10 26 32 e 1 29 44 1 3 3 0 22 1 10 10 26 32 12 34 49 1 3 50 45 12 34 49 1 3 50 45 10 3 55 9 e 5 50 10 10 10 10 10 10	19d.	iP 23 iP 11 e 12 iP 13 i 13 iP 14 e 14 eP 16	28 14 36 20 21 11 47 48 54 52 18 0 49 23 5 14		i 17 i 18 e 18 if 18 eP 18 eP 19 e 19 i 20	1 22 14 6 25 14 27 8 32 47 35 40 49 34	24 d.	i 21 e 21 i 22 i 22 i 23 i 23	38 58 41 25 59 23 16 11 55 54 17 32 44 59 6 50
iP 8 29 44	20d.	iP 19 iP 19	12 48 32 34 46 1	23d.	i 22 e 0	30 22		eP 0	51 41 59 51
i 21 37 3 il 10 30 51 eP 4 39 45 iP 22 33 46 e 10 39 45 e 6 40 0 0 iP 22 35 16 i 10 43 7 iP 7 29 13 i 22 51 13 iP 11 4 22 er 11 8 24 iP 11 22 33 44 1 i 11 16 27 i 12 11 10 i 23 44 1 i 11 122 32 e 12 6 11 i 12 11 iD i 23 45 12 iP 11 44 32 e 22 8 30 iP 23 51 0 iP 11 44 32 i 23 51 0 iP 11 44 32 i 23 52 4 e 11 48 44 26d. i 4 24 27 7 i 23 52 4 e 11 48 44 26d. i 4 24 27 7 22d. iP 0 4 51 e 12 21 48 i 12 43 20 eP 10 51 25 i 0 10 48 i 12 43 20 iP 20 18 26 eP 0 33 48 e 12 57 45 eP 10 51 25 i 0 49 48 e 13 10 21 i 22 25 16 i 0 49 48 e 13 10 21 i 22 25 16 i 0 49 48 e 13 10 21 i 22 25 16 i 0 10 49 48 e 13 10 21 i 22 25 16 i 12 21 32 43 i 0 49 48 e 13 49 35 e 2 8 4 eP 14 13 55 27d. e 4 49 2 iP 23 13 25 i 14 22 41 e 14 22 41 i 22 20 23 i 14 24 49 6 e 21 49 56 iP 2 13 25 i 14 24 49 e 21 49 56 iP 2 13 25 i 14 42 43 28d. if 15 6 41 i 15 6 iP 4 4 4 4 iP 14 55 21 i 14 58 43 i 15 6 29d. e 20 20 37 i 15 6 iP 4 4 4 4 1P 14 55 21 i 15 6 29d. e 20 20 37 i 15 6 iP 4 4 4 4 1P 14 55 21 i 14 58 43 i 15 15 6 iP 4 4 4 4 1P 14 55 21 i 15 6 29d. e 20 20 37 i 15 6 iP 5 7 3 i eP 16 20 39 iiP 16 35 16 iiP 18 32 55 51 iiP 18 30 iiP 16 49 10 i 22 55 51 iiP 18 32 55 51 iiP 18 30 iiP 16 49 10 i 12 25 55 51 iiP 18 30 iiP 16 49 10 i 12 25 55 51 iiP 18 30 iiP 16 49 10 i 12 25 55 51 iiP 18 30 iiP 16 49 10 i 12 25 55 51 iiP 18 30 iiP 16 49 10 iiP 18 32 55 51 iiP 18 30 iiP 16 49 10 iiP 18 30 11 iiP 16 55 3 4d. iiP 3 40 11	21d.	iP 19 19 19 19 19 19 19 19 19 19 19 19 19	34 49 38 57 50 45 22 24 29 44 49 30 35 54 46 14 21 56 26 32 1 54		e? 3 e P 5 eP 5 eP 7 eP 7 eP 7 eP 8 i e P 8 i e P 8	29 44 17 7 55 9 6 54 23 23 47 28 47 28 10 59 12 36 20 59 25 38 47 14 27 51		i 4 5 5 6 6 6 8 9 11 13 14 16 17 16 17 17	42 58 15 29 10 46 45 31 29 1
eP 23 8 8 8 1 11 16 27 1 12 11 10 1 23 44 1 1 1 11 16 27 1 1 10 1 1 29 31 1 1 2 26 11 1 1 29 31 1 1 22 32 1 1 2 26 11 1 1 23 45 12 1 1 1 1 44 32 1 1 23 51 0 1 1 1 1 44 32 1 1 23 21 7 1 23 52 4 1 1 1 1 48 44 26d. 1 4 24 27 1 1 1 2 43 20 1 1 2 2 1 8 26 1 1 1 2 2 1 8 1 1 1 2 2 1 8 1 1 1 2 2 1 8 1 1 1 2 2 1 8 1 1 1 2 2 1 8 1 1 1 2 2 1 8 1 1 1 2 2 1 8 1 1 1 2 1 1 1 1		eP 18 iP 19 eP 20 eP 20 eP 21 iP 21 iP 22 iP 22) 14 16) 56 45		e 10 i 10 iP 10 e 10	7 35 29 4 5 36 30 51 33 22	25d.	eP 4	56 32 14 33 27 57 12 59 39 48 50 56 40 0 29 13
e 2 8 4 eP 14 13 55 27d. e 4 49 2 iP 10 6 41 iP 2 20 23 i 14 24 59 e 21 49 56 iP 2 35 5 i 14 42 43 28d. if 1 51 56 iP 4 4 4 4 iP 14 55 21 iP 12 24 41 iP 14 55 21 iP 12 24 41 iP 15 49 26 eP 4 51 57 i 15 43 6 29d. e 20 20 37 iP 5 8 19 i 16 24 31 e 5 14 55 iP 16 33 20 March 2d. iP 12 9 53 iP 7 35 49 iP 16 35 16 iP 18 32 52 iP 8 21 43 iP 16 49 10 i 22 52 51 iP 18 32 52 iP 8 21 43 iP 16 49 10 i 22 52 51 e 10 18 30 iP 16 49 10 i 22 52 51 iP 18 31 15 42 11 iP 18 32 52 iP 16 49 10 i 22 52 51 iP 18 31 11 iP 18 32 52 iP 16 49 10 i 22 52 51 iP 18 31 11 iP 18 32 52 iP 16 49 10 i 22 52 51 iP 18 31 11 iP 18 32 52 iP 16 49 10 i 22 52 51 iP 18 31 11 iP 18 32 52 51 iP 18 32 52 51 iP 18 30 iP 16 49 10 iP 18 31 40 11 iP 3 40 11 iP	22d.	i eP	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		i 11 i 11 iP 11 iP 11 e 11 e 12 i 12 e 12	48 44 21 48 43 20 57 45 2 45 10 21	26d.	i 12 e 12 e 22 i 23 i 4 eP 10 iP 20 iP 21 er 21 i 22	11 10 26 11 8 30 21 7 24 27 51 25 18 26 3 15 32 43
iP 4 4 4 4 iP 14 55 21 iP 12 24 41 iP 14 55 21 iP 12 24 41 iP 14 58 43 iP 15 49 26 iP 4 51 57 iP 15 43 6 29d. e 20 20 37 iP 5 8 19 iP 16 20 39 iP 20 29 32 iP 5 8 19 iP 16 35 16 iP 12 9 53 iP 18 32 52 iP 8 21 43 iP 16 35 16 iP 18 32 52 iP 8 21 43 iP 16 49 10 iP 22 52 51 e 10 18 30 iP 16 55 3 4d. iP 3 40 11		iP	$\begin{smallmatrix}2&8&4\\2&13&25\end{smallmatrix}$		eP 14	13 55 22 41	27d.	e 4 iP 10	$\begin{array}{ccc} 49 & 2 \\ 6 & 41 \end{array}$
iP 5 8 19 i 16 24 31 e 5 14 55 i 16 33 20 March 2d. iP 12 9 53 iP 7 35 49 iP 16 35 16 iP 18 32 52 iP 8 21 43 iP 16 49 10 i 22 52 51 e 10 18 30 i 16 55 3 4d. iP 3 40 11			2 35 4		i 14 iP 14	42 43 55 21	28d.	i? 1 iP 12	24 41
e 5 14 55 i 16 33 20 March 2d. iP 12 9 53 iP 7 35 49 iP 16 35 16 iP 18 32 52 iP 8 21 43 iP 16 49 10 i 22 52 51 e 10 18 30 i 16 55 3 4d. iP 3 40 11		1 1	4 51 57 5 7 3	3	i 15 eP 16	43 6 20 39	29d.	e 20	20 37 29 32
10 40 40 40 40 4 4 4 4 4 4 4 4 4 4 4 4 4		iP iP	5 14 53 7 35 49 8 21 43	3	i 16 iP 16 iP 16 i 16	33 20 35 16 49 10 55 3	58-75-7	i 22	32 52 52 51 40 11
		i i e 1 e 1	0 32 8 0 59 13 2 13 43	3	i 18 i 18 e 18	9 15 23 4 49 6	CHER	i 3	59 5 32 4

The scanned images of the bulletins of the International Seismological Summary (ISS) have been obtained as part of a global earthquake relocation project (Villaseñor et al., 1997) initiated with funding from the US National Science Foundation through grant EAR-9725140 and collected by SGA Storia Geofisica Ambiente (Bologna) on behalf of the Istituto Nazionale di Geofisica e Vulcanologia (Rome), in the frame of Euroseismos project.

A digital hypocenter file of the ISS (Villaseñor and Engdahl, 2005) can be obtained from the USGS web site: http://earthquake.usgs.gov/scitech/iss/

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Villaseñor, A., and E.R. Engdahl, *A digital hypocenter catalog for the International Seismological Summary,* Seism. Res. Lett., vol. 76, no. 5, pp. 554-559, 2005.

Villaseñor, A., E.A. Bergman, T.M. Boyd, E.R. Engdahl, D.W. Frazier, M.M. Harden, J.L. Orth, R.L. Parkes, and K.M. Shedlock, *Toward a comprehensive catalog of global historical seismicity,* Eos Trans. AGU, vol. 78, no. 50, pp. 581, 583, 588, 1997.