These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

The International Seismological Summary. 1943 July, August, September.

INTERNATIONAL GEODETIC AND GEOPHYSICAL UNION.
ASSOCIATION OF SEISMOLOGY.

FORMERLY THE BULLETIN OF THE BRITISH ASSOCIATION SEISMOLOGY COMMITTEE.

The Director of the I.S.S. wishes to express his thanks to U.N.E.S.C.O. and H.M. Treasury for financial support, which has covered the cost and preparation of this volume.

The third quarter 1948 contains 99 epicentres, 67 of which are repetitions from previous determinations.

Cases of abnormal focal depth are noted below:—

July	1d.	4h.	36·2N.	139·9E.	. 0.	005	
>>:==================================	6d.		17.7S.	69·2W.	0.	015	
	11d.	2h.	33.0S.	178.0W.	Base of Sup	erficial La	yers
	23d.	14h.	8·6S.	109·9E.		005	
Aug.	1d.	16h.	19·9S.	169·9E.	0	020	
	2d.	0h.	45.0S.	167·0E.	0.	005	
	6d.	11h.	8.0S.	112.0E.	Suggest	ed Deep	
	7d.	15h.	Undete	rmined sho	ck "	,,	
	10d.	3h.	,,	,,	,,	,,	
	12d.	11h.	19·1N.	67·1W.	,,	,,	
	22d.	1h.	36.8N.	140.9E.	0	005	
	31d.	16d.	14.3N.	91.2W.	Suggest	ed Deep	
Sept.	2d.	13h.	34·2N.	136·8E.	0	050	
	2d.	23h.	Undete	rmined sho	ck Suggest	ed Deep	
	9d.	4h.	36·3N.	71.0E.	0	015	
	10d.	8h.	35.6N.	134·2E.	Suggest	ed Deep	
	12d.	1h.	1.2N.	121·8E.	0	010	
	13d.	6h.	Undete	rmined sch	ock Suggest	ed Deep	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

254

Sept.	14d.	2h.	22°0S.	170°3E.	Suggested Deep
	14d.	3h.	22.0S.	170·3E.	,, ,,
	14d.	7h.	30·1S.	177·8W.	,,
	17d.	·3h.	39·0N.	15·2E.	0.040
	17d.	10h.	14.7S.	167·3E.	0.010
	22d.	12h.	38.0S.	73.0W.	0.010
	24d.	11h.	36·4N.	73·5E.	Suggested Deep
	27d.	4h.	35·4N.	135·8E.	0.050
	27d.	22h.	30·1S.	177.8W.	Base of Superficial Layers
	28d.	10h.	18·1N.	147.5E.	0.010

Thanks are also due to the Director of the Meteorological Office and the Superintendent of Kew Observatory for hospitality extended to the staff, and assistance with administration.

July, 1953.

KEW OBSERVATORY, RICHMOND, SURREY.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

255

1943 JULY, AUGUST, SEPTEMBER.

July 1d. 4h. 39m. 42s. Epicentre 36°·2N. 139°·9E. Depth of focus 0·005.

(as on 1940 November 15d.).

Intensity VI at Tukubasan, Kakioka, Mito, Onahama; V at Utunomiya, Tokyo, Titibu, Tyosi, Misima, Kobe; IV at Katuura, Hunatu, Osima, Hukusima; II-III at Owase. Epicentre 39°·2N. (?36°·2N.), 140°·0E.

Radius of macroseismic area 200-300 km. Depth 50 km.
Seismological Bulletin of the Central Meteorological Observatory, Japan for the year 1943, Tokyo 1950, pp. 34-35, macroseismic chart p. 34.

A = -.6187, B = +.5210, C = +.5880; $\delta = -3$; h = 0; D = +.644, E = +.765; G = -.450, H = +.379, K = -.809.

	$\mathbf{p} = +$	644,	E = +	·765; G	+=45	0, H = +	379, K	=809.		
Kakioka Tukubasan Utunomiya Mito Tokyo		0.2 0.2 0.3 0.5 0.5	82 84 356 68 192	P. m. s. 0 9 0 9a 0 10k 0 13a 0 11	O-C. s. 2 - 2 - 2 - 2	S. m. s. 0 17 0 13 0 20 0 22 0 20	O-C. s. - 2 - 6 - 1 - 3	m. Supp). = =	L: m:
Maebasi Tyosi Onahama Hunatu Kohu		0·7 0·9 1·1 1·2	287 121 48 233 242	0 15k 0 20 0 19k 0 20k 0 22a	$\begin{array}{c} + & 0 \\ - & 2 \\ - & 2 \\ 0 \end{array}$	0 27 0 31 0 32 0 35 0 35	- 3 - 3			
Misima Nagano Osima Hukusima Shizuoka		1·3 1·4 1·5 1·6 1·7	215 289 196 16 225	0 20k 0 26k 0 23k 0 30 0 28k	- 3 + 3 + 3	0 42 0 46 0 39 0 53 0 48	+ 2 + 3 - 6 + 6 - 2			=
Omaesaki Aikawa Sendai Toyama Nagoya		2·1 2·2 2·2 2·6	221 324 21 283 247	0 32a 0 29a 0 34k 0 38 0 41k	- 2 - 6 - 1 + 3	1 5 1 13 1 7 1 20 1 25	+ 6 + 11 + 5 + 18 + 13			
Gihu Hatidyozima Kikone Kameyama Mizusawa	N.	2·7 3·1 3·1 3·1	253 181 253 244 18	0 56a 0 44 0 47k 0 48 0 51	+14 - 4 - 1 - 0 + 3	1 39 1 17 1 26 1 33 1 33	+ 25 - 7 + 2 + 9 + 9			
Kyoto Owase Miyako Osaka Kobe		3·6 3·7 3·8 3·9 4·2	251 237 24 248 248	0 56 0 56 1 0 0 59 1 2k	+ 1 + 0 + 2 - 1	1 51 1 9 1 15 1 57 1 53	$^{+14}_{-30}$ $^{-27}_{+13}$ $^{+1}$			
Toyooka Wakayama Siomisaki Hatinohe Sumoto		4·2 4·3 4·4 4·5 4·5	261 245 233 16 247	1 4 1 5 1 3 1 11a 1 6k	+ 1 - 3 + 4 - 1	$\begin{array}{c} 2 & 10 \\ \hline 2 & 10 \\ 2 & 4 \\ 2 & 10 \\ \end{array}$	$+18 \\ +13 \\ +5 \\ +11$			=
Aomori Muroto Hirosima Matuyama Hamada		4·7 5·5 6·4 6·4	240 255 249 261	1 14 1 13 1 31 1 33 1 46	+ 4 - 8 - 3 - 1 +11	2 15 2 46 2 18 2 52 2 59	$^{+11}_{+22}$ $^{-28}_{+6}$ $^{+10}$			
Sapporo Izuka Kumamoto Kagosima Titizima		6·9 8·0 8·3 9·1	254 249 242 167	1 38 2 0 2 5 2 7 k 2 8	- 3 + 4 + 5 - 4 - 6	3 17 4 17 4 5 4 0 3 42	$^{+18}_{+51}$ $^{+32}_{+7}$ $^{-16}$			
Tomie Nake Miyakozima Tashkent Sverdlovsk		9·9 11·7 17·0 53·9 55·0	252 231 232 298 319	4 17 2 42 4 8 9 21 e 9 26	- 8 - 4 + 13 + 2 - 1	(4 17) - 16 53 17 4	+ 5 + 5 + 2		= = =	=

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943 256

		Δ	Az.	1		0 -	C.	s.	0 - C.	Su	pp.	L.
			٥	m.	8.	8	• 2	m. s.	8.	m. s.	7.0 7 0.000	m.
Berkeley	Z.	74.2	54	i 11	33	+	1		-		-	
Tinemaha	333	77.3	53	i 11	51	+	2	-			-	-
Santa Barbara		77.8	56	e 11	53	+	1					
Haiwee		78.0	53	i 11	54	+	1	27	·	_		
Copenhagen		78.1	333	i 11	55	+	1	21 43	+ 2	() 	-	-
Mount Wilson		79.1	55	i 12	1 a	4	2	-	_			3 <u></u> 3
Pasadena		79.1	55	i 12	0 a	+	1	-	23 -335	S	===3	-
Riverside		79.7	55	i 12	3	+-	1		_	-		
La Jolla		80.4	56	i 12	8	+	2	_	8 	1 1 1 1 1	2000 23	(1111)
Stuttgart		84.7	330	i 12	29	+	1	e 21 48?	-61	-	_	e 44·3
Tucson		85.1	53	i 12	33 a	+	3		-		_	_
Bogota		128.4	45	i 19	4	[+	100000		_	-	-	
La Paz		148.3	58	19	43	[+	7]	-		1000		-

Bogota also gives i =19m.19s. Long waves were also recorded at Kew, Paris, De Bilt, and Granada.

July 1d. Readings also at 0h. (near Branner and Berkeley), 5h. (Tinemaha, Mount Wilson, Pasadena, Riverside, Tucson, Tashkent, Sverdlovsk, Mizusawa, Tortosa, Toledo, near Granada, and Almeria, and near Bogota), 6h. (Stuttgart, Copenhagen, Paris, Kew, De Bilt, Uccle, and La Paz), 7h. (Tinemaha, Mount Wilson, Tucson, Stuttgart, Pasadena, and Copenhagen), 9h. (Kew), 10h. (Mount Wilson, Tucson, and Tacubaya), 12h. (Bucharest).

July 2d. 6h. Undetermined shock.

Miyakozima e=49m.1s. Naha e=49m.28s. Kumamoto e=50m.50s. Nagano e=52m.9s. Irkutsk eP=54m.6s.?, eS=58m.49s.?. Zinsen e=55m.3s. Tokyo Cent. Met. Obs. e=56m.33s. Kobe e=58m.3s. Calcutta eN=59m.15s., iN=64m.49s., and 66m.4s. New Delhi iE=69m.34s. and 72m.5s. Long waves were recorded at Bombay and European stations.

July 2d. Readings also at 6h. (Granada), 10h. (Tucson), 11h. (near Tashkent and Tchimkent), 12h. (Helwan, Ksara, and Tashkent), 17h. (near Stalinabad, Tchimkent, and Tashkent), 21h. (Riverside, Mount Wilson, Tucson, near Tashkent, and Tchimkent), 23h. (near Mizusawa, near Tashkent (2), and Tchimkent (2)).

July 3d. Readings at 0h. (near Tashkent and Tchimkent), 2h. (near San Juan), 5h. (Bogota and near La Paz), 6h. (Toledo), 7h. (near Fort de France), 10h. (near Bogota), 14h. (Pasadena, Mount Wilson, Tucson, and near Tashkent), 16h. (Auckland), 18h. (Jena, Strasbourg, near Ebingen, Ravensburg, Zürich, Basle, and Stuttgart), 19h. (near Branner), 21h. (Stuttgart and St. Louis), 22h. (Fort de France and Tacubaya).

July 4d. 4h. 37m. 8s. Epicentre 48° 2N. 9° 0E. (as on June 3d.).

$$A = +.6609$$
, $B = +.1046$, $C = +.7432$; $\delta = +8$; $h = -5$; $D = +.156$, $E = -.988$; $G = +.754$, $H = +.116$, $K = -.670$.

	Δ	Az.	P.	O-C.	s. o-c.	Supp.	L.
	-	•	m. s.	s.	m. s. s.	m. s.	m.
Ebingen	0.0	_	i0 3	P*	i0 4 S*		_
Ravensburg	0.6	135	e 0 87	- 7	10 177 Se		_
Stuttgart	0.6	13	i 0 10	- 5	10 17 Sg		_
Strasbourg	0.9	295	e 0 19	- 1	i 0 30 - 4		-
Zürich	0.9	198	e 0 18	- 2	$i \ 0 \ 31 - 3$		
Basle	1.2	235	e 0 22	- 2	e 0 39 - 2		-
Neuchatel	1.8	229	e 0 31	- ī	e10+4		
Jena	3.2	32	e 0 59	P*	$i \ 1 \ 26 - 6$	(i 1 36) S*	i 1.6
Potsdam	4.9	33		_	e 2 40 Sa	_	

Jena also gives iEN =1m.21s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

257

July 4d. 8h. 8m. 39s. Epicentre 46°·3N. 10°·5E. (as on 1937 June 7d.).

Intensity IV at Ofenpass, in the Munstertal and the lower Engadine. Epicentre 46° 40' N. 10° 20' E. (Strasbourg). Radius of macroseismic area 30 km. Dr. E. Wanner.

Dr. E. Wanner. Jahresbericht des Erdbebendienstes der Schweiz im Jahre 1943, p. 2 with map fig. 5 in appendix.

$$A = +.6817$$
, $B = +.1263$, $C = +.7206$; $\delta = -7$; $h = -4$; $D = +.182$, $E = -.983$; $G = +.709$, $H = +.131$, $K = -.693$.

	Δ	Az.	ш. s.	O −C.	S. c.	O –С. в.	m. s.	p.	L. m.
Chur	0.9	310	e 0 18	Pg	i 0 26	Sg		-	
Ravensburg	1.6	338		-	e 0 47?	- 4			*****
Zürich	1.7	309	e 0 35	Pe	e 0 54	0		_	7.5
Basle	2.3	302	e 0 48	$\mathbf{P}_{\mathbf{g}}$	e 1 15	Se		_	
Triest	2.4	106		_	e 1 8	- 4			i 1·5
Neuchatel	2.5	286	e 0 52	P_z	e 1 24	Sr	28 22 44		
Stuttgart	2.6	340	e 0 45	+ 1	e 1 19	+ 2	e 0 50	$\mathbf{P}_{\mathbf{g}}$	e 1.5
Strasbourg		321		-	e 1 35	Sg			i 1 · 7
Jena	2·9 4·7	10	e 1 36	P_g		*****	S. Berger	_	

Stuttgart also gives e = 1m.11s.

July 4d. 9h. 51m. 58s. Epicentre 9°.4N. 84°.6W.

$$A = + .0929$$
, $B = -.9824$, $C = + .1623$; $\delta = +8$; $h = +7$; $D = -.996$, $E = -.094$; $G = +.015$, $H = -.162$, $K = -.987$.

	△ A	m a	0 - C.	S. m. s.	O -C.	m. s.	pp.	L. m.
Balboa Heights Bogota Tacubaya N. San Juan Mobile	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	5 e 1 19 3 e 2 49 7 4 2 3 e 4 33	+ 1 + 1 - 2 - 4 + 5	e 2 20 e 5 50 i 8 28 i 8 27	$^{+2}_{+61}$ $^{+11}_{-18}$	i 2 57 i 5 26	PP PPP	6·8 i 9·9
Huancayo Fort de France Columbia Bermuda St. Louis	24.7	6 e 5 10 7 e 5 24 7 e 6 25	$ \begin{array}{r} 0 \\ 2 \\ 0 \\ + 18 \\ - 1 \end{array} $	i 9 27 e 9 41 e 9 47 e 12 19 e 10 56	+ 9 + 18 + 3 - 8	e 5 48 5 44 —	PP	e 10·9 e 12·2 e 12·2 e 14·5 i 13·3
Georgetown La Paz z. Pittsburgh Philadelphia Chicago	30·5 14 31·2	8 e 6 23 6 e 6 35	$^{-22}_{+\ 0}\\ ^{-22}_{0}$	e 11 3 e 11 31 e 12 42 e 11 39	- 9 + 2 + 67 - 9	6 49 - e 7 40 e 7 38	PP	e 13·4 e 13·4 e 13·6
Fordham Tucson Buffalo Harvard Weston	33·3 31 33·8 34·9	7 e 6 38 8 e 6 40 9 e 6 39 8 e 6 56 8 e 6 52	+ 2 - 1 - 7 + 1 - 3	e 11 54 e 11 59 e 11 57 e 12 28 e 12 25	$^{+\ 2}_{-\ 3}$ $^{-\ 13}$ $^{+\ 2}$	e 8 13 e 7 54	PP	e 15·8 e 19·0
Vermont Ottawa La Jolla Palomar Shawinigan Falls	36·7 38·1 38·1 38·1		PPP - 1 0 + 1 + 1	e 12 52 12 52 —	+ 4 - 2 - =	8 34 =	PP =	e 15·2 19·0 ————————————————————————————————————
Riverside Z. Mount Wilson Pasadena Seven Falls Salt Lake City	39·4 3 39·4	5 e 7 27 5 i 7 33 5 i 7 33 6 e 9 88 28 e 9 14	- 1 0 PP PP	i 13 41 13 34 e 13 52	$+\frac{6}{1}$	i 9 44	P _c P	e 21·8 16·0 e 17·8
Logan Santa Barbara Tinemaha Bozeman	40·7 3 41·0 3	29 e 8 2 14 e 7 43 18 e 7 48 33 e 10 22	+ 22 - 1 + 2 PPP	e 14 39	PPS	e 9 48 - e 17 55	PPP	i 17·8 — e 18·1
Santa Clara Berkeley Ukiah Saskatoon Seattle	44.2 3 45.4 3 46.2 3	16 e 8 11 16 i 8 13 17 e 10 11 42 e 9 21	+ 3 + 1 PP	e 14 48 i 14 52 e 15 10 e 19 44	+ 6 + 6	e 18 19 i 18 26	SS SS 	e 23·8 e 24·3 e 31·0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

258

```
Az.
                                                   0 – C.
                                                                                      Supp.
                                                     8.
                                                              m. s.
                                                                                  m.
                                                                                                      m.
 Victoria
                          50.8
                                             267
                                                    +22
 Rio de Janeiro
                          51.7
                                  129
                                                           (e 16 31)
                                                                                e 16 34
 Ivigtut
                          58.2
                                                    _{\mathbf{P_cP}}^{\mathbf{P_cS}}
                                   20
Sitka
                                 332
College
                          70.3
                                 337
                                                                                                    33.4
Scoresby Sund
 San Fernando
                          75 \cdot 2
                                   55
                     E.
                                                    -26
                                                                                                    37.0
 Toledo
                          76·8
77·2
                                  \frac{52}{54}
                                       e 11 54
i 11 59
                                                            1 21
                                                                 45
                                                                          3
Granada
                                                            i 21
                                                                 53
                                                                       +
                                                                                  12 14
                                                                                           P_{c}P
                                                                                                    35.9
Stonyhurst
                          77.8
                                  37
                                       e 12
                                                            i 21
                                             9
                                                                 49
                                                                                i 22 11
                                                                                            S_cS
                                                                                                 e 37·0
Aberdeen
                          78.1
                                  33
                                                            i 21
i 21
                                                                 56
                                                                               e 21 46
                                                                                          sks
                                                                                                 e 35·4
Almeria
                          78.2
                                  55
                                         12
                                                       1 2 2
                                                                 57
                                                                                 22 29
                                                                                            PS
                                                                                                    38.5
Kew
                          79.2
                                       e 12
                                  40
                                                           e 22
                                                                                 30 32
                                                                                           SSS
                                                                                                 e 35·0
Tortosa.
                          80.2
                                  51
                                       e 12 12
                                                              22
                                                                       -17
                                                                                                 e 40·0
Paris
                          81.1
                                  43
                                       i 12 20
                                                           e 22
                                                                          0
                                                                                                   40.0
Clermont-Ferrand
                          81.7
                                  46
                                      e 12 20?
                                                                       \begin{array}{c} + & 3 \\ S_c S \\ - & 2 \end{array}
                                                           e 22
                                                                 37
Bergen
                          81.9
                                  30
                                                           e 23
                                                                  23
                                                                                                 e 34·0
Uccle
                          82 \cdot 1
                                  40
                                      e 12 24
                                                           e 22 36
                                                                       <del>-</del>
                                                                                                 e 38·0
De Bilt
                         82.5
                                  39
                                      i 12 26
                                                           i 22
                                                                 44
                                                                                                 e 38·0
Stuttgart
                         85.4
                                  42
                                      e 12 39
                                                           e 23 11
                                                                          0
                                                                                          SKS
                                                                                                 e 43·1
Copenhagen
                         86.3
                                  34
                                      e 12 45
                                                           23
i 23
e 23
                                                                 22
                                                                                 23
                                                                                          SKS
Potsdam
                         87.2
                                  38
                                                                 33
                                                                                                 e 47.0
Cheb
                         87.3
                                  40
                                                                 22
                                                                          0}
                                                                                                 e 46.0
Florence
                         87.8
                                  47
                                       i 23 31
                                                           (i 23 31)
                                                                          3
                                                                                            SS
                                                                                                 e 51·0
Upsala
                         88.0
                                  30
                                                           e 23 327
                                                                                                 e 43.0
Prague
                         88.6
                                  40
                                       e 5 297
                                                           e 14 43
                                                                                                 e 29·0
Triest
                         89.1
                                  44
                                      e 12 56
                                                           i 23 27 [
                                                                          0]
                                                                                                 e 43·0
```

```
Additional readings :-
  Bogota ePPPP =3m.4s., e=4m.30s.
  San Juan iP =4m.40s.
  Fort de France PPP =5m.56s.
  Georgetown 12m.5s.
  Philadelphia e = 8m.35s.
  Tucson e = 7m.18s.
  Buffalo e = 7m.38s.
  Ottawa SS = 15m.10s.
  Pasadena iSSEN = 17m.44s.
  Logan e = 11m.15s. and 16m.2s.
 Santa Clara eP<sub>c</sub>SS<sub>c</sub>PE = 24m.35s.
Rio de Janeiro L given as S.
  Granada SS = 26m.10s.
  Stonyhurst e = 32m.2?s.
  Almeria PP = 14m.57s., PPP = 16m.53s., S_cS = 22m.17s., SS = 27m.39s., SSS = 30m.49s.
  Stuttgart ePP = 15m.50s., eSS = 29m.8s.7, eQ = 39m.2s.7
 Long waves were also recorded at Honolulu, Christchurch, and Wellington.
```

July 4d. 22h. 15m. 13s. Epicentre 4° 0N. 126° 3E.

Epicentre 4°.5N. 127°.5E. (stations of the U.S.S.R.).

A = -.5906, B = +.8040, C = +.0693;

```
D = +.806, E = +.592;
                                        G = -.041, H = +.056, K = -.998.
                            Az.
                                    Ρ.
                                          0-c.
                                                      S.
                                                           0-C.
                                                                        Supp.
                                                                                      L.
                                  m. s.
                                            8.
                                                    m. s.
                                                             8.
                                                                     m. s.
                                                                                      m.
Kobe
                     31.6
                             15
                                     57
                                            +31
                                                    11 44
Osaka
                     31.7
                             14
                                     30
                                              3 2 2
                                   6
                                                    12
                                                        9
Misima
                      33.1
                                 e 6
                                     38
                             19
Nagano
                     34 \cdot 3
                             17
                                     52
                                   6
Sendai
                     36.6
                                     10
                                                    13
Mizusawa
                     37.5
                             19
                                                  e 13
Sapporo
                             16
                     41.1
                                     51
                                           ++
                                                    14
Irkutsk
                           343
                     51.5
                                     10
                                                  i 16
                                                       33
Tashkent
                     63.0
                           316
                                e 10
                                     27
                                                  1 19
Moscow
                     86.0
                           326
                                i 12
                                                  e 23
```

 $\delta = +3$;

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		Δ	Az.	P. m. s.	O – C.	S. m. s.	O –C.	m. s.	p.	L. m.
Copenhagen Triest Stuttgart De Bilt Uccle		99.9 102.6 104.4 105.3 106.3	329 319 323 327 326	e 14 5?	- <u>3</u>	24 23 i 24 30 e 24 41 e 24 47 8 e 26 12	$\begin{bmatrix} - & 4 \\ - & 9 \\ - & 7 \end{bmatrix}$ $\begin{bmatrix} - & 7 \\ - & 5 \end{bmatrix}$ $\begin{bmatrix} - & 1 \end{bmatrix}$	e 18 17? e 24 47	PP SKS	54.8
Tinemaha Pasadena Mount Wilson Tucson Granada Philadelphia	z. z. z.	107.5 108.5 108.6 115.0 118.0 132.0	49 52 52 51 316 21	e 18 53 e 18 28 e 18 40 e 18 29 e 22 40	PP 2] PP [-14] PP	i 25 28		1 18 49 29 56	PP	63·7

Mizusawa also gives ePN =7m.22s., eSE =13m.9s.

July 4d. Readings also at 0h. (near Lisbon), 1h. (Tucson), 2h. (Scoresby Sund and Bogota), 4h. (Stuttgart and Ebingen), 6h. (New Delhi and Mizusawa), 9h. (Tacubaya), 10h. (Balboa Heights), 11h. (Pasadena, Mount Wilson, Riverside, Tucson, and Balboa Heights (2)), 12h. (Rio de Janeiro), 13h. (La Plata, La Paz, Huancayo, Tacubaya, Fort de France, Scoresby Sund, San Juan, Bermuda, Columbia, Tucson, Harvard Vermont, Chicago, Seven Falis, Christchurch, Wellington, Auckland, Moscow, Sverdlovsk, Tashkent, and De Bilt), 14h. (Pasadena, Sitka, College, Cheb, Uccle, Florence, Toledo, San Fernando, Tortosa, Granada, and Ksara), 17h. (near Andijan and near Mizusawa), 18h. (Andijan, Stuttgart, San Juan, Harvard, Riverside, Pasadena, Mount Wilson, Tucson, and St. Louis), 19h. (Tinemaha, Mount Wilson, Tucson, Pasadena, and Riverside), 22h. (Tinemaha, Mount Wilson, Pasadena, Tucson, Columbia, Harvard, Philadelphia, Pittsburgh, San Juan, Balboa Heights, La Paz, and Huancayo).

July 5d. 13h. Undetermined shock.

Brisbane eE =48m.6s., eN =48m.9s. and 49m.46s., eE =52m.7s., iN =57m.43s. and 59m.0s.

Riverview 1?Z = 48m.37s., eLN = 59.5m.

Auckland S = 50m.6s., i = 51m.20s. Tuai S = 50m.42s., i = 50m.45s. and 50m.58s.

Wellington S = 51 m. 558., IZ = 52 m. 558., Q? = 53 m. 368., R = 55 m.

Mount Wilson iPNZ = 58m.35s.

Riverside ePZ = 58m.368. Pasadena ePZ = 58m.378., eLZ = 87m.

Tucson iP =58m.53s., i =59m.14s., eL =96m.23s.

Sydney e = 60 m. 24 s.?

Almeria PKP = 67 m. 39 s. and 68 m. 15 s., PP = 71 m. 50 s., PPP = 75 m. 22 s., SKKS = 77 m. 49 s., PKKS = 81 m. 39 s., SS = 91 m. 19 s., L = 137 m.

77m.498., PKKS = 81m.398., SS = 91m.198., L = 1.Tortosa eE = 68m.30s. and 71m.20s., eLE = 137m.

Granda ePKP? = 68m.46s., PP? = 72m.21s., SKS? = 74m.59s., eL = 136m.54s. Long waves were also recorded at Arapuni, Christchurch, Kew, De Bilt, and Stuttgart.

July 5d. 21h. 7m. 47s. Epicentre 15°.8S. 73°.8W.

A = +.2686, B = -.9245, C = -.2706; $\delta = +7$; h = +6; D = -.960, E = -.279; G = -.075, H = +.260, K = -.963.

	200000000000	Δ	Az.	P. m. s.	O -C.	s. m. s.	O –C.	m. s.	p.	L. m.
Huancayo La Paz La Plata	E. N. Z.	4·0 5·5 23·8 23·8 23·8	338 99 147 147 147	i 1 16 i 1 27 a 5 16 5 16 5 9	Ps + 2 + 1 + 1 - 6	1 2 15 1 2 33 9 19 9 15	Sr + 3 - 9 - 13	i 2 41 5 37 F	s• PP	3·0 12·0 12·1 14·5
Balboa Heights Rio de Janeiro Fort de France San Juan Bermuda		25·2 29·7 32·8 34·8 48·7	347 109 24 12 10	e 5 34 e 6 20 e 6 40 e 6 52 e 8 54	+ 5 + 10 + 3 - 2 + 6	e 11 10 e 12 26 e 16 13	+ 4 + 1 PPS	e 8 0 (e 19 43)	PP SS	e 14·7 e 15·3 e 19·7

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

260

		Δ	Az.	P. m. s.	O – C.	"S.	0 - C.		pp.	L.
Columbia Georgetown Cape Girardeau		50.0 54.5 54.9	352 357 345	e 9 0 i 9 34 e 9 37	+ 2 + 2 + 2	m. s. e 16 15 i 17 18 e 17 18	** 6 + 8 + 2	m. 8 e 11 3 i 17 34	PP PPS	e 24·5 25·2
Philadelphia Pittsburgh		55·5 56·2	$\frac{359}{355}$	i 9 39 i 9 45	+ 1	e 17 35 i 17 40	PS + 7	i 17 46	PPS	e 23·7
St. Louis Fordham Weston Harvard Buffalo		56·3 56·4 57·9 58·6	345 1 3 356	i 9 45 i 9 47 i 9 56 i 9 56 i 9 57	$\begin{array}{cccc} + & 0 \\ + & 2 \\ 0 \\ - & 1 \\ - & 4 \end{array}$	i 17 37 e 17 45 i 18 3 e 18 3	+ 3 + 9 + 8 + 6	i 19 30	s _c s 	e 30·2
Chicago Tucson Ottawa Seven Falls La Jolla		58·7 59·5 60·9 62·7 63·8	348 324 358 2 320	e 10 2 i 10 . 7 10 18 10 31 e 10 35	+ 1 + 2 - 1	e 18 4 e 18 17 18 46 19 1	$\begin{array}{c} - & 2 \\ + & 1 \\ + & 12 \\ + & 4 \end{array}$	i 19 48 i 10 49 e 20 1?	$\mathbf{S_{c}S}$ $\mathbf{P_{c}P}$ $\mathbf{S_{c}S}$	e 31·4 e 30·8 e 29·2 29·2
Riverside Mt. Wilson Pasadena Santa Barbara Logan		64 · 6 65 · 2 65 · 2 66 · 3 67 · 2	321 321 321 320 330	i 10 41 i 10 45 i 10 45 a e 10 53 i 10 59	0 0 + 1 + 1	e 19 25 e 19 36 i 19 35 e 19 46	+ 4 + 8 + 7 - 6	i 12 3 e 39 32 e 13 43	P'P'	e 32·2 e 32·7
Tinemaha Bozeman Victoria Lisbon San Fernando	E.	67·2 69·9 77·7 81·1 82·2	323 334 329 46 49	e 10 58 e 13 54 11 41 12 19k i 11 26	PP -19 + 1 -58	e 20 25 21 36 i 21 47	$-\frac{1}{16}$ $-\frac{16}{52}$	e 24 35	ss 	e 37·8 38·2 41·2 41·7
Granada Almeria Toledo Tortosa Sitka	E.	84·4 85·1 85·2 88·8 88·9	49 50 47 47 332	i 12 34 i 12 36 i 12 40 12 36	$-{2\atop -}{3\atop -}{1\atop -}{1\atop -}{1\atop -}$	i 23 7 i 23 13 i 23 16 23 7 e 23 27	+ 6 + 5 + 7 [-18] [+ 1]	$ \begin{array}{c} 12 & 48 \\ 13 & 17 \\ \end{array} $	P _c P pP	43·5 45·2 e 45·2 e 45·5
Stonyhurst Kew Paris Scoresby Sund Aberdeen		92·0 92·3 93·0 93·2 93·6	34 37 40 15 31	i 23 42 e 13 12a i 13 17 e 13 19	SKS - 1 0 + 2	i 23 53 e 23 45 e 23 49 e 23 53 i 23 54	$\{-3\}$ $[-1]$ $[-1]$ $[+2]$ $[+1]$	i 24 14 e 25 40 i 17 2 e 16 58	S PS PP	e 44·2 e 37·2 49·2 e 47·5 e 45·6
Uccle De Bilt Stuttgart Florence Cheb	n.	94 ·8 95 · 7 97 · 2 97 · 3 99 · 5	38 37 41 47 40	e 13 24 i 13 29 e 13 35	- 1 - 1 	e 24 7 e 24 15 e 25 21 e 24 22	$[+ 0] \\ [+ 3] \\ [+ 2] \\ + 23 \\ [- 2]$	i 17 23 e 17 28	PP PP PP	e 42·2 e 44·2 e 46·3 e 53·2
Copenhagen Prague Upsala Bucharest Moscow		100.8 100.8 104.2 107.9 114.9	35 41 31 48 35	e 13 52 e 28 49? e 19 13? e 15 3	PP P	e 24 43 25 20	$+12$ $[-\frac{4}{4}]$ $[-12]$	18 0 e 48 13 19 30	PP PP	e 57·2 58·2
Sverdlovsk Tashkent		$126.6 \\ 139.3$	29 44	13 41 i 19 30	[+ 1]	$\begin{array}{ccc} 27 & 49 \\ 26 & 27 \end{array}$	$\{-9\}$ $[-11]$	e 22 16	\overline{PP}	

```
Additional readings : —
  La Plata N = 6m.1s.?, 8m.7s.?, and 8m.49s.
  Columbia e = 18m.50s.
```

Philadelphia ePP = 11m.58s., e = 12m.52s., 14m.37s., and 19m.19s., eSS = 21m.47s.

Buffalo e = 10m.11s., i = 11m.21s.

Tucson ePP = 12m.21s., e = 14m.37s., ePKP,PKP = 39m.42s.

Logan e = 21m.10s. Granada SS = 28m.38s.

Almeria sP = 13m.28s., PP = 15m.58s., pPP = 16m.21s., PPP = 17m.17s., SKS = 22m.54s., PS = 24 m. 31 s., SS = 28 m. 43 s.

Stonyhurst iPPS = 25m.39s. Kew ePPZ = 16m.56s., eSS?Z = 31m.50s.?

Scoresby Sund e = 32m.0s.

Uccle ePSE =26m.1s.

Stuttgart eSPZ = 26m.13s.? Copenhagen 24m.32s.

Moscow SKKS = 26m.30s.

Long waves were also recorded at Wellington, Christchurch, Arapuni, Bergen, Potsdam, and Bombay.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

261

July 5d. Readings also at 4h. (Granada and Ksara), 7h. (Lincoln), 9h. (near Strasbourg, Stuttgart, and Ebingen), 10h. (near Mizusawa), 11h. (Prague), 12h. (Tacubaya), 13h. (Tuai, Arapuni, Auckland, Wellington, Christchurch, Riverview, Harvard, and near Berkeley, Branner, and Lick), 14h. (Stuttgart, near Tashkent, and Stalinabad), 15h. (near Berkeley and Branner), 16h. (near Lick, Fresno, Branner, Berkeley, Santa Clara, and San Francisco), 19h. (La Plata, Tucson, and Riverside), 20h. (Moscow).

July 6d. 9h. 39m. 56s. Epicentre 17°.7S. 69°.2W. Depth of focus 0.015.

Scale IV, in Chili. See Annales de l'Institut de Physique du Globe de Strasbourg, 2e partie, Seismologie, Tome VII, VIII, p. 32.

$$A = + .3385$$
, $B = -.8911$, $C = -.3022$; $\delta = -3$; $h = +5$; $D = -.935$, $E = -.355$; $G = -.107$, $H = +.282$, $K = -.953$.

 \triangle Az. P. O-C. S. O-C. Suppose m. s. s. m. s. s. m. s. 1.6 40 i 0 35k + 5 — — —

0	0	m. s.	В.	- m. s.	S.	m. s.		m.
1.6	40	i 0 35k	+ 5		_	-	-	1.0
	the result of the first of the			e 2 02	- 9	-		e 2.5
				14 5	8	- 100	-	i 4.7
				1 8 G	± 11	8 11	S	• • • • • • • • • • • • • • • • • • •
33.2	15	e 6 21	- 6		· —	e 6 59	$\widetilde{\mathbf{pP}}$	_
36.0	4	e 7 53	pP	i 12 7	3		-	e 14·8
58.0	341		-	e 17 20	and the second s	e 17 25	S	
				The state of the s	A T T A T A T A T A T A T A T A T A T A		-	
	The second secon	i 9 47	- 4			i 10 25	nP	
63.7	321	e 10 19	- î			i 11 0	$\hat{\mathbf{p}}\hat{\mathbf{P}}$	-
68.1	317	e 10 48	0			e 11 28	pР	
68.9	318	i 10 53	0	_			pP	
69.5	318		0	-	-			
69.5			0			Company of the Compan		
71.5	320	i 11 8k	- î		-	i 11 49	pP	
82.4	47	i 12 10	+ 1	i 22 14	+ 1	e 15 59	PP	
	48		+ 1		. 0	23 29		
		And the state of t	-17	The state of the s	+ 2		~~	
86.9	10747 6447 11					-	-	e 46·1
	41	A CONTRACTOR OF THE STATE OF TH						0 10 1
	1.6 4.9 8.2 19.9 33.2 36.0 58.7 59.4 63.7 68.9 68.9 69.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.6 40 i 0 35k 4.9 176 e 1 0? 8.2 313 i 2 57 19.9 151 i 4 33 33.2 15 e 6 21 36.0 4 e 7 53 58.0 341 — 58.7 350 — 59.4 340 i 9 47 63.7 321 e 10 19 68.1 317 e 10 48 68.9 318 i 10 53 69.5 318 i 10 57k 69.5 318 i 10 57k 71.5 320 i 11 8k 82.4 47 i 12 10 83.0 48 12 13 83.4 45 i 11 57 86.9 46 e 13 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Additional readings:—
Pittsburgh eEN = 19m.15s.
St. Louis esSE = 18m.43s.
Granada PS = 23m.11s., SS = 28m.5s.

July 6d. 13h. 13m. 44s. Epicentre 31°-5N. 40°-8W. (as on 1941, July 23d.).

$$A = +.6466$$
, $B = -.5582$, $C = +.5199$; $\delta = -3$; $h = +1$; $D = -.653$, $E = -.757$; $G = +.394$, $H = -.340$, $K = -.854$.

	Δ	Az.	Ρ.	O-C.	s.	O-C.	Sur	p.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.	HT-18-7	m.
Bermuda	20.4	278	e 4 43	+ 2	-				e 9.7
San Juan	26.3	246	e 6 2	+23	222			-	e 11.3
Harvard	26.8	304	e 5 44	0	_			-	e 13·3
Fordham	$28 \cdot 2$	299	e 5 57	+ 1	e 10 45	+ 4 + 5	-	-	10 co - 10 co
Philadelphia	29.0	296	e 6 3	- 1	e 10 59	+ 5	e 7 13	\mathbf{PP}	e 13·6
Granada	31.1	68	i 6 30	+ 8	11 35	+ 7	7 19	PP	14.8
Almeria	32.0	69	e 7 19	3	11 37	- 5	e 7 28	$\hat{P}\hat{P}$	16.3
Pittsburgh	$32 \cdot 7$	298	e 6 38	+ 2	e 12 0	+ 8			
Tortosa E.	$34 \cdot 3$	63	e 7 33	· PP	11 47	-30	i 9 35	8	e 18.0
Kew	35.7	44	e 7 5	+ 3	e 12 41	+ 2	e 15 1	3	e 17·3
Clermont-Ferrand	36.7	55	_		e 12 581	+ 4		(40.00)	
Paris	36.8	49	e 7 12	+ 1	e 12 591			_	e 17·3
Scoresby Sund	40.4	- 9	e 8 43	+62	e 13 45	5	-	_	e 17.0
St. Louis	40.7	295	e 7 42	- 2	e 13 58	+ 3		3	
Stuttgart	41.1	51	e 7 49	+ 2	e 14 1	0	e 8 35	8	-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

262

		Δ	Az.	P. m. s.	0 -C.	S. m. s.	O – C.	m. s.	pp.	L. m.
Florence	N.	42.4	57	_		e 15 41	3		_	-
Copenhagen		44.1	40			14 51	+ 6		-	
Tucson		58.4	291	e 10 0	0	e 18 11	+ 9	e 12 18	\mathbf{PP}	e 29·6
Tinemaha	z.	62.6	298	e 10 28	0					_
Riverside	Z.	63.0		e 10 31	0			-	-	· —
La Jolla	N.	63.3	293	e 10 34	+ 1	-	-	-		-
Mount Wilson	3.535	63.4	295	i 10 34	0			i 10 40	\mathbf{P}	_
Pasadena	Z.	63.6	295	i 10 34	- 1	_		_	_	e 32·3

Additional readings:—
Almeria i = 8m.31s.
St. Louis eZ = 7m.34s.

Tucson iP = 10m.6s. Long waves were also recorded at San Fernando, Cheb, De Bilt, and Sitka.

July 6d. 22h. 10m. 14s. Epicentre 45° 0N. 72° 5W.

$$A = + \cdot 2134$$
, $B = - \cdot 6767$, $C = + \cdot 7047$; $\delta = + 6$; $\hbar = -4$; $D = - \cdot 954$, $E = - \cdot 301$; $G = + \cdot 212$, $H = - \cdot 672$, $K = - \cdot 710$.

	Δ	Az.	P.	0-C.	s.	0 - C.	Sup	p.	L.
			m. s.	s.	m. s.	8.	m. s.	507+1 m	m.
Vermont	0.7	224	i 0 10%	- 7	i 0 157	-13			i 0.4
Shawinigan Falls	1.6	353	0 30	0	0 52	+ 1		-	
Ottawa	2.3	280	i 0 34	- 6	i1 0	- 9			1.2
Seven Falls	2.4	29	0 44	+ 3	1 20	+ 8		-	
Harvard	2.6	165	i 0 43	- 1	i 1 11	- 6	-	-	i 1.5
Fordham	4.3	194	i 1 10	+ 2	i 2 2	+ 2			i 2·1
Philadelphia	5.4	203			i 2 36	+ 8	State State of	_	e 2.9
Pittsburgh	7.1	233	_	-	i 3 21	+11	i 3 57	S.	

Additional readings :-

Ottawa i = 1m.4s. and 1m.9s.

Seven Falls e = 1m.24s. and 1m.28s.

Harvard iP = 45s., iS = 1m.14s. and 1m.21s.

July 6d. Readings also at 2h. (Bucharest), 3h. (Granada, Mount Wilson, Tucson, and Tinemaha), 7h. (Tashkent and near Tchimkent), 10h. (near Buffalo), 11h. (Balboa Heights, San Juan, Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, and Pittsburgh), 13h. (Victoria, near Berkeley, Branner, and Lick), 14h. (Riverview), 15h. (Cheb), 19h. (near Branner).

July 7d. 12h. 45m. 13s. Epicentre 5°-6S. 150°-5E. (as on 1943, March 21d.).

$$A = -.8663$$
, $B = +.4901$, $C = -.0969$; $\delta = +6$; $h = +7$; $D = +.492$, $E = +.870$; $G = +.084$, $H = -.048$, $K = -.995$.

		Λ	Az,	P.	O-C.	s.	0 - C.	Su	pp.	L.
			0	m. s.	8.	m. s.	8.	m. s.		m.
Brisbane Riverview	N.	21·9 28·1	174 179	i 4 54 e 6 2	- 3 + 7	i 8 58 i 10 49	+ 4 + 9	i 9 13 i 11 59	88	i 10.8 e 14.5
Sydney Auckland Arapuni		28·1 38·2 39·6	179 147 148	e 8 177	<u>-</u>	e 11 119 12 479 e 14 479	-30	=	=	20.3
Wellington Christchurch		41.6 42.5	152 156			14 2 14 13	- 6 - 9	i 18 2 17 46	SSS	21·5 21·8
Honolulu Irkutsk Bombay	E.	57·3 69·7 80·2	$\begin{array}{c} 60 \\ 332 \\ 290 \end{array}$	e 11 17 e 12 19	+ 3 + 5	e 17 30 e 20 13 i 23 0	-17 - 9 PS	e 27 47 1	ss	e 26·3
College Sitka Tashkent		83·5 86·3 87·1	32 312	e 12 41 i 12 56	- 4 + 7	e 22 36 e 23 22 i 23 36	-16 + 2 + 8	e 23 6	sks	e 39·9 e 35·4
Victoria Santa Barbara		91·6 92·9	42 56	e 13 14	- 2	e 23 43	$[+_{-1}]$			38.8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

263

		Δ	Az.	P.	O-C.	s.	0 -C.	Su	pp.	L.
		0	. 0	m. s.	8.	m. s.	8.	m. s.		m.
Pasadena		94.2	56	i 13 18a	- 4	_	· · · · · · · · · · · · · · · · · · ·	i 13 25	P	e 38·8
Mount Wilson	Z.	94.3	56	1 13 19 a	- 4	_			-	
Tinemaha	2000	94 - 3	53	e 13 19	- 4					_
Sverdlovsk		94.6	326	e 17 19	PP	24 12	[+13]	26 8	PPS	-
La Jolla		94.9	57	e 13 23	- 2	72,77				
Riverside		94.9	56	i 13 21a	- 4				110-24	<u> </u>
Tucson		100.3	58	e 13 49	- î	-		e 17 49	PP	e 44.5
Scoresby Sund		115.0	357	e 24 6	3	e 25 56	1 + 241	e 35 52	SS	e 54·5
Cheb		123.5	329	e 17 473	3	0 20 00	~~,	0 00 02	~~	e 67.8
Stuttgart		125.9	329	e 19 7	[+ 3]	e 32 35?	PPS	e 21 2	\mathbf{PP}	
Kew		128.2	337	e 21 19	\mathbf{PP}	e 26 38	[+23]	e 22 43	PKS	e 55·8
Paris		129.1	333	i 21 25	$\hat{P}\hat{P}$	0 20 00	201	0 22 10		73.8
Bermuda		$\overline{137 \cdot 7}$	46			e 42 10	88	7/1	_	e 66·3
Almeria		140.3	325	19 18	[-131]		~~	i 23 11	PP	79.8
Granada		140.7	327	20 5k	1 + 331	41 54	88	23 51	PP	75.9

Additional readings :— Riverview eN = 6m.13s., iZ = 11m.1s., iEN = 11m.7s.

Christchurch Q = 18m.26s. Sverdlovsk SS = 31m.20s. Scoresby Sund e = 29m.2s.

Stuttgart e = 36m.17s. ?, eSSS = 43m.17s. ?

Kew ePPPZ = 24m.23s. ?, ePS?Z = 31m.8s., eSSN = 38m.47s. ?

Almeria PPP = 26m.43s.

Long waves were also recorded at Huancayo and other American and European stations.

July 7d. Readings also at 0h. and 1h. (Fort de France), 3h. (Tucson), 5h. (Bucharest), 8h. (Philadelphia), 10h. (La Jolla, Mount Wilson, Pasadena, Tucson, and Riverside), 11h. (Tucson, Arapuni, Auckland, Christchurch, Wellington, and Riverview), 12h. (Pasadena), 13h. (La Jolla, Mount Wilson (2), Tucson, Pasadena (2), Riverside (2), and Tinemaha (2)), 17h. (Mount Wilson, Pasadena, Riverside, Tinemaha, and Riverview).

July 8d. 14h. 35m. 46s. Epicentre 4°-0N. 126°-3E. (as on 4d.).

A = -.5906, B = +.8040, C = +.0693; $\delta = +3$; 0-C. S. Supp. Az. O-C. L. m. s. 8. m. s. 8. m. s. m. 0 Naha 22.1 5 +10Nake 24 .4 5 23 9 44 + e 5 Kagosima 27.7 48 $\overline{}$ Koti 30.2 12 e 6 13 -Kobe 31.6 15 19 14 +53Nagoya 32.5 17 32 e 6 2 8 Tokyo, Cen. Met. Ob. 33.9 20 37 0 Nagano 34.3 17 50 3 4 Sendai 36.6 20 12 48 Brisbane e 13 38 40.5 143 \mathbf{PP} 9 11 PPS N. e 16.5 Calcutta 41.1 301 (i 7 47) (i 9 29) 0 41.1 16 5 Sapporo e 7 52 + Riverview 151 i 8 18 32 -17SS e 17 44 44-4 Sydney 151 327 SS -17e 17 507 Colom bo 46.3 276 e 15 148 Kodaikanal 48.8 e 10 46 e 7 51 281 \mathbf{PP} i 15 52~ 49.2 Hyderabad 290 -6116 18 PS E. 15 55 3 26.2 Irkutsk 51.5 343 i 9 10 + 1 16 278 Bombay 54.2 291 17 i 17 47 PPS Stalinabad $62 \cdot 4$ 8 313 e 10 19 -Tashkent 63.0 316 i 10 30 i 19 Wellington $63 \cdot 1$ 141 33.2 18 50 -12Sverdlovsk 73.5 329 i 11 34 21 5 College 84.6 26 e 22 52 e 38.6 [-Moscow i 12 42 86.0 326

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		Δ	Az.	Р.	O-C.	s.	O-C.	Suj	pp.	L.
		0	0	m. s.	s.	m. s.	s.	m. s.	0.45-0.1	m.
Ksara		88.1	304	e 12 58	+ 4		_	e 13 42	P_cP	
THE PROPERTY OF THE PARTY OF TH	4.7	88.8	315		-	e 23 24	[-1]			_
Helwan		92.3	300	e 13 14	+ 1	e 24 8	`- 7`	e 23 44	SKS	_
Bucharest		94.5	315	e 15 143	8	i 22 54	[-64]		-	-
Upsala		95.8	331	e 30 14?	PKKP				-	e 46·2
Copenhagen		99-9	329	-		24 33	[+7]	1 m	-	
Victoria		100.3	40	-	-	e 24 32	3[+ 4]		-	47.2
Cheb		102.0	323			e 25 14	$\{+5\}$		3	e 60·2
Scoresby Sund		102.7	350	e 15 0	+60	e 25 59	+16	(e 32 34)	SS	e 32.6
Stuttgart		104.4	323	e 14 7	- 1	e 25 55	- 2	e 18 22	\mathbf{PP}	e 50·7
Uccle		106.3	326	e 14 15	- 2	e 27 52	PS	e 18 55	\mathbf{PP}	e 51·2
Tinemaha	Z.	107.5	49	e 18 28	[0]		_	-	-	
Kew	34440	108.5	328	e 18 55	PP	e 31 4	? ?	e 28 19	\mathbf{PS}	e 54·2
Paris		108.5	325	e 13 55?	P	_	-	e 28 11	PS	$55 \cdot 2$
Mount Wilson	Z.	108.6	52	e 18 26	[-4]		-	e 18 41	$\mathbf{p}\mathbf{p}$	-
Tucson		115.0	51	e 18 41	[-2]	i 29 17	PS	e 19 55	\mathbf{PP}	e 53·8
Almeria		117.4	315	e 20 42	PP	e 29 47	\mathbf{PS}		-	70.2
Granada		118.0	316	i 17 44	[-65]	29 25		36 42	PSS	65.6
San Fernando		$120 \cdot 2$	316	e 20 54	PP	e 27 39	$\{+24\}$	_		74.2
Philadelphia		132-0	21	i 22 40	3	e 32 7	PS	-	-	e 67·5
Bermuda		142.3	14	e 19 29?	[-6]		11	e 31 55?	8	e 70·7
Huancayo		157.1	113			e 30 57	{ 0}		PSS	e 73·9

Additional readings :— Brisbane eSN = 13m.34s.

Calcutta readings reduced by 4m. Hyderabad SSE = 19m.40s.

Bombay iN = 21m.14s.

Helwan eZ = 13m.26s., eN = 25m.38s.

Scoresby Sund e = 18m.6s., eS? = 24m.38s. and 27m.49s.

Stuttgart ePPP=20m.26s., eSKS=24m.54s., ePPS=28m.20s., eSSS=37m.20s.?.

Tucson e = 33m.12s.
Long waves were also

Long waves were also recorded at Arapuni, Sitka, and other European stations.

July 8d. Readings also at 6h. (near Tucson), 9h. (near Huancayo), 13h. (Pittsburgh, Tucson, Tinemaha, Sofia, and near Bucharest), 14h. (Mount Wilson, Pasadena, Riverside, Tucson, and Tinemaha), 15h. (St. Louis, Tinemaha, Tucson, and near Mizusawa), 19h. (Mount Wilson, Tucson, Riverside, and Tinemaha), 20h. (near Mizusawa), 22h. (Andijan, Bucharest, and Sofia).

July 9d. 23h. 28m. 29s. Epicentre 52° 0N. 166° 9W.

$$A = -.6021$$
, $B = -.1401$, $C = +.7860$; $\delta = -.5$; $h = -.6$; $D = -.227$, $E = +.974$; $G = -.766$, $H = -.178$, $K = -.618$.

		Δ	Az.	P.	0 -C.	S. m. s.	O -C.	m. s.	pp.	L. m.
~~~		10.0	0.0	m. s.	3677		7 Feb. 20 mm	ш. с.	166270	e 6.9
College		16.2	30	e 3 49	- 1	(e 6 53)	$^{+}_{+}$ $^{2}_{3}$	e 4 53	PPP	e 9.7
Sitka		18.9	62	i 4 25	+ 1	e 7 56	T 3	e 4 53	TIT	CONTRACTOR OF THE PROPERTY OF
Victoria		27.7	80	e 5 53	+ 1	10.45	aga			11.5
Ferndale	E.	31.2	93		-	e 13 47	SSS	- <del> </del>		
Honolulu		31.5	163	e 7 37	$\mathbf{PP}$	e 10 59	-35		-	e 13·4
Berkeley		34.0	96	i 6 49	+ 1	e 14 54	SSS			e 15·9
Santa Clara	Z.	34.6	96	e 6 52	- 1					
Tinemaha	z.	37.0	94	e 7 12	- 1	· ·				
Santa Barbara		37.8	98	i 7 22	+ 2	_		1:		
Salt Lake City		38.7	84	`\	1,2	e 13 30	+ 5	7	-	e 16·7
Mount Wilson		39.0	97	i 7 30	0	77		-		-
Pasadena		39.0	97	i 7 29	- i			i 7 50	3	e 16·4
Riverside		39.6	97	1 7 35	õ	S		i 7 52	3	
Palomar	z.	40.3	97	e 7 41	+ ĭ		10		Servet.	-
La Jolla	z.	40.4	98	1 7 42	4 î		- IRES			
THE PULL	E.s.	*U *	00	1 1 24	(17) A					

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		Λ	Az.	Ρ.	0 - C.	S.	0-C.	Sup	p.	L.
				m. s.	8.	m. s.	S.	m. s.		m.
Tucson		44.8	93	i 8 17	0	-	-	i 9 38	$\mathbf{PP}$	e 21·7
Irkutsk		51.1	308	e 9 4	- ž	e 16 17	- 7		-	-
St. Louis		53.1	72	i 9 19	- ž	e 16 48	- 3	_	_	
Cape Girardeau	N.	54.4	73	e 9 27	$-\bar{4}$			2000	-	**************************************
Scoresby Sund	2002	55.2	14	e 9 42	+ 5	e 17 12	- 8	e 19 28	9	e 22·7
Ottawa		56.7	57	e 9 45	- 3	e 17 31?	- 9	25 317	8	28.5
Seven Falls		58.0	53	-		e 17 31?	-26			27.5
Fordham		60.6	59	i 10 15	0	e 16 33	Y	~~~.	99	- 07.0
Philadelphia		60.8	61	e 10 23	+ 7	e 18 30	- 3	e 22 14	SS	e 25·0
Harvard		60.9	57	i 10 14	- 3					e 34·5
Sverdlovsk		64.7	333	10 46	+ 4	19 19	- 3		-	-
Moscow		70.8	345	11 18	- 2	20 28	- 7			\$ 25.
Copenhagen		72.7	1	e 11 32	0	20 55	- 2	11 45	1	-
Tashkent		75.1	319	e 11 46?	0	i 21 24 i 21 41	+ 6			0.49.5
De Bilt	-	76.1	5	-	777	i 21 41	+ 0	-		e 43·5
Jena		77.4	1	e 15 58	PPP	<del></del>	-	-	-	
Paris		$79 \cdot 2$	8	i 12 14	+ 6				_	50.5
Stuttgart		79.5	3	e 12 7	- 3	e 22 10	- 1		$\equiv$	
Yalta		$82 \cdot 2$	345	e 12 25	+ 1	e 22 37	- 2			0.45.1
Tortosa	E.	86.9	10			e 23 1	[-13]	<del>-5-3</del> 0		e 45·1
Toledo		87.3	13	e 12 51	+ 1	e 23 26	- 3		<b>~</b>	53.5
Granada		90 - 0	13	e 14 1 a	+58	23 41	[ + 8] + 2	25 14	$\mathbf{PS}$	48.3
Almeria		90.5	12	e 12 59	- 6	e 24 1	+ Z		•	55.5

Additional readings :-

Tucson i = 8m.36s.

Harvard i = 10m.21s. and 10m.29s. Jena eE = 16m.1s.?, EN = 16m.13s.

Granada SS = 28m.31s.

Long waves were also recorded at Florence, Ukiah, Chicago, and Columbia.

July 9d. Readings also at 0h. (near Bogota), 1h. (Wellington and Tucson), 2h. (Riverview, Pasadena, Mount Wilson, and Tinemaha), 3h. (Balboa Heights, St. Louis, and Kew), 4h. (near Almata and Tashkent), 5h. (Kew, Bucharest, near Andijan, and near Fort de France), 14h. (Cheb, Prague, and near Andijan), 18h. (Huancayo), 19h. (Kew, San Fernando, Granada, Stuttgart, Tortosa, Almeria, Helwan (2), and Ksara), 20h. (Harvard), 23h. (near Tashkent).

### July 10d. 0h. Undetermined shock.

Tuai P? = 2m.0s., S = 4m.0s. Wellington P = 2m.30s., S = 5m.16s.,  $S_cS = 13m.0s$ . Auckland S = 4m.7s., i = 5m.17s. Pasadena iP = 10m.36s.k. Mount Wilson iP = 10m.37s.k. Riverside iP = 10m.38s.k, eZ = 11m.46s. Palomar ePZ = 10m.39s. Santa Barbara ePZ = 10m.40s. Tinemaha iP = 10m.45s., eZ = 12m.55s. Tucson iP = 10m.57s., e = 13m.5s. Yalta eP = 17m.38s. Copenhagen iP = 17m.45s.k, 17m.49s.

July 10d. Readings also at 2h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, also Yalta, near Sofia, Bucharest, Bacau, Focsani, Cernauti, and Campulung), 3h. (near Fresno), 16h. (Pasadena, Mount Wilson, Riverside, and Tucson), 19h. (Tacubaya), 20h. (near Mizusawa), 21h. (La Paz).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

Colombo

104.5

268

e 17 439

266

July 11d. 2h. 10m. 17s. Epicentre 33°.0S. 178°.0W. Base of Superficial layers.

Epicentres 34°-58. 177°-0W (Stations of the U.S.S.R.), 33°-0S. 178°-5W. (Pasadena). Pasadena suggests depth of focus 180km.

A = -.8398, B = -.0293, C = -.5421;  $\delta = -1$ ; D = -.035, E = +.999; G = +.542, H = +.019, K = -.840. 0-C. S. O-C. Supp. s. m. s. s. m. s. m. s. m. 1 43 1 46 Auckland 7.0 236 18 88 4.4 Tuai  $7 \cdot 0$ 213 + 3 2 sPArapuni 224437 888 i 4 13? 5.0 7.8 Hastings 211e 3 43 SS 53 SSS New Plymouth 8.8 225 12 28 pP36 -115.7 14 40 SSS Bunnythorp 8.9 214 e 3 237 -26Wellington 10.1 213 20 ? - 6 13 48 Q 6.0 Kaimata 12.7217 16 PP  $\frac{18}{23}$ 5 Christchurch 12.8 212+ i 4 i 5 Apia 19.9 20 i 4 23 8 8 9 PPPBrisbane 25.6275 25 N. e 5 i 10 55 +64i 6 PPPi 15·2 Riverview 25.7259 i 5 33 a i 10 25 +32i 6 21 PPP1 13.5 Sydney 25.7259 +11i 5 40 i 11 16 888е в PPP 14.4 Honolulu 57.3 22 e 9 35 -12e 17 35 e 12 17  $\mathbf{P}\mathbf{P}$ 23.1 Naha 78.3 Shizuoka 79.0 325 -4322 0 3 Tokyo Cen. Met. Ob. 79.0 326e 12 20 +18e 22 32 +3515  $\mathbf{PP}$ 39.4 Nagoya 79.9 324 e 12 12 5 Osaka 80.2 322 15 Miyazaki 80.3 318 12 + 21 54 45.0 Koti 80.4 320 3 Kagosima 80.5 317 e 12 11 Nagano 80.5 325 12 15 Sendai 80.5 32912 Mizusawa 81.2329e 12 E. 22 81.2 N. 329e 12 22 8 -12-Kumamoto 318 81.4 e 12 6 Hukuoka 82.1 318 12 16 -Mori 83.9330 (12)28) 22 53) Sapporo 332 84.4 12 34 + 22 57  $\mathbf{s}\mathbf{p}$ e 39·3 Santa Barbara 86.6 3 i 13 pPLa Jolla 87.0 i 12 41 <u>-</u> PP P 87.2 Branner 41 12 43 e e 12 46 Pasadena 87.3 46 i 12 43k  $\mathbf{2}$ pP pP i 13 28 e 39·6 Santa Clara 87.3 41 i 12 43 e 23 30 i 13 30 Mount Wilson 87.4 i 12 43k 46 i 13 pPe 39·4 Berkeley i 12 42 1 23 34 +11i 13 27 pPi 40·4 Lick 87.5 e 12 46 Palomar 87.5 47 e 12 45 e 13 27 _  $\mathbf{p}\mathbf{P}$ 87.7 Riverside 46 1 12 44k _ i 13 28  $\mathbf{p}\mathbf{P}$ Fresno 88-1 43 e 12 47 _ Ferndale 88.4 37 -13e 23 23 e 8 27 Q pP Haiwee 88.8 44 12 49 3 i 13 35 Tinemaha 89.3 44 i 12 51k = 3 pP pP PPS i 13 37 Tucson 90.751 i 12 59 2 + 6 SS e 23 58 i 13 La Plata 92.1 134 14 E. pP 31 17 26 39.6 92-1 N. 134 13 +1219 25 133 +6914  $\mathbf{p}\mathbf{P}$  $39 \cdot 9$ 92.1 Z. 134 13 497 pP46.2 Huancayo 93.9 106 e 13 21 + 6 e 24 e 19 20 -11PPP 42.2 Seattle 94.534 e 13 18 e 24 26 0 e 18 36 1 PPPe 39.6 Victoria 94.733 e 12 59 -21e 24 33 38.7 Salt Lake City 95.4e 14 12 i 13 25 44  $\mathbf{p}\mathbf{P}$ e 24 51 +18e 18 57  $\mathbf{PPP}$ e 41.8 Logan 43 96.1 e 24 10 0 [+12]14 e  $\mathbf{p}\mathbf{P}$ e 40.9 La Paz 97.0 z. 114 13 31 i 25 13 +27pP PP i 14 17 45.7 Sitka 97.1 21 e 13 e 24 23 _ SKKS e 17 e 40·0 Bozeman 99.0 40 e 13 -125 e 25 + e 14 11 pPe 41.4 College  $100 \cdot 4$ 12 e 17  $\mathbf{PP}$ 

Continued on next page.

e 24

e 25

17

3]

e 26

88

e 39.8

49.7

[-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

267

		Δ	Az.	P. m.	в.	O – C.	S. m. s.	O – C. s.	m. s.	pp.	L. m.
	S. S.	104.9 105.2 107.6 108.0 108.1	50 36 271 56 54	e 18 e 13 e 18	5877 2350	PP PP PP	e 24 21 25 53 e 26 32	$[-\frac{20}{21} + \frac{13}{13}]$	e 42 51 e 27 43? e 29 18 e 19 27 e 15 0	SPP pPP	e 51.8 49.7 51.9 e 48.3
	N. E.	108.5 109.6 110.4 111.4 112.5	320 136 278 ( 52 227	e 18 e 18 e 19	35 45 5) 4 21	PP PP [-24] PP PP	e 28 34 (24 56) e 28 39 26 6	[+ 2] PS [- 9] PS SKKS	21 5 	PPP SSP PPS	(53·6) 45·2 54·7
Columbia Bombay Pittsburgh San Juan Philadelphia	N.	112·7 115·8 116·1 117·9 119·4	62 276 56 84 59	e 18	16 53 52 3	PP [+13] PP [+16]	e 28 51 25 6 e 29 16 e 27 36	PS PS PS	e 29 37 26 14 1 19 46 1 31 29 e 22 33	SKKS PP PPS	e 56·2 e 55·1 e 50·7
Fordham Ottawa Vermont Harvard Shawinigan Falls		120·6 120·7 122·2 122·7 123·0	58 53 55 57 52	e 20 i 18	52 32 30 52 37 7	[+3] [+43] PP [-1] pPKP	i 29 44 30 199 e 30 54 e 31 0	PS PS SP	1 37 50 20 49 9 e 36 37 i 19 36	SSP PP SS pPKP	55·7 54·7 e 61·7 56·7
Seven Falls Bermuda Tashkent Halifax Sverdlovsk		124 · 4 124 · 8 126 · 9 128 · 9 133 · 9	51 70 ( 299 56 319	e 19 e 21 e 19	31 ? 23 ?) 24 44 27	pPKP pPKP PP pPKP [+12]	i 29 21	PS PS [+55] SKKS	20 34 (20 32? i 23 5 e 39 13? i 22 43	PKS	56·7 57·7
Ivigtut Scoresby Sund Moscow Upsala Ksara		137 · 3 140 · 2 146 · 5 151 · 2 151 · 8	33 12 324 344 280	e 19 i 19 e 19	39 26 36 43 ? 56	[+19] $[+11]$ $[-1]$ $[+11]$	e 29 15 27 20 e 26 52	SKKS [+40] [+ 5]	e 22 46 e 19 58 e 23 45 e 42 26 e 20 42	PKS pPKP PKS SS pPKP	e 78·7
Bergen Yalta Helwan Aberdeen Copenhagen		152.5 152.6 154.8 155.7 156.2	356 304 270 5	e 19 e 19 i 20	23 49 49 55 50 a	PRP [+ 3] [ 0] [+64] [- 1]	30 19 31 22 —	SKKS SKKS	e 43 8 e 20 13 f 25 17 20 16	PKP	78.0
Focsani Bucharest Stonyhurst Potsdam Prague	N,	156.9 158.1 158.9 159.0 160.6	313 308 7 342 335	e 20 e 20	31 9 23 56 39 13 9	PKP. PKP. pPKP. PKP. [+16]	i 31 1 e 27 31	8KKS - (+34)	i 21 18 20 34	PPKP	61·7 e 71·7 e 78·7 e 74·7
Sofia Jena De Bilt Ogyalla Cheb		160 · 6 160 · 7 160 · 8 160 · 8 161 · 3	306 340 353 326 340	i 19 e 19	8	[+ 4] [- 2] [- 0] [-49] PKP:	e 31 13 e 31 43	SKKS			69·7 e 74·7
Belgrade Kew Uccle Stuttgart Strasbourg		161.5 162.1 163.4 163.8	314 357 343 346	The second secon	57 a 52 57	PKP. [ 0] [- 6] [- 2] PKP.	e 26 48 e 26 10 e 38 43	[-47]	i 20 42 i 20 43 e 25 14	PKP.	e 55·7 e 75·7 75·7 92·7
Paris Triest Zurich Basle Besançon		164.2 164.5 164.8 164.9 165.4	358 328 342 346 348	i 20 e 20 e 20 e 22	1 43 42 44 43 ?	PKP. PKP. PKP.			i 20 44	PKP,	83·7 = 86·7
Neuchatel Milan Florence Clermond-Ferrand Lisbon	ì	165.5 166.4 167.0 167.3 169.3	345 338 330 357 54	e 20 e 20 i 20 e 20	1 46 8 2k 7	[ 0] PKP, [+6] [ 0] [+3]	i 27 43	[+42]	28 35 i 21 23 i 21 2 e 20 17	PPP PKP, PKP,	
Toledo Tortosa San Fernando Granada Almeria		171.6 172.1 172.4 173.8 174.7	34 9 60 46 42	e 20 19 i 20 i 20 i 20	6 42 11 2 7	[ + 1] $[ -23]$ $[ + 6]$ $[ -4]$ $[ 0]$	26 58 1 26 58 47 26 26 46	[-5]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP PP PKP PKP	i 87.8

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

268

```
NOTES TO JULY 11d. 2h. 10m. 17s.
```

```
Additional readings :-
  Auckland i=2m.46s., Q?=3.7m.
 Tuai i = 2m.20s., 2m.34s., 3m.3s., and 3m.6s.
  Wellington iZ = 3m.38s.
  Apia iZ = 5m.43s.?
  Brisbane iSSN = 12m.56s., iQN = 13.5m.
  Riverview iEZ = 5m.36s., iE = 6m.40s., iEZ = 6m.47s., iN = 6m.57s., iE = 10m.48s..
      iZ = 10m.58s., iN = 11m.10s., iEZ = 11m.15s., iN = 11m.34s., iQN = 11.9m.
  Honolulu epP = 10m.23s.
  Tokyo PPPl = 19m.3s., pS = 23m.39s., SS = 27m.55s.
  Mori readings have been reduced by 1m.
  Pasadena iPPZ = 16m.12s., ipPPZ = 17m.2s., iE = 28m.27s., Q = 36.0m.
  Mount Wilson iPPNZ = 16m.4s., ipPPZ = 16m.53s., ePKKPZ = 30m.38s., iZ = 31m.24s.
  Berkeley ePEN = 12m.45s., iSN = 24m.13s., iN = 36m.41s., iE = 36m.48s., eN =
      38m.43s.
 Riverside iZ = 13m.40s., iPKKPZ = 30m.53s., iZ = 31m.38s.
 Tinemaha eZ = 30m.50s., iZ = 31m.18s.
 Tucson i = 16m.19s., iPP = 16m.36s., ePPP = 18m.12s., e = 19m.2s., ePS = 24m.48s.
      e = 25 \text{m.} 51 \text{s.}, and 30 \text{m.} 47 \text{s.}
 La Plata SSSE = 34m.31s.?, PPN = 18m.13s., PSN = 26m.13s.?, PPSN = 26m.55s.?.
 Huancayo e = 16m.19s, and 25m.13s., ePS = 26m.1s., isSS = 31m.41s., e = 38m.46s.
 Salt Lake City e = 14m.53s., ePS = 25m.33s., e = 32m.39s.
 Logan ePP = 17m.14s., ePS = 26m.13s., eSSS = 34m.45s.
 La Paz iPZ = 13m.34s.a, iPPZ = 17m.29s., iPPSZ = 26m.59s.
 Sitka epPP = 18m.18s., i = 25m.48s.
  Bozeman ePP = 17m.35s., e = 18m.21s., 27m.23s., and 32m.35s.
  Kodaikanal SSE = 35m.40s.
 Cape Girardeau eN = 20m.24s.
 St. Louis iPPZ = 18m.47s., epPPZ = 19m.28s., isSP?E = 28m.49s., ePPS?E = 29m.25s.
 Irkutsk SKKS = 25m.44s., SS = 33m.50s.
 Hyderabad SKKSE = 25m.55s., PPSE = 28m.45s., SSE = 35m.1s., all readings reduced
      by 1m.
 Chicago e = 29m.20s.
 Columbia e = 35m.56s.
 Bermuda eSS = (36m.56s.?), all readings increased by 10m.
Bombay PSN = 29m.50s., iN = 30m.22s, and 31m.35s.
 Pittsburgh iSSNW = 35m.25s.
 San Juan e = 21m.21s, and 30m.24s, i = 34m.14s, eSSS = 41m.26s.
 Philadelphia e = 27m.46s, and 30m.35s.
 Ottawa SS = 36m.43s.?, SSS = 41m.43s.?.
 Vermont e = 21m.41s., isSS = 38m.7s., e = 46m.46s.
 Harvard i = 20m.2s. and 20m.22s., ePP = 21m.12s., e = 26m.39s. and 28m.8s., eSP =
      31m.0s., e = 35m.58s.
 Seven Falls PPS = 31m.19s.?, e = 38m.23s.
 Tashkent iSKKS = 28m.43s., SKSP = 32m.19s.
 Sverdlovsk iPPP = 24m.47s.
 I vigtut e = 23m.36s, and 26m.19s., eSKKS? = 27m.59s., e = 33m.12s., eSS = 41m.14s.
 Scoresby Sund ePP = 23m.1s., e = 34m.31s. and 42m.26s., eSSS = 54m.27s.
 Moscow SKKS =29m.53s., iPS =34m.1s.
 Upsala eE = 43m.31s. and 61m.43s.?, eN = 62m.43s.?.
 Ksara e = 36m.25s.
 Bergen e = 24m.28s.
 Helwan PKKP?Z = 20m.43s., eZ = 22m.58s., eEN = 25m.3s., eN = 32m.49s. and 41m.31s
 Aberdeen eEN = 53m.17s.
 Copenhagen 20m.19s., 20m.37s., 20m.50s., 24m.37s.
 Bucharest iPZ = 20m.27s., ePN = 20m.31s.?, iPSEN = 31m.44s.
 Stonyhurst e = 28m.56s., i = 41m.28s. and 49m.28s., e = 59m.43s.?
 Prague ePP = 25m.2s., ePPP = 29m.1s.?, eSKKS = 30m.43s.?,?, ePPP(\triangle > 180^{\circ}) =
      31m.43s., eSS = 45m.13s.?, eSSS = 51m.49s.?.
 Jena eN = 20m.0s., iN = 21m.1s.?, iN = 21m.19s., iEN = 21m.43s., eN = 22m.22s.
     and 25m.1s.
 De Bilt ePP = 24m.23s., ePPP = 28m.55s.
 Cheb e = 28m.7s.?, 31m.57s., and 52m.21s.
 Belgrade i = 21m.31s., ePP = 25m.34s., iSKKS = 32m.1s., iSKSP = 35m.32s., e =
      38m.50s.
 Kew eN = 22m.5s., ePP = 24m.16s., iZ = 25m.3s., ePPP = 28m.22s., iNZ = 30m.48s.,
      eSKKS = 31m.35s., ePSS?E = 34m.43s.?, ePPS = 39m.13s.?, eSSE = 45m.13s.?,
      ePSS?NZ = 46m.13s.?, eSSSNZ = 51m.43s.?.
 Uccle ipPKP<sub>2</sub>Z = 21m.27s., isPKP<sub>2</sub>Z = 22m.7s., iPPZ = 24m.27s., epPPNZ = 24m.49s.,
      isPPZ = 25m.9s., eZ = 28m.45s., iN = 28m.52s., eSKKSE = 30m.51s.
 Stuttgart ePPPZ = 24m.35s., iPPP?Z = 25m.17s., eS?Z = 29m.36s., eS = 29m.43s.?,
      ePS = 32m.10s., ePPS = 32m.57s.
 Strasbourg e = 26m.34s., eSKS_1 = 32m.55s.
 Paris ePP = 25m.24s., e = 35m.37s.
 Milan PPE =25m.53s.
 Florence iSKPE = 23m.52s., ePPZ = 25m.11s., iSKKSE = 31m.43s., iPSKSE = 35m.51s.
      iSSE = 46m.9s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

269

Clermont-Ferrand epPKP = 20m.45s., iSKP = 23m.24s., ePPP = 28m.54s.Lisbon ePKP₂Z = 20m.50s., ePKP₂N = 21m.57s., PPZ = 24m.57s. and 25m.9s., Z = 25m.50s.Toledo SSN = 46m.41s.Tortosa PPPE = 29m.35s., iN = 31m.55s. and 38m.20s., SSE = 44m.0s., SSSN = 51m.32s. San Fernando iPPE = 26m.12s., SSE = 47m.23s., iSSSE = 54m.36s.Granada PKP₂ = 22m.20s., pPKP₂ = 22m.54s., iPP = 26m.9s., pPP = 26m.43s., sPP = 27m.44s., sSKS = 29m.10s., PPP = 30m.2s., pPPP = 30m.22s., SKKS = 32m.50s., sSKKS = 34m.3s., SKSP = 36m.38s., sSS = 48m.39s.Almeria sPKP = 21m.15s., PKP₂ = 21m.50s., pPKP₂ = 22m.43s., sPKP₂ = 23m.0s., PP = 25m.23s., pPP = 26m.11s., PPP = 29m.43s., pPPP = 30m.11s., SP = 35m.5s., PS = 35m.27s., SS = 46m.17s., sSS = 46m.25s., SSS = 53m.33s.

July 11d. 2h. Undetermined Pacific shock. Probably an aftershock of 2h. 10m. 17s.

Tuai i=19m.17s., S=20m.23s.Wellington i=20m.56s., S=21m.30s.Mount Wilson iPZ=30m.1s.Pasadena iPZ=30m.1s., iZ=30m.16s., iE=41m.40s., iZ=41m.18s.Riverside ePZ=30m.1s., iZ=30m.18s.Haiwee ePZ=30m.9s.Tinemaha iPZ=30m.11s., iZ=30m.26s.Tucson e=40m.35s., 40m.42s., 46m.6s., 49m.44s., eL=60m.10s.

July 11d. 16h. Undetermined Pacific shock. Probably an aftershock of 2h. 10m. 17s.

Pasadena suggests deep focus. Tuai P? =4m.20s., i =4m.31s., S =5m.35s. Auckland S =5m.40s., i =6m.12s. and 6m.55s. Wellington S =6m.40s.?, Q? =9.0m., R =13.0m. Mount Wilson iP =15m.12s., eZ =15m.26s. Pasadena iPZ =15m.13s., iZ =15m.26s. Riverside ePZ =15m.13s., eZ =15m.28s. Haiwee ePZ =15m.19s. Tinemaha ePZ =15m.22s., eZ =15m.36s. Tucson iP =15m.29s., e =16m.48s., eL =58.1m. Stuttgart eZ =23m.13s. and 23m.18s.

Long waves were also recorded at Harvard, Huancayo, Riverview, and Christchurch.

- July 11d. Readings also at 2h. (Wellington), 3h. (Mount Wilson, Riverside, Tinemaha, Tucson, Edinburgh, Tchimkent, and near Tashkent), 4h. (near La Paz), 6h. (Berkeley), 10h. (Huancayo, La Paz, Mount Wilson, Pasadena, Tucson, Riverside, Tinemaha, and near Mizusawa), 11h. (near La Paz), 13h. (Granada), 14h. (La Paz), 15h. (Christchurch), 19h. (near Bucharest and Sofia), 21h. (Prague).
- July 12d. Readings at 8h. (Arapuni, Auckland, Christchurch, Tuai, Wellington (2), Riverview, Mizusawa, Tucson, Mount Wilson, Pasadena, Riverside, Tinemaha, Cape Girardeau, and St. Louis), 9h. (Harvard), 14h. (Andijan and near Bogota), 16h. (Mount Wilson, Pasadena, Riverside, Tucson, and Tinemaha), 19h. (Riverside, Pasadena, Tucson, and Tinemaha), 22h. (Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, Riverview, Clermont-Ferrand, and Granada), 23h. (Auckland and Wellington).
- July 13d. 16h. Eastern Europe.

Istanbul P = 4m.36s.,  $S_g$  = 5m.22s. Sofia ePEN = 5m.54s.?, eEN = 8m.9s. and 8m.36s.?. Ksara e = 6m.3s. and 7m.46s. Bucharest ePZ = 6m.18s., eP_gZ = 6m.47s., iSN = 7m.32s., iS*E = 7m.50s., iS_gE = 8m.6s. Helwan eNZ = 6m.18s., eN = 7m.54s. Stuttgart eP?Z = 8m.31s. Triest e = 10m.40s. Florence iPZ = 12m.18s., eSE = 13m.32s. Copenhagen 12m.57s., L = 17m. Cheb e = 14m.?. Kew iP?Z = 14m.30s., iS?Z = 18m.15s., eLNZ = 20m.43s.

July 13d. Readings also at 2h. (Basle, Zürich, Bogota, and near Mizusawa), 3h. (Pasadena, Tinemaha, Tucson, Stuttgart (2), Clermont-Ferrand, and near Zürich), 4h. (Andijan), 6h. (Granada), 8h. (Auckland), 9h. (near Andijan), 12h. (Cheb), 13h. and 14h. (Stuttgart), 15h. (Mizusawa), 16h. (Cheb), 17h. (near Almata), 19h. (Fort de France, Cheb, and near Mizusawa), 23h. (near Branner).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

270

July 14d. 4h. 16m. 32s. Epicentre 48°.2N. 9°.0E. (as on 4d.).

$$A = +.6609$$
,  $B = +.1046$ ,  $C = +.7432$ ;  $\delta = +8$ ;  $h = -5$ ;  $D = +.156$ ,  $E = -.988$ ;  $G = +.734$ ,  $H = +.116$ ,  $K = -.670$ .

	Δ	Az.	P.	$\mathbf{O} - \mathbf{C}$ .	s.	O-C.	Suj	p.	L.
	0	0	m. s.	s.	m. s.	В.	m. s.	7.55 C	m.
Ebingen	0.0	-	i 0 5?	- 2			-	-	
Ravensburg	0.6	135	e 0 23	+ 8					-
Stuttgart	0.6	13	i 0 13	- 2	i 0 20	- 6		*******	
Strasbourg	0.9	295	e 0 20	0	i 0 31	- 3	*****		_
Zürich	0.9	198	e 0 20	0	e 0 33	- 1	-		· —
Basle	1.2	235	e 0 24	0	i 0 40	- 1		-	
Chur	1.4	165	e 0 29	+ 2	e 0 51	+ 5	1000		
Neuchatel	1.8	229	e 0 34	+ 2 + 2	e 1 1	+ 5 + 5	10 38	$P_{\mathbf{z}}$	
Milan	2.7	177	e 0 537	P*	1 22	+ 3			
Jena	3.2	32	i 1 2	Pg		· <u> </u>	i 1 7	8	i 1.5
Prague	4.0	62	_		e 2 9	Se	<u> 1552</u> 0	<u> 25.5</u> 0	1
Clermont-Ferrand	4.7	236	e 1 33	Ps			_	-	1

#### July 14d. 19h. Undetermined shocks.

```
Auckland P = 45m.0s.?, S? = 46m.13s., i = 46m.22s., L = 46m.45s., second shock, i = 46m.45s.
    49m.30s.?, 50m.0s., and 50m.40s.
Arapuni S_1^2 = 46m.0s., second shock S_1^2 = 49m.6s.?.
Wellington S? = 46m.9s., i = 46m.55s.?, R = 49m.0s., second shock S? = 49m.20s., iZ = 49m.20s.
    50m.13s., L = 52.1m.
Brisbane ePiN=47m.22s., eE=54m.23s., iN=57m.21s., eE=58m.1s., eN=58m.44s.
Riverview iP?E = 47m.30s., iPP?E = 48m.8s., iEZ = 50m.37s., iS?E = 52m.12s.
    iSS?N = 53m.23s., eLE = 55m.0s.
Christchurch S = 48m.3s., Q = 48m.32s., R = 50m.17s.
Sydney e = 48m.42s.? and 51m.18s.?.
Haiwee ePZ? = 54m.33s., eZ = 57m.55s.
Santa Barbara ePZ = 54m.37s., eZ? = 57m.46s.
Mount Wilson iPNZ = 54m.39s., iZ = 57m.48s.
Pasadena ePZ = 54m.40s., iZ = 57m.47s., eLZ = 86m.
Riverside ePZ = 54m.40s., iZ = 57m.48s.
La Jolla ePN = 54m.46s.
Tinemaha ePZ = 54m.49s., iZ = 57m.56s.
Tucson iP = 54m.57s., i = 58m.4s., eL = 89m.40s.
Moscow P = 61m.30s., S = 64m.42s.
Yalta eP = 61m.51s.
Stuttgart eZ = 62m.0s. and 62m.43s., eL = 70m.
Almeria PKP=63m.39s., pPKP=64m.20s., PP=69m.1s., SKS=70m.22s., SP=
    78m.49s.
Granada PKP = 64m.19s., pPKP = 65m.12s., SKP = 67m.48s., pSKP = 68m.26s., ePP =
    70m.10s., sPP = 71m.11s., ePPP = 74m.20s., sSKKS = 78m.11s., SSI = 89m.19s.,
    8SS = 91m.54s., 8SSP = 92m.2s., SSS = 98m.38s., eL = 129m.18s.
Helwan eZ = 64m.54s, and 66m.3s.
Pittsburgh eEN = 65m.2s, and 70m.34s, eL?EN = 108m.51s.
Honolulu e = 66m.22s., eL = 7.1m.20s.
San Juan e = 67m.43s., 75m.13s., and 81m.15s., eL = 104m.39s.
Huancayo e =69m.4s., eL =88m.20s.
Uccle eN = 77m., eE = 86m.36s.7.
Santa Clara eE = 81m.29s, and 88m.49s.
Long waves were also recorded at other American and European stations.
```

July 14d. Readings also at 7h. (Bucharest, Stuttgart, and Triest), 9h. (Arapuni, Auckland, Wellington, Riverview, Mount Wilson, Tucson, and Tinemaha), 10h. (La Jolla, Mount Wilson, Pasadena, Riverside, Tucson, Bozeman, Tinemaha, St. Louis, and La Plata), 11h. (Harvard, Philadelphia, Pittsburgh, and Clermont-Ferrand), 12h. (Salt Lake City), 14h. (Riverview), 15h. (Stuttgart), 16h. (Auckland, Arapuni, Wellington, Riverview, Mount Wilson, Tucson, Pasadena, Riverside, and Tinemaha), 20h. (Kew), 23h. (near Arapuni, Auckland, Christchurch, Wellington, Riverview, Mount Wilson, Riverside, Tucson, and Stuttgart).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

271

July 15d. 11h. 53m. 52s. Epicentre 39°-9N. 78°-3E.

$$A = +.1560$$
,  $B = +.7533$ ,  $C = +.6389$ ;  $\delta = -1$ ;  $h = -2$ ;  $D = +.979$ ,  $E = -.203$ ;  $G = +.130$ ,  $H = +.626$ ,  $K = -.769$ .

		Δ	Az.	Р.	O-C.	s.	0-C.	Su	pp.	L.
		o	0	m. s.	s.	m. s.	8.	m. s.	1100000	m.
Tashkent		7.0	284	1 47	+ 1	i3 9	+ 1	2 24	$\mathbf{P}_{\mathbf{z}}$	-
Tchimkent		7.0	293	e 2 3	P.	i 3 45	S	-	_	-
Stalinabad		7.5	263	1 55	+ 2		<u> </u>	13 <del>2001 1</del>	-	-
Dehra Dun	N.	9.6	181		-	e 4 16	+ 4	\ <del></del>	-	e 6.3
New Delhi	N.	11.3	185	i 2 44	- 2	i 4 48	- 6	5 1	SS	-
Calcutta	N.	19.3	151		_	i 8 10	+ 8	-	-	e 10·5
Sverdlovsk		20.5	332	4 41	- 1	8 30	+ 3	U <del>toli</del> assi	1	
Bombay		21.5	194	e 4 55	+ 3	e 8 49	+ 2	9 18	SS	12.3
Irkutsk		21.7	47	4 58	+ 3	e 8 55	+ 4		-	
Hyderabad	E.	22.4	179	9 10	8	(9 10)	+ 6	2===	2204	$(12 \cdot 1)$
Kodaikanal	E.	29.6	182	7.555 1.555 1.557		e 13 28	7	i 15 53	9	16.8
Moscow	0.000	31 - 1	314	e 6 24	+ 2			WELLOWS SHOWER	-	
Colom bo	E.	32.9	177	e 8 81	PPP		-		-	
Bucharest	0-2000	38.4	295	e 6 38?	-47	e 10 45	8	<del></del>		24.1
Upsala	E.	42.1	319	e 7 58	+ 3	e 16 50	SS	e 9 41	$\mathbf{PP}$	e 21·7
Copenhagen		45.2	313	e 8 21	+ 1	15 0	- 1	e 10 6	$\mathbf{PP}$	24.1
Triest		46.6	299	e 8 28	- 4	e 15 8	-13		_	
Bergen		48.2	321	10,000 11 0 10 10 10 10 10 10 10 10 10 10 1	_	e 19 23	SS		-	e 25.9
Stuttgart		48.7	304	e 8 48	_0	e 15 54	+ 4	e 10 43	$\mathbf{PP}$	26.8
De Bilt		50.2	310	—		e 20 8	SS	St <del>anta</del>		e 26·1
Uccle	z.	51.0	309	e 9 6	0	_	_	2 <del></del>	-	e 27·7
Kew	STATES	53.6	311	e 21 22	0	e 26 501	9	2)	-	e 28.6
Scoresby Sund		56.2	337	The state of the s		e 17 54	+21	e 22 54	SSS	e 30·1

Additional readings :-

Tashkent  $iS_{\pi} = 3m.53s$ . Bombay iE = 8m.56s., eN = 9m.2s., iN = 11m.9s.

Hyderabad records S as P. and L as S, also SSE = 12m.25s.

Upsala eN = 17m.13s., eE = 17m.39s.

Copenhagen 15m.10s. and 18m.17s. Stuttgart eSS = 19m.42s., eQ = 25m.44s.?

Kew readings are wrongly identified, other phases given are ePP?Z = 22m.46s.,  $eP_cP?Z = 24m.40s.$ ?

Long waves are also recorded at other European stations.

July 15d. 12h. 23m. 2s. Epicentre 17°.0N. 76°.0W.

Severe damage to buildings in rural parts of the island of Jamaica. Most severe at Baladaya. Seismolog. Notes, Bull. Seismolog. Soc. of America, vol. 33, 1943, p. 296.

$$A = +.2315$$
,  $B = -.9285$ ,  $C = +.2906$ ;  $\delta = +15$ ;  $h = +5$ ;  $D = -.970$ ,  $E = -.242$ ;  $G = +.070$ ,  $H = -.282$ ,  $K = -.957$ .

		Δ	Az.	_P.		) -C.	_s.	0 - C.		pp.	L.
2-32 No.		0	. 0	m.		B.	m. s.	8.	m. s.		m.
Bogota		12.4	171	e 3 4	4	PPP	-				
Fort de France		14.4	96		25	- 2	_	_		-	
Columbia		17.5	347		Charles and the second	2	_		(e 7 28)	SS	e 7.5
Philadelphia		22.9	4		1. The control of the	$+ \bar{2}$	(e 9 16)	+ 3	(e 6 6)	PPP	(e 11.3)
Cape Girardeau		$23 \cdot 5$	333	è 5		<u>– 10</u>		_			
Pittsburgh		23.6	354	e 5 1	5	+ 2	e 9 23	- 2	_		e 11·4
St. Louis		$24 \cdot 9$	333	e 5 2	0	- 6	e 9 43	- 4	e 5 52	$\mathbf{PP}$	e 11.8
Harvard		25.7	9	e 5 3	6	+ 3	<del></del>		<u> </u>	-	e 18·0
Chicago		26.6	340			~ <u></u>	e 10 20	+ 4	-		e 13·3
Tucson		34.9	304	e 6 5	4	- 1	_	-	e 15 14	SSS	e 24.2
Riverside	z.	40.7	303	e 7 5	0	+ 6				-	
Pasadena	Z.	41.4	303	e 7 5	1	$\begin{array}{cccc} + & 6 \\ + & 1 \end{array}$	-	1222	-		
Tinemaha	Z.	42.2	307	e 7 5	5	- 1	-	_		-	
Sitka		59.5	327	10 miles (10 mil		PPP			_	_	e 30·3

Additional readings :-

Philadelphia readings reduced by 3 hours.

St. Louis eZ = 5m.41s.

Long waves were also recorded at College.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
July 15d. 20h. Undetermined shock.
    Epicentre 39°.5N. 144°.0E. (stations of the U.S.S.R.).
    Irkutsk eP=44m.28s., eS=49m.35s.
Mizusawa eSE=46m.0s.
    Tashkent P = 46m.59s.?, eS = 54m.41s.?.
    Sverdlovsk iP =47n.33s., eS =55m.13s.
    Ksara e = 50m.6s. and 59m.16s.
    Copenhagen iP = 50m.26s.k.
    Helwan ePZ = 50m.28s., e = 60m.36s.
    De Bilt iZ = 50m.56s.
    Uccle ePZ = 51m.0s., eSN = 61m.18s., eL = 81m.
    Kew ePZ = 51m.9s., ePPZ = 54m.40s., ePPP?Z = 57m.18s., ePSZ = 63m.0s., eLNZ = 84m.
    Tinemaha ePZ = 51m.26s., eZ = 55m.10s.
    Mount Wilson iPNZ = 51m.33s., eNZ = 55m.10s.
    Pasadena iPZ = 51m.33s.
    La Jolla ePEZ = 51m.35s.
    Riverside ePZ = 51m.35s.
    Palomar iPZ = 51m.40s., eZ = 55m.26s.
    Tucson e = 56m.8s.
    Florence eS?E = 82m.11s.
```

July 15d. Readings also at 0h. (Zürich, Granada, Harvard, St. Louis, Pasadena, and near Fresno), 1h. (De Bilt, Kew, and Uccle), 2h. (near New Delhi, near Mizusawa, and near Tashkent), 7h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, near Mizusawa), 8h. (Ksara and College), 10h. (Mizusawa, near Bogota, and near Yalta), 11h. (near Bogota), 13h. (New Delhi), 20h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, Palomar, near La Paz), 21h. (St. Louis and Tucson), 23h. (Fort de France).

July 16d. 1h. 20m. 2s. Epicentre 41°-6N. 142°-0E. (as on June 15d.).

Scale IV at Hakodate, Miyako, and Urakawa; II-III at Hatinohe, Amori, Marioka, and Obihiro. Radius of Macroseismic area 200-300km., depth 20km.
Seismological Bulletin of the Central Met. Obs. Japan for 1943, Tokyo 1950 p. 35 with macroseismic chart.

$$A = -.5910$$
,  $B = +.4617$ ,  $C = +.6614$ ;  $\delta = -10$ ;  $h = -2$ ;  $D = +.616$ ,  $E = +.788$ ;  $G = -.521$ ,  $H = +.407$ ,  $K = -.750$ .

		Δ	Az.	_P	0 - C.	_S.	O – C.	Sup	p.	L.
Hatinohe Aomori Sapporo Miyako Mizusawa	N.	1·1 1·2 1·6 1·8 2·6	198 229 342 180 195	m. s. 0 21 a 0 25 k 0 30 k 0 31 0 43	- 1 + 1 - 0 - 1 - 1	m. s. 0 36 0 42 0 52 0 52 1 13	8. - 3 + 1 - 4 - 4	m. s. 		m. 
Sendai Hukusima Aikawa Mito Utunomiya		3·4 4·0 4·6 5·4 5·4	194 198 220 195 200	$\begin{array}{cccc} 0 & 55 \\ 1 & 5 \\ 1 & 11 \\ 1 & 22 \\ 1 & 20 \end{array}$	+ 1 - 1 - 2 - 4	$\begin{array}{cccc} 1 & 30 \\ 1 & 58 \\ 2 & 2 \\ 2 & 27 \\ \hline \end{array}$	- 7 + 6 - 5 - 1			
Tukubasan Maebasi Nagano Hunatu Misima		5·6 5·8 6·6 6·9	196 205 213 203 201	1 22 1 28 1 30 1 42 1 55	$   \begin{array}{r}     - 5 \\     - 2 \\     + 1 \\     + 1 \\     + 10   \end{array} $	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	S• + 1 - 1 + 8			
Shizuoka Gihu Nagoya Hikone Kameyama		7·2 7·4 7·5 7·8 8·0	204 215 213 217 215	2 3 1 48 1 56 2 55k 2 5	P* - 4 + 3 + 57 + 5	$   \begin{array}{c}     3 & 14 \\     3 & 21 \\     3 & 16 \\                                   $	+ 1 + 3 - 4			
Toyooka Osaka Kobe Tinemaha Mount Wilson	z.	8·3 8·6 8·8 72·8 74·7	225 218 220 56 58	2 3 2 5 2 20 e 11 26 f 11 38	- 1 - 4 - 9 - 6 - 5	$\frac{-}{3}_{14}$	- 8 - 8	- e 11 42 i 11 52	P PP	
Pasadena Riverside Palomar Tucson Stuttgart	z. z. z.	74·7 75·3 76·1 80·6 80·9	58 57 56 330	e 11 40 e 11 47 e 12 1 e 12 10 e 12 23	- 3 - 0 - 6 + 6		=	i 11 54 e 11 57 e 12 29	pP pP pP	=

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

273

St. Louis also gives eSSE = 29m.4s.

July 16d. 1h. 54m. 2s. Epicentre 33°.0N. 21°.5E.

$$A = +.7818$$
,  $B = +.3080$ ,  $C = +.5421$ ;  $\delta = -5$ ;  $h = +1$ ;  $D = +.367$ ,  $E = -.930$ ;  $G = +.504$ ,  $H = +.199$ ,  $K = -.840$ .

	Δ	Az.	P.	O-C.	s.	O -C.	Suj	pp.	L.
concepto carried	0	0	m. s.	в.	m. s.	8.	m. s.	122012	m.
Helwan z.	9.0	108	2 13	0	e 4 1	+ 3	2 25	$\mathbf{PP}$	(A)
Sofia	9.8	8	e 2 31	+ 7				-	e 7·1
Bucharest	11.9	16	e 2 58	+ 4	· ·			-	
Ksara	12.1	82	3 6	+ 9	_		_	-	_
Florence E.	4 40 4	326	e 4 42		e 6 5	+20	·	-	-
Triest	14.0	337	e 3 17	- 5	e 6 14	+15	-	-	-
Stuttgart	18.3	334	e 4 16	- 1	e 7 47	+ 8			-
Cheb	18.4	342			e 7 51	+10			e 9·1
Tortosa E.	The second secon	302	i 3 46	-33	i 7 19	-25		200	e 11·0
Clermont-Ferrand	19.0	317	e 4 25	- 1	e 7 58	+ 3.		2	
Jena	19.3	343	e 4 33	+ 4	<u>—</u>				-
Almeria	20.0	289	i 4 31	- 6	8 10	- 7	4 47	$\mathbf{PP}$	15.7
Granada	20.9	290	i 4 49	+ 3	i 8 28	- 7	5 2	$\mathbf{pP}$	13.9
Toledo	21.6	296	e 4 49	- 5	i9 0	+11	9 47	SS	
Uccle	21.8	330	e 4 56	0	i 9 0 e 8 35	-17	e 9 6	7	e 11·0
De Bilt	22.5	334	i 5 4	+ 2	i 9 16	+11			e 14·0
Copenhagen	23.6	348	e 5 15	$^{+}_{+}$ $^{2}_{2}$	9 32	+ 7		( <del>) ( ) ( )</del>	-
Kew	24.4	326	e 5 22	+ 1	e 9 44	+ 5			e 13·0

Additional readings:—
Helwan eZ = 3m.8s., SNZ = 5m.16s., PcPE = 7m.16s.Almeria PcP = 8m.29s., SS = 8m.48s., SSS = 9m.10s.Granada sS = 8m.55s., PcP = 9m.14s.

July 16d. Readings also at 0h. (near Mizusawa), 5h. (La Plata), 6h. (Palomar and near Irkutsk), 8h. (Haiwee, Tucson, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, and Stuttgart), 9h. (Granada), 11h. (near Almata, Andijan, Stalinabad, and Tashkent), 12h. (Tashkent and near Andijan), 15h. (Merida, near Basle and Zürich), 16h. (San Juan, Cape Girardeau, St. Louis, near Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Strasbourg, Ebingen, Uccle. De Bilt, Kew, Stuttgart (2), and Prague), 20h. (near Andijan and near La Paz), 21h. (Tashkent and near Tchimkent), 22h. (near Lisbon and near Mizusawa), 23h. (Auckland and near La Paz).

July 17d. Readings at 2h. (New Delhi), 4h. (near Mizusawa), 5h. (near Tucson (2)), 6h. (St. Louis), 10h. (Florence), 17h. and 23h. (near Mizusawa).

July 18d. 7h. 55m. 7s. Epicentre 22°.5S. 70°.5W.

$$A = +.3087$$
,  $B = -.8718$ ,  $C = -.3805$ ;  $\delta = +11$ ;  $h = +4$ ;  $D = -.943$ ,  $E = -.334$ :  $G = -.127$ ,  $H = +.359$ ,  $K = -.925$ .

A SE		Λ	Az.	Р.	0-C	s.	O -C.	Suj	pp.	L.
		0		m. s.	s.	m. s.	8.	m. s.		m.
Montezuma		1.5	94	i 0 25?	- 3	i 0 45?	- 4	1		-
La Paz	Z.	6.4	21	i 1 42	+ 4	i 2 58	+ 5	· ·		3.4
Huancayo		11.4	335	e 2 57	+10	e 4 45	-11	e 3 12	$\mathbf{PP}$	e 5.6
La Plata	E.	16.5	141	3 591	+ 5	6 47 7	-11	-		8.1
	N.	16.5	141	3 597	+ 5	6 59 7	+ 1			8.2
	z.	16.5	141	4 5	+11	-			-	8.8
Bogota		27.2	353	e 5 50	+ 3		_	e 6 0	pΡ	
San Juan		40.9	8	e 8 5	+19	e 13 56	- 2	e 17 6	pP SS	e 21·2
Cape Girardeau	N.	62.1	344	e 10 24	- 1	e 18 46	- 3	e 10 34	$\mathbf{pP}$	-
Pittsburgh	0.000000	63.2	353	= .70 0317.4 071877.1 0 <del>1 1 1 1</del>		e 19 4	+ 1		_	1
St. Louis		63.6	344	e 10 31	- 4	e 19 1	- 7		_	-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

274

		Δ	Az.	P		O-C.	S.	O-C.	Su	pp.	L.
Digital.		•	•	m.	8.	s.	m. s.	s.	m. s.		m.
Tucson		66.7	324	i 10	55	0		_	-		e 34.5
La Jolla	Z.	70.9	320	e 11	21	0		_	e 11 32	$\mathbf{pP}$	
Palomar	z.	71.0	321	i 11	21	- 1	_		i 11 31	pP	
Riverside	65,400	71.7	320	i 11	26	0			i 11 37	$\mathbf{pP}$	
Mount Wilson		72.3	320	i 11	29	0	_	_	i 11 41	$\mathbf{p}\mathbf{P}$	_
Pasadena		72.3	320	i 11	29	0		-	i 11 40	$\mathbf{pP}$	
Santa Barbara		73-4	319	e 11	37	+ 1	-	-	e 11 47	pP	-
Tinemaha		74.4	322	e 11	42	0		_	e 11 52	pP	
Granada		86.5	48	i 12	7	-39	-	_	12 <del></del>	·	49.2
Stuttgart	z.	100.1	42	e 23	51	3	e 24 20	[-7]			

Additional readings:—
St. Louis eZ = 10m.40s., eE = 19m.18s.Tucson i = 11m.8s., e = 22m.40s., i = 23m.38s.Long waves were also recorded at De Bilt and Kew.

July 18d. Readings also at 1h. (Cheb, Ebingen, Stuttgart, and near Zürich), 3h. and 4h. (near Mizusawa), 5h. (near San Juan, New Delhi, near Tashkent, and Tchimkent), 8h. (Brisbane, Riverview, Arapuni, Wellington, La Jolla, Tucson, Mount Wilson, Pasadena, Riverside, Palomar, Tinemaha, Bogota, and near Mizusawa), 11h. (Ebingen and near Stuttgart), 17h. (Balboa Heights), 21h. (Bogota, Huancayo, and near La Paz), 22h. (Harvard, Mount Wilson, Tucson, Pasadena, Palomar, Riverside, and Tinemaha), 23h. (Palomar, Tucson, and near Tashkent).

July 19d. Readings at 0h. (near Stalinabad), 1h. (De Bilt, Uccle and Kew), 5h. (near Fort de France), 7h. (Wellington), 9h. (Ksara), 10h. (Bucharest), 11h. (Bogota, Cape Girardeau, St. Louis, Pittsburgh, Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, and Scoresby Sund), 15h. (Stuttgart), 16h. (Triest), 20h. (near Branner and near La Paz), 21h. (Florence, Sofia, Bucharest, near Istanbul, and near Mizusawa), 22h. (St. Louis and near Tucson), 23h. (near Ottawa).

July 20d. Readings at 1h. (Apia, Auckland, Christchurch, Wellington, Mount Wilson, Pasadena, Palomar, Tucson, Riverside, and Tinemaha), 6h. (St. Louis, Mount Wilson (2), Pasadena (2), Palomar, Tucson (2), Riverside (2), and Tinemaha (2)), 10h. (Mount Wilson, Pasadena, Palomar, Tucson, Riverside, and Tinemaha), 11h. (near Andijan), 15h. (Berkeley).

July 21d. 2h. 6m. 49s. Epicentre 38° 0N. 21° 0E. (as on 1943 June 14d.).

A = +.7375, B = +.2831, C = +.6131;  $\delta = -6$ ; h = -1; D = +.358, E = -.934; G = +.572, H = +.220, K = -.790.

		Δ	Az.	P.	O-C.	s.	O-C.	Suj	рр	L.
organical seeding		۰	0	m. s.	8.	m. s.	8.	m. s.		m.
Sofia Belgrade		5·1 6·8	$\begin{array}{c} 21 \\ 357 \end{array}$	e 1 21 e 1 46	$+\   \frac{1}{2}$	i 2 19 e 3 41	- 1 S:	i 2 47 e 2 25	S. P.	
Bucharest		7.4	30	e 2 0	+ 8	13 46	8*			7-22
Focsani		9.0	28	e 2 591	8	<u> </u>	Ĩ.,		-	
Florence	E.	9.4	311	e 3 31	8	e 4 45	$\mathbf{L}$	_	-	(e 4·8)
Triest		9.4	327	e 2 19	+ 1	i 3 49	-18			
Milan		11.5	314	e 3 1	+13				+	6.5
Chur		$12 \cdot 2$	320	e 2 50	- 8	e 5 1	-15	-	_	<u> </u>
Prague		13.0	341	e 3 45	+36	-		-	-	:
Zürich		13.1	320	e 3 17	+ 7	e 5 15	-23	9 <del>7-17</del>	-	
Cheb		13.6	336		-	e 5 11 ?	-39		_	e 6·2
Basle		13.7	319	e 3 9	- 9	<del></del>			_	-
Neuchatel		13.7	316	e 3 13	- 5		<del></del>	-		·
Stuttgart		13.7	326	e 3 11	- 7	e 6 231	+31		_	e 7·8
Strasbourg		14.3	322			e 6 16	+10		-	(
Jena Transla		14.5	336	e 3 21	- 7	e 7 26	9	e 3 24	P	i 8.0
Uccle		17.4	323	e 4 5?	- 1	e 7 177	<b>- 2</b>			e 9·6
De Bilt		17.9	327			e 7 32	+ 2	- <del> </del>	-	e 9·2
Copenhagen		18.6	345	e 4 19	- 2	7 47	+ 1		-	
Kew		20.2	320	e 4 31?	- 8	e 8 20	- 1	e 10 53	Q	e 11.8
Upsala		22.0	356	e 5 1	+ 3	e 8 55	1		-	_

Additional readings :-

Belgrade e = 2m.6s., i = 4m.3s.Bucharest iS*7N = 4m.18s., iS*7E = 4m.22s., iN = 4m.30s.

Long waves were also recorded at Paris, Potsdam, Bergen, and Aberdeen.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

275

July 21d. 4h. 13m. 58s. Epicentre 33°.0S. 110°.0W. (as on 1940 March 7d.).

This determination and the shock of 1940 March 7d. are both intended to be very approximate.

A = -.2874, B = -.7896, C = -.5421; D = -.940, E = +.342; G = +.185, H = +.509, K = -.840. L. 0-c. m. m. s. m. s. m. s.  $\mathbf{PP}$ e 16.4 e 8 58 31 +1738.0 64 20 Huancayo SS i 16 20.0 39 13 49 -12La Paz 41-1 eren.  $\mathbf{PP}$ 21.0 +4317 267 SS 44? La Plata 42.8 106 50.6 49 e 9 Bogota SS 26.0 239 Wellington 58.8 26.0 PPP  $59 \cdot 2$ 242 27 Arapuni e 15 25.9 17 37 -4012 20  $\mathbf{PP}$ 235 59.6 10 18 +10Christchurch SS i 22 27.0 244 60.3 Auckland +280 PPPe 14 16 e 32·4 e 19 52 Tucson 359 e 10 43 64.9 +18La Jolla 65.9e 11 354 e 14 39 PPP +12e 30.4 +14e 19 51 San Juan 66.1 46 355 66.3 e 10 51 Palomar z. None e 11 5  $\mathbf{pP}$ 353 Riverside 67.0 e 10 55 pPe 32·2 PSi 11 18 + e 20 14? Pasadena  $67 \cdot 2$ 353 i 11 353 Mount Wilson 67.3 i 11  $\frac{352}{354}$ 3 5 ++ Santa Barbara 67 - 7 e 11 e 11 15  $69 \cdot 2$ Haiwee pP SSS 2 e 11 24 70.2 354 e 11 15 Tinemaha z.  $_{\rm PS}$ e 28 54 e 30.6 e 20 54 Honolulu 70.7314 i 15 53 i 21 , 4 e 35·3 PPP $_{\mathrm{PS}}$ 350 Berkeley 71.4  $_{PS}$ e 35·3 25 e 21 13 Columbia. 72.0e 11 33 17 72.5 Cape Girardeau N. PSSS e 32·4 e 26 18 e 21 19 72.8349 Ukiah e 21 24 PS e 37·7 e 12 54 Salt Lake City 73.4 359 SS e 26 23 e 32.6 PSe 11 36 i 21 28 73.5 15 St. Louis e 33·4 +15+1838 e 22 10 77.7e 12 15 Bermuda e 22 17 23 +18e 12 21 +20Pittsburgh 78.2 e 34 · 2 78.9 237 21 20 -45Riverview E. SS e 28 e 34·4 79.4 25 +15Philadelphia 27 41.0 +2235222 59 82.0 Victoria 41.0 28 83.0Harvard 2339.084.0 Ottawa 42.0 2 84.8 +19Saskatoon 26 38.0 267  $87 \cdot 2$ Seven Falls sse 48.2 22  $\mathbf{PP}$ e 26 59  $\{-16\}$  $120 \cdot 1$ Scoresby Sund SS e 32 37 PPS e 38 34 61.0Almeria 121.8 64 e 39 43 40 SS E. 126.5 62.8 Aberdeen e 23  $\mathbf{p}\mathbf{p}$ PPP e 30 321 e 60·0 Kew 126.947 62.0 128.3 18 387 -31Paris e 38 e 33 267 PPS e 63·0 48 Uccle 129.721 267 PP e 69·0 Cheb e 50 134.8 49 [-17]85 19 26 23 12 z. 147·0 Helwan

```
Additional readings:—
La Plata E = 9m.32s., N = 18m.44s.?.
Christchurch Q = 21m.32s.
Tucson iP = 10m.49s.
San Juan eSS = 24m.13s.
Berkeley iE = 21m.10s., iN = 25m.57s., eE = 31m.46s.
St. Louis iPZ = 11m.40s.
Philadelphia e = 23m.23s.
```

Scoresby Sund e = 41m.42s. Kew eSSEZ = 37m.2s.?, eSSSZ = 42m.2s.?. Helwan PKKPZ = 19m.47s. ePKP?Z = 20m.5

Harvard e = 14m.50s.

Helwan PKKPZ = 19m.47s., sPKP?Z = 20m.5s., sPKKP?Z = 20m.23s., eZ = 21m.43s., and 22m.56s., sPPZ = 23m.47s.

Long waves are also recorded at Bozeman, College, Sitka, and other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

276

July 21d. 22h. 43m. 3s. Epicentre 0°-8N. 80°-5W. (as on 1943 March 16d.).

$$A = +.1650$$
,  $B = -.9862$ ,  $C = +.0138$ ;  $\delta = +1$ ;  $h = +7$ ;  $D = -.986$ ,  $E = -.165$ ;  $G = +.002$ ,  $H = -.014$ ,  $K = -1.000$ .

		A	4	70	0 0	G	~ ~	200		220
		Δ	Az.	Р.	$\mathbf{O} - \mathbf{C}$ .	s.	O-C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	S.	m. s.	1000	m.
Bogota		7.5	59	e 2 14	P.	e 3 40	s•	i 2 22	$P_{g}$	-
Huancayo		13.7	158	e 3 17	- 1	e 5 42	-10		3.5	e 6·7
La Paz	Z.	$21 \cdot 1$	146	i 4 46a	- 2	i 8 40	+ 1			12.0
San Juan		22.5	39	e 5 11	+ 9	e 9 32	+27	e 6 33	8	e 10.7
Fort de France		23.6	56	e 5 24	+11		' <u>=</u> -	_	-	0.10.
Cape Girardeau	N.	37.3	349	e 7 19	+ 3		-	-	-	
St. Louis	73.7	38.7	348	i 7 30	$\begin{array}{c} + & 3 \\ + & 3 \\ + & 2 \\ + & 2 \end{array}$	e 13 38	+13	e 16 27	SSS	<u> </u>
Tucson		42.4	322	18 0	+ 2	e 14 3	-17	0 10 21	200	e 22·5
Palomar	Z.	47.0	318	i 8 37	$+$ $\tilde{2}$	0 11 0	-			0 22 0
Riverside	10000	47.8	318	i 8 43	$+$ $\bar{2}$	-		_		
Mount Wilson	z.	48-4	318	i 8 45	- 1	10000	V2	8.00 <u>0</u>	99=15	2051.00
Pasadena	z.	48.4	318	18 46k	ô				-	-
Santa Barbara	z.	49.6	317	i 8 57	+ ž					
Tinemaha	Z.	50.2	321	e 9 2	+ 2		-	_	_	

July 21d. Readings also at 6h. (Mount Wilson, Pasadena, Riverside, Tinemaha, Tucson, and near Apia), 10h. (Mount Wilson, Tucson, Pasadena, Tinemaha, Huancayo, La Plata, and near La Paz), 15h. (near Ottawa), 16h. (near Ebingen and Stuttgart).

July 22d. 0h. 10m. 29s. Epicentre 40°·4N. 124°·2W. (as on 1942 May 28d.). Felt in Mendocino Co.

$$A = -.4293$$
,  $B = -.6316$ ,  $C = +.6456$ ;  $\delta = +2$ ;  $h = -2$ ;  $D = -.827$ ,  $E = +.562$ ;  $G = -.363$ ,  $H = -.534$ ,  $K = -.764$ .

		Δ	Az.	Ρ.	O-C.	s.	$\mathbf{O} - \mathbf{C}$ .	Su	pp.	L.
		٥	•	m. s.	s.	m. s.	8.	m. s.		m.
Ferndale		0.2	343	i - 0 9	8	i 0 16	0		_	i 0.5
Berkeley		2.9	149	e 0 41	- 7	i 1 20	- ă	i 0 52	P*	
Branner		3.4	152	e 0 54	- i	e 1 22	$-1\hat{5}$			
Santa Clara •	E.	3.5	150	e 1 35	S	(e 1 35)	- 5		_	-
Lick	1 2216	3.6	146	e 1 4	+ 6	`i 1 58	Se	e 1 26	$P_g$	===
Fresno	N.	5.0	135	e 1 21	+ 3			9275	200	0 <u>11918</u>
Tinemaha	5154	5.7	124	e 1 28	ő	1 2 34	- 1			
Haiwee		6.5	129	e 1 40	+ 1	e 2 51	- 4	/		
Mount Wilson		7.9	140	i 1 59	Ō	e 3 26	- 4			320
Pasadena	z.	7.9	140	i 1 56	- 3	e 3 27	- ŝ			-
Riverside	z.	8-4	137	e 2 3	- 3	_	_	_	-	
Palomar	Z.	$\tilde{9} \cdot \hat{2}$	138	e 2 17	+ 1		1	e 3 20	2	200
Tucson	-50	13.5	123	e 3 27	+12	-	: (	e 6 44	888	

Berkeley also gives iPE = 0m.57s., eN = 1m.2s., iE = 1m.8s.

July 22d. 2h. 9m. 18s. Epicentre 0°.6S. 81°.7W. (as on April 28d.).

Epicentre 0°.5S. 81°.5W. (U.S.C.G.S.).

$$A = +.1443$$
,  $B = -.9895$ ,  $C = -.0104$ ;  $\delta = +4$ ;  $h = +7$ ;  $D = -.990$ ,  $E = -.144$ ;  $G = -.002$ ,  $H = +.010$ ,  $K = -1.000$ .

		Δ	AZ.	P.	0 - C.	s.	0-C.	Sup	D.	L.
		•	0	m. s.	s.	m. s.	8.	m. s.	-	m.
Bogota		9.2	56	e 2 14	- 2	Sec. 10	-	i 2 34	PPP	i 5.4
Balboa Heights		9.7	13	e 2 19	- 3	i 3 58	-17	(e 4 52)	ŝ	e 4.9
Huancayo		13.0	151	e 3 15	6	1 5 30	- 5	(0 = 0-/	_	e 6.5
La Paz	Z.	20.7	141	i 4 47 a	+ 3	18 42	SS		_	12.1
San Juan		24.3	38	i 5 18	- 2	i 9 30	- 7	-	_	e 10.4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		Δ	Az.	Ρ.	O-C.	s.	O-C.	Sup	p.	L.
Fort de France		25.4	54	m. s. e 5 22	s. _ o	m. s. e 9 48	8. _ 8	m. s.	71. <u>21.3</u> 8	m.
Columbia		34 4	2	e 6 50	- ĭ	e 12 15	- 4	-	==:	e 14·4
Bermuda		36.5	25	e 11 6	3	e 12 46	- 5	<del></del>		
Cape Girardeau St. Louis	N.	38·4 39·8	$\frac{351}{350}$	e 7 22 i 7 34	$-\   \frac{3}{2}$	e 13 16 e 13 35	- 4 - 7	e 9 0 e 9 11	$\frac{PP}{PP}$	=
Philadelphia		40.8	9	e 7 47	+ 2	i 13 50	- 6	e 9 2	PP	e 16·9
Pittsburgh		40.9	3	e 7 53	+ 7	e 13 50	8			
Tucson	2/2-1	42.7	323	i 8 3	-3	e 14 35	PS	i 9 49	$\mathbf{PP}$	e 21.9
Rio de Janiero Ottawa	N.	43·5 46·1	123	e 14 42 8 24	_84	(e 14 42) 15 63		19 12?	SSS	e 21·7 22·7
Ottawa		40 1		0 21		10 01		10 121	BED	D4 1
La Jolla	0.90	47.2	319	i 8 39	+ 3	~ <del>~~~</del>	-	<del></del>		-
Palomar	z.	47.3	320	e 8 38	+ 1	Sec.	-	i 8 49	3	
Riverside Seven Falls		48·0 48·5	320 10	i 8 43		e 15 43	- 5	i 8 54		23.7
Mount Wilson		48.6	320	i 8 48k	+ 1		_	i 8 59	3	20 1
Pasadena		48.6	320	i 8 49k	+ 2	i 16 28	PPS			e 23·3
Haiwee		49.7	322	e 8 59	+ 3			-	<del></del>	07.0
Bozeman Berkeley		52·9 53·5	$\frac{335}{321}$	e 9 24 i 9 26	$^{+}_{+}$ $^{4}_{2}$	e 16 52 i 17 6	$^{+}_{+}$ $^{4}_{9}$			e 27:8 e 30:0
Victoria		60.8	330	10 19	$+$ $\overset{\scriptscriptstyle \perp}{3}$	18 42	$+$ $\overset{\circ}{9}$	-	_	30.7
Scoresby Sund		80.8	17	e 12 16	- 1	e 22 15	-10	<del></del>	-	( <del>)</del>
Granada		80.9	52	i 12 14	- 3	i 22 28	+ 2	12 32	$P_cP$	e 40·8
Toledo		80·9 81·8	50 53	1 12 17 12 20	- 2	e 22 22 22 38	$-4 \\ +3$	12 33	$\overline{\mathbf{q}}$	37.2
Almeria Kew		85.1	39	e 12 37	- ž		т_3		PeP	e 21.7
Clermont-Ferran	d	86.8	45	e 12 45	- 2	e 23 13	[ 0]	<del>90.14</del> 9	<u> </u>	e 48·7
Uccle	627	88.0	39	e 12 45	- 8	e 23 31	- 5	-	200	e 41.7
De Bilt		88.5	38	e 12 54	- 2	1 23 27	[+3]			e 43·7
Stuttgart Florence	Z. E.	91.0	42 47	e 13 4	- 3	e 24 22	+ <del>-</del> 4	<u> </u>	$\equiv$	
E TOTOTICO	450	020	7.0			00 40				1000

Additional readings :-

Triest

Bogota i = 2m.55s.

St. Louis eSSSE =16m.39s.

 $94 \cdot 2$ 

Almeria PP = 15 m. 26 s., PPP = 17 m. 16 s., S = 22 m. 24 s., PS = 23 m. 0 s., PPS = 23 m. 27 s., SS = 31 m. 0 s.

e 23 42 [-15]

Long waves were also recorded at Chicago and La Plata.

July 22d. 7h. 9m. 28s. Epicentre 38°·8N. 20°·6E. (as on 1938 March 13d.). Epicentre 38°·8N. 20°·2E. (Strasbourg).

$$A = +.7314$$
,  $B = +.2749$ ,  $C = +.6240$ ;  $\delta = -11$ ;  $h = -1$ ;  $D = +.352$ ,  $E = -.936$ ;  $G = +.584$ ,  $H = +.220$ ,  $K = -.781$ .

	Δ	Az.	P.	0-C.	s.	0-C.	Suj	pp.	L.
	0	0	m. s.	8.	m. s.	s.	m. s.		m.
Sofia	4.4	27	e 1 13	+ 3	i 2 6	+ 4	i 1 51	Pg	-
Belgrade	6.0	359	e 1 32	0	e 2 41	$\frac{+}{-}\frac{4}{2}$	e 1 42	$\mathbf{P}_{\mathbf{F}}$	-
Bucharest	7.0	35	e 1 47	+ 1	i 3 20	+12	e 1 51	P*	-
Campulung	7.3	26	e 2 201	Pg		17,1223			4.5
Kalossa	7.8	353	e 1 52	- 6	e 3 22	- 6	-		e 4·6
Focsani	8.5	34	e 2 147	+ 7		11			e 4·5
Triest	8.5	326	i 2 5	- 2	i 3 42	- 3		-	
Florence	8.6	308	e 2 18	+ 9	i 4 4	+16	i 4 26	S.	i 5.8
Bacau	9.0	29	e 2 447	PPP	_				5.0
Ogyalla	9.2	350	e 3 52	9	e 4 22	+19		-	6.0
Milan	10.8	312	e 2 39	0	5 57	L			(5.9)
Chur	11.4	318	e 2 46	- 1	e 4 57	+ 1	-		`—
Yalta	11.6	57	e 3 5	PPP					
Prague	12.1	341	e 2 47	-10	e 4 321	8	: <del></del> :	-	e 6.5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

278

	Δ	Az.	P.	o – c.	"s.	0 - C.	Supp.	L.
Zürich	12·3	316	m. s. e 3 7	S.	m. s.	8.	m. s.	m.
Helwan	12.6	132	e 3 7 i 2 56k	PP ₇	e 7 2 e 5 47	SS	i 3 11 PI	- (e 7·0)
Cheb	12.7	335	1 2 30K		e 5 47 e 5 29	+ 1	19 11 11	- i 6.8 - e 6.5
Basle	12.9	317	e 3 25	PPP	e 7 39	L		- 67.6
Neuchatel	12.9	314	e 3 5	- 2	·	-		_ "-"
Stuttgart	12.9	324	e 3 5	- 2	e 5 52	SS	e 3 20 PI	e 8⋅0
Ksara	13.3	107	e 3 15	+ 2	e 5 58	SS	<del></del>	
Strasbourg	13.5	321	e 3 15	0			. —	– e7·3
Jena	13.7	335	e 3 13	- 5	e 6 9	SS	i 3 27 PI	
Potsdam	14.6	341	e 3 40	+10	e 6 35	SS	-	<b>-</b> 7⋅5
Clermont-Ferrand	14.7	304	i 3 27a	- 4	e 6 17	+ 1		- e 7·0
Tortosa	15.6	284	i 3 1	3	6 16	-21		- e 7·5
Paris	16.4	313	i 3 56	+ 3	e 7 2	+ 6	<del></del>	- e 9·5
Uccle	16.6	324	e 3 56k	0	e 7 12	+12	e 7 15 SS	8 e 8⋅9
De Bilt	17.1	326	e 4 3a	+ 1	_	-		- e 9·5
Copenhagen	17.8	344	e 4 11	0	e 7 35	+ 7		- 9.5
Almeria	18.3	273	i 4 12	- 5	7 55	SS	4 24 PI	
Toledo	19.1	283	i 4 24	- 3	i8 0	+ 3		_
Granada	19.2	274	i 4 22	- 6	i 7 55	- 4	4 32 PI	10.4
Kew	19.4	319	e 4 27a	- 3	e 8 8	+ 4	e 4 59 PP	P e 10·5
Upsala E.	21.2	355	e 4 57	+ 8	e 8 42	+ 1	<del>2000-0</del> 10 344	– е 11·5
N.	$21 \cdot 2$	355	4 51	+ 2	e 8 46	+ 5	e 5 21 PP	
San Fernando E.	21.3	273	e 4 53	+ 3	e 9 28	SS		- e 12·4
Lisbon	$23 \cdot 2$	281	5 5	- 4	9 20	+ 2	7 417	12.7
Aberdeen	23.7	330	i5 8	- 6	i 9 32	+ 5		- 13.2
Bergen	23.7	343	5 15	+ 1	9 33	+ 6,	<del>100-1</del> 37 <del>11</del>	- 13.0
Tashkent	37.0	71	e 6 39	-34	13 26 7	+27		_
Tchimkent	37.0	69	7 13	0	_			
Scoresby Sund	38.6	340	e 9 0	PP		-	e 14 58	9 e 21·4
St. Louis	$80 \cdot 2$		e 12 11	- 3	<del></del>	- T		- e 40·5
Tucson	$96 \cdot 1$		e 13 31	0				
Palomar z.	98.1	325	e 12 47	-53		-		-

Additional readings:—
Sofia iE = 2m.22s., iS₈EN = 2m.40s.Belgrade i = 1m.58s. and 2m.30s., iS = 3m.19s.Bucharest iS?E = 3m.32s., iS°?EN = 4m.7s.Helwan eZ = 3m.44s., eEN = 5m.8s.Jena iE = 3m.19s., iN = 3m.23s., eN = 4m.26s. and 4m.29s.Almeria PP = 4m.28s., PPP = 4m.51s., SS = 8m.3s.Granada PP = 4m.46s., pPP = 4m.53s., S = 8m.23s.Kew eP_cPEN = 7m.36s., eZ = 8m.43s., eSSZ = 9m.55s.Long waves were also recorded at Besançon and Barcelona.

July 22d. 14h. 2m. 26s. Epicentre 48° 2N. 9° 0E. (as on 14d.).

A = +.6609, B = +.1046, C = +.7432;  $\delta = +8$ : Supp. o-c. Az. O-C. L. 8. m. s. 8. m. s. m. m. s. 0.037 Ebingen 0.6e 0 s• 135 157 e 0 Ravensburg 211 SE Stuttgart 0.6 13 e 0 11 i 0 18 0.910 29 295 33 Strasbourg i 0 0.9198 e 0 19 e 0 32 Zürich 1.2 e 0 41 235 i 0 Basle 24 229 e 0 36 Neuchatel P. S.

Long waves were recorded at Kew.

July 22d. Readings also at 1h. (Ksara), 5h. (Tinemaha), 9h. (Mizusawa), 10h. (near Irkutsk), 12h. (Pasadena, Tucson, Mount Wilson, Riverside, Tinemaha, Palomar), 13h. (De Bilt, Triest, Florence, Bucharest, Uccle, near Ebingen, Stuttgart (2), and near Sofia), 14h. (Zürich, near Stuttgart, and Ebingen), 15h. (Harvard and near Branner).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

279

July 23d. 14h. 53m. 8s. Epicentre 8°.6S. 109°.9E. Depth of focus 0.005.

A = -.3366, B = +.9299, C = -.1485;  $\delta = +7$ ; h = +7; D = +.940, E = +.340; G = +.051, H = -.140, K = -.989.

D.		0±0, 1	» — т	340,	9.5	U - T 0	л, н – –	140,	L 000	• 67	
Colombo	N.	∆ 33.7	Az. 296	$\mathbf{m}$	34	O – C. 8. – 3	S. m. s. 11 49	O -C. s. - 5	m. s.	pp. 	L. m.
Kodaikanal Calcutta	E.	37·3 37·6	301 327	1 7	12k	+ 4	i 12 42 i 12 34	$^{-8}_{-20}$	14 32	SS	17.8
Naha	N.	38.6	26	i 7	20	+ 2	13 14	+4			20.6
Hyderabad	E.	40.4	311	7	32	- 1	13 42	+ 5	8 55	$\mathbf{PP}$	20.8
Nake Kagosima Brisbane	12	40.8 44.6 44.8	$\frac{28}{26}$ $121$		43 10 6	+ 6 + 2 - 3	13 53 14 38 i 14 32	$^{+10}_{-\ 9}$	=	=	
Riverview	E.	45.5	$\frac{130}{130}$		14 k	- 1 + 4	i 14 50 e 14 52	$\begin{array}{ccc} -&1\\+&1\end{array}$	i 8 37	pP_	e 21·1
Bombay Kumamoto	E.	45·6 45·7	297 25	i 8 i 8	15 17	- 1 + 1	i 14 53 14 55	+ 1 + 1	8 38	pP_	
Hukuoka		46.3	24	9	10	+49	15 53	+51			i
Koti Hiroshima		47·6 47·8	28 26	i 8	32 34	$^{+}_{+}$ 1	$15 21 \\ 15 24$	0			
		48.1	25	8			15 23				
Hamada Zinsen		48.4	18	8	38	- i	15 33	-5 + 1			
New Delhi	E.	48.6	321	i 8	46	+ 7	i 15 39	+ 4	10 38	PP	21.4
Dehra Dun	N. E.	48·6 49·3	$\frac{321}{324}$	i 8 i 9	36 3a	$^{-3}_{+19}$	i 15 29 i 15 55	-6 + 10	10 24	PP_	e 21.6
Kobe	12023	49.3	29	i 8	46	+ 2	14 44	-61		· -	AND DESCRIPTION
Kameyama		50.0	30	8	49	- 1	15 50	- 4		_	
Hatidyozima Nagoya		50·3 50·5	33 30	8	49 54	- 3	14 49 16 4	$^{-69}_{+3}$	_	_	
Misima		51.4	31	8	59	- <u>1</u>	16 14	Õ		_	
Yokohama	42	52.0	32	9	4	- 1	16 18	- 4	e 9 17	$\mathbf{pP}$	100
Nagano Tokyo Cen. Met.	Ob.	$\begin{array}{c} 52.3 \\ 52.3 \end{array}$	$\frac{29}{32}$	9	7 6	- 0 - 1	16 23 16 16	$-3 \\ -10$	10 24	pP	
Wazima	A HERON	$52 \cdot 3$	28	9	9	+ 2	16 29 16 57	+ 3			-
Sendai Mizusawa		54·8 55·6	31 30	9	25 31	- 1	17 10	- 3 0	9 34	P	
Hatinohe		56.9	29	9	40	- 1	17 19	- 9		-	7.72
Mori		57·7 58·9	27 27	9	48 33	$^{+2}_{-22}$	i 17 38 17 52	_ 9		=	_
Sapporo Stalinabad		60.5	324	i 10	4	- 2	e 18 12	- 2			_
Irkutsk		60.8	357	i 10	8	0	18 21	+ 3		-	: \\ <del></del>
Tananarive . Tashkent		61.2	$\frac{254}{327}$	i 10 i 10	10 18	+ 2	e 18 23 i 18 37	+ 2	10 35	pP —	28.0
Tchimkent		62.6	328	i 10	17	- ã	- <del></del>	_	-		
Christchurch Auckland		64 · 4 64 · 8	$\frac{135}{128}$	10 10	32	$+10^{0}$	19 9 19 29	$^{+6}_{+21}$	$\begin{array}{ccc} 13 & 8 \\ 10 & 59 \end{array}$	$_{\mathbf{pP}}^{\mathbf{PP}}$	30·6 27·4
			11-45.000	82	22	52	1212 - 1213	521		7500	
Wellington Arapuni		$65.5 \\ 65.7$	$\frac{132}{128}$	10 10	37 587	$\frac{-2}{+18}$	19 14 19 46?	$^{-3}_{+27}$	$\frac{10}{27} \frac{52}{523}$	$_{\mathbf{Q}}^{\mathbf{P}}$	29·9 30·6
Apia		76.7	103	e 11	42	- 4	e 20 46	-40	i 12 12	рÞ	7.717
Sverdlovsk Ksara		76.781.7	335 306	i 11 e 12	35 15	$^{-11}_{+2}$	e 22 32?	$\frac{-2}{+13}$	e 15 26	PP	
		201 13			1992				Anne dise diseasi and	PP	
Helwan Yalta		84·4 85·9	301 316	e 12 i 12	27 46	$^{0}_{+12}$	i 22 42 i 23 1	- 4 0	15 40	-	
Moscow		87.3	328	12	40	- 1	23 0	[ 0]	12 12	<u>-</u>	
Istanbul Focsani		88·7 91·0	312 318	e 13	47	+ 6	23 13 e 24 5	[ + 4] + 17	e 23 59	$\mathbf{pP}$	$\equiv$
			Telescons.		68 62	50 E	9275 SEE	36 ANOSA RESTAL		20000000000000000000000000000000000000	
Bacau		$91.4 \\ 91.5$	317	e 13 i 13	4 2 a	+ 4	e 24 4 1 23 29	[+13]	e 16 42 1 16 37	$_{ m PP}$	41.9
Bucharest Campulung		92.4	315	e 13	5	Ö	e 23 107	[-20]	e 16 45	$\mathbf{PP}$	
Cernauti	E.	92.493.3	319	e 13	10	$-1 \\ +1$	e 23 28 e 23 35	[-2]	e 16 42 e 16 56	$_{\mathbf{PP}}^{\mathbf{PP}}$	41.6
Sofia		99.9	312	6 13	10	T 1	6 20 00	. 01	0 10 00		*T.0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

280

	Δ	Az. P.		S. O-C.	m. s.	L. m.
Honolulu Belgrade Kalossa E	100 (100 (100 (100 (100 (100 (100 (100	69 e 13 2 314 13 1 316 13 2	1 + 3 9k 0 26 + 1 29 + 4	i 24 32 + 8 i 23 51 [+ 4] (e 23 52?)[- 3] (23 55) [ 0]	e 13 46 pP i 17 12 PP (17 20) PP (i 17 23) PP	e 37·0 e 49·7 e 23·9 23·9
Ogyalla Upsala N	[2] 10. (1.1)	329 e 13 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 22 32 [-86] i 24 5 [+ 2] 24 10 [+ 7]	e 17 42 PP i 17 39 PP i 25 7 S	e 36.9 e 46.9 e 46.9
Prague Triest Potsdam Copenhagen Cheb	100·0 100·4 100·9 101·2 101·4	322 i 13 4 326 e 13 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 29 52 ? i 24 13 [ 0] i 24 15 [ 0] 24 19 [+ 2] i 24 20 [+ 2]	e 17 29 PP i 17 49 PP i 17 55 PP i 17 55 PP i 17 56 PP	e 51.9 e 47.9 e 46.9 e 52.9
Jena Florence College Chur Stuttgart	101.9 $102.1$ $103.0$ $103.3$ $103.5$	The state of the s	3k + 4 55 + 2 64 0	i 24 20 [ 0] i 24 9 [-12] e 24 17 [-8] e 24 27 [ 0]	e 17 42 PP i 17 21 PP e 17 13 PP i 18 10 PP e 18 3 PP	e 41.9 e 45.5 e 45.4 55.5
Milan Zürich Strasbourg Bergen Basle	103.6 103.9 104.4 104.6 104.6	314 e 13 5 317 e 13 4 318 e 14 1 331 i 14 318 e 13 5	6 -11 5 P 4 P	e 24 32 [+ 4] e 24 30 [+ 1] i 24 33 [+ 2] 24 36 [+ 4]	i 18 12 PP e 18 7 PP i 18 12 PP 18 14 PP e 18 12 PP	51·3 e 54·9 e 51·9
Neuchatel Besançon De Bilt Uccle Clermont-Ferrand	105.1 $105.7$ $105.8$ $106.4$ $107.8$	322 e 14	1 P 0 P 6a P 7a P 4a P	i 24 42 [+ 4] i 24 43 [+ 3] i 24 55 [+ 8]	e 18 5 PP i 18 29 PP e 32 527 SS i 18 34 PP i 18 46 PP	56·4 e 46·9 e 47·9 e 50·1
Paris Aberdeen Barcelona Kew Edinburgh	107 · 9 109 · 0 109 · 0 109 · 9	311 e 17 2	5 P 5 8	i 24 49 [+ 2] i 24 55 [+ 3] 28 20 PS i 24 51 [- 2] 28 20 PS	i 18 45 PP i 18 56 PP e 18 45 PP i 18 23 PKP 18 54 PP	56.9 56.0 e 54.5 e 50.9
Stonyhurst Tortosa E Sitka Scoresby Sund Almeria	110.0 110.2 110.4 111.2 113.0		1 P	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 19 2 PP 18 21 PKP e 19 14 PP i 18 11 PKP 18 33 PKP	i 55·3 52·9 e 44·8 e 50·8 55·4
Granada Toledo San Fernando Lisbon Victoria	$113.8 \\ 113.8 \\ 116.0 \\ 117.9 \\ 120.2$	310 18 3	1 D.T. A. 1707	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 58 pP 19 15 PP 34 51 SS 19 20 pPKP 19 7 PP	57·1 47·9 56·9 57·9 48·9
Seattle Ukiah Berkeley Branner Ivigtut	$\begin{array}{c} 121 \cdot 3 \\ 123 \cdot 7 \\ 124 \cdot 8 \\ 125 \cdot 0 \\ 125 \cdot 0 \end{array}$	48 e 18 5 50 i 18 5 50 e 18 5	4 PP 7 [+ 7] 5 [+ 2] 8 [+ 5] 4 [+ 1]	e 27 39 PS e 25 32 [-14] e 30 11 PS e 30 42 PS	e 37 47 SS e 20 22 PP i 20 46 PP e 29 39 PP	e 51·3 e 51·2
Santa Clara Saskatoon Santa Barbara Tinemaha z. Haiwee	$\begin{array}{c} 125 \cdot 2 \\ 127 \cdot 4 \\ 127 \cdot 8 \\ 128 \cdot 1 \\ 128 \cdot 6 \end{array}$	50 e 19 27 e 19 53 i 19 49 e 19 50 i 19	5 [+12] 3 [+ 5] 3 [+ 4] 1 [+ 2] 4 [+ 4]	e 30 57 PS e 37 6 PS = =	e 37 57 SS e 21 10? PP i 19 25 pPKP i 19 27 pPKP i 19 32 pPKP	e 53·9
Bozeman Pasadena Mount Wilson Riverside z. La Jolla	$129.0\\129.1\\129.2\\129.8\\130.3$	52 e 18 4 52 e 18 5	9 [+ 8] 4 [- 7] 9 [-12] 2 [-11] 6 [+ 2]	e 26 9 [+8] e 26 13 [+12]	e 21 4 PP i 19 27 pPKP i 19 26 pPKP i 19 29 pPKP	e 50·6 e 52·9
Palomar Z. Logan La Plata E. N	130·6 135·2	40 i 19 194 19 4 194 19 3	5 [+ 1] 8 [+ 4] 01 [+28] 41 [+22] 5 [+ 3]	i 22 25 PP e 27 48 SKKS 28 58? SKKS 31 34 SKSP 31 28 SKSP	i 19 29 pPKP i 21 28 PP 23 10? PKS 23 10? PKS 22 10? PP	e 53·7 63·6 63·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
L.
                                                                        Supp.
                            Az.
                                                                                      m.
                                            s.
                                                                                   e 56.2
                                                                             \mathbf{p}\mathbf{p}
                                                              9]
                                           -101
                    135.5
Tucson
                                           +
                    139 \cdot 1
Rio de Janeiro
                                                                             \mathbf{PP}
                                                                                     63.9
                                  19
                                           -
                    141.6
Seven Falls
                                                                             \mathbf{PP}
                                                                   e 22
                                                                                     75.9
                    142 \cdot 1
Shawinigan Falls
                                                                             \mathbf{P}\mathbf{P}
                                                                                     61.9
                    143.0
Ottawa
                                                                                   e 55.4
                    143.5
Chicago
                                                                                     61.9
                                                  e 41 587 SS
                                e 19 27
                            351
                    143.7
Halifax
                                           [+ 2] e 29 33 SKKS i 22 48 PP
                                                                                   e 62·0
                                                                             \mathbf{p}
                                i 19 30
                    144.2
Vermont
                                                  i 26 46 [+15] i 20 9 pPKP
                             27 i 19 29
                                           [+1]
                    144.8
Florissant
                                                  i 26 47 [+16] i 20 10 pPKP
                                              01
                                 i 19 30
                    145.0
St. Louis
                                                                         5 pPKP e 71.9
                                                   i 27 32 [+60]
                                                                   i 20
                                          [+1]
                                 i 19 33 a
                    146.2
Harvard
                                                                     20 5 pPKP
                                                    22 56 PP
                                                                                     41.7
                                              0]
                                 19 33
                    146.3
Weston
                                                                   e 19 37 PKP
                                           [+1]
                             29 e 19 34
                    146.4
Cape Girardeau
                                                  i 41 45 SS
                                                                   i 22 56
                                                                             PP
                             13 e 19 34
                                              01
                    147.1
Pittsburgh
                                                                   i 20 5 pPKP
                                                  e 29 51 SKKS
                                          [+1]
                                e 19 36
                    147.7
Fordham
                                                  e 26 28 [- 8] e 20 17 pPKP e 61.3
                                           [+5]
                              6 i 19 41
                    148.4
Philadelphia
                                                  131 5 SKKS 120 29 pPKP
                                          [+2]
                                                                                     75.6
                    155.0 186 i 19 48
La Paz
                                                  e 30 40 SKKS e 23 52
                                                                                   e 76.9
                                                                             \mathbf{PP}
                            349 e 19 59
                                           [+12]
                    155.8
Bermuda
                 N. 157.5 54 e 19 36
                                           [-13]
Merida
                                                                             \mathbf{PP}
                                                                                   e 64·3
                                           [-5] e 26 7 [-41] e 24 14
                            166 e 19 46
                    158.8
Huancayo
                                                                             \mathbf{PP}
                                                                   i 25 7
                                                  e 26 40 [-15]
                           305 i 20 1
339 e 20 5
                                           [+1]
                    169.3
Fort de France
                                                                                   e 73·2
                                                                              ss
                                                  i 31 44 SKKS
                                                                   i 46 19
                                              5]
                                           [+
                    169.5
San Juan
                                               61
                    170.6 87
                                e 20
Balboa Heights
                                                                             PP
                                                  i 29 10 PPP
                    174.4 135 e 20 5
                                               3]
Bogota
  Additional readings :-
    Hyderabad PcPE =9m.12s., SSE =16m.40s., ScSE =17m.29s.
    Riverview iPPE =9m.58s., iE =11m.6s., 11m.39s., and 15m.9s., isSE =15m.24s.,
        isSN = 15m.27s., iSSEN = 18m.10s., iZ = 18m.15s., iE = 18m.33s., iN = 18m.36s.,
         eQEN = 18m.468.
    Bombay PPE = 10m.7s., iE = 11m.30s., sSE = 15m.32s., SSE = 18m.23s.
    New Delhi PPPN=11m.13s., PPPE=11m.27s., PcSE=14m.11s., PcSN=14m.22s.,
        iN = 17m.37s., S_cSN = 18m.14s., SSN = 18m.21s., SSSN = 19m.46s.
    Tokyo SE = 16m.21s., S_cS? = 18m.54s.
    Tananarive sP = 10m.45s., PP = 12m.26s., PPP = 13m.49s., SS = 22m.22s., SSS = 25m.17s.
    Christchurch iZ = 18m.29s., PS = 19m.41s., Q = 26m.17s.
Auckland PcP = 11m.9s., PP = 13m.4s., i = 19m.19s., sS = 19m.52s., ScS = 20m.30s.,
         SS = 23m.32s., SSS? = 25m.58s., i = 26m.37s.
    Wellington iZ = 12m.45s., PPZ = 13m.5s., sS = 19m.46s., ScS = 20m.25s., sScS? =
         21m.32s., SS = 23m.32s., SSS = 26m.47s., i = 27m.12s., Q = 27m.34s.?
    Apia isP? = 12m.35s., isS? = 21m.32s.
    Ksara e = 17m.13s.
    Helwan eZ = 12m.52s. and 14m.0s., PPPZ = 17m.34s., SSN = 28m.13s.
    Istanbul pS = 23m.39s.; readings given as P and S, of two local shocks.
     Bucharest iEN = 13m.7s., iPPZ = 16m.41s., iPSN = 26m.2s.
    Campulung ePPN = 16m.49s.
    Cernauti eSN = 23m.31s.
    Sofia PSEN = 24m.20s.
    Honolulu ePP=17m.5s., e=17m.29s., eSKS=23m.53s., e=29m.43s., eSS=30m.52s.,
         e = 34m.0s.
    Belgrade e = 16m.14s., e = 18m.55s.
    Kalossa PP's and SKS's are given as S and L.
    Ogyalla ePPN = 17m.52s.?, iE = 20m.34s.
    Upsala eE = 16m.30s., eN = 16m.42s., iSKKSE = 24m.37s., iPSE = 26m.27s., eSSE =
         31m.52s. ?, eSSS?N = 34m.52s. ?, eSSS?E = 35m.34s. ?, eN = 40m.22s. ?
    Prague eSSS = 31m.58s. ?
    Potsdam ePN = 13m.52s. ?, iE = eN = 17m.41s., iPPN = 17m.58s., ipPPN = 18m.31s.
    Copenhagen 16m.48s., 17m.27s., 19m.51s., 26m.55s., and 32m.8s.
    Cheb eSS = 27m.48s., e = 32m.21s.
    Jena eEN =15m.33s. and 16m.17s., eN =16m.32s., eE =16m.37s., eEN =17m.30s.,
         eN = 17m.45s., iN = 17m.52s. ?, iNZ = 17m.58s., iE = 18m.2s., eN = 22m.40s., iEN = 17m.58s.
         24m.52s. 7, eZ = 26m.52s. 3, eN = 32m.8s., eE = 32m.24s., eN = 32m.32s.
    Florence ipPP?Z = 18m.3s., iSE = 24m.34s., isSS?E = 31m.38s.
    College e = 20 \text{m.} 55 \text{s.}, eS = 25 \text{m.} 21 \text{s.}, e = 31 \text{m.} 12 \text{s.}
    Stuttgart e=16m.58s., iPP=18m.12s., ePPP?Z=20m.7s., eS=25m.7s., eSPZ=
         27m.14s., eSP = 27m.17s., e = 27m.36s., ePKKPZ = 30m.11s., eSS = 32m.34s., eQ =
         53m.22s. 7
    Milan iSSE = 28m.16s.
     Strasbourg e = 17m.21s., i = 20m.1s., iPS = 27m.25s.
     Bergen ipPZ = 14m.26s., eZ = 16m.58s. and 17m.47s., PPP = 20m.14s., eE = 22m.16s. and
         23m.59s., eN = 24m.8s., eE = 25m.52s., PS = 27m.40s., SS = 32m.55s., PKKS =
         34m.0s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

282

```
Uccle eZ = 16m.59s., eE = 17m.18s., iPPZ = 18m.38s., iZ = 19m.3s., eE = 20m.31s., ePSE
      =27m.45s.
 Clermont-Ferrand e = 16m.59s., iPPP = 21m.3s., iSKKS? = 25m.46s., i = 26m.10s., iPS =
      28m.2s., eSS = 33m.55s., i = 34m.40s., iSSS = 37m.37s.
 Paris e = 17m .36s., iPS = 27m.42s., e = 32m.38s.
 Aberdeen iPPSEN = 28m.10s., iEN = 34m.10s., iN = 44m.30s.
 Kew eEZ=17m.31s., iPP=19m.1s., iPPP=21m.19s., eE=22m.52s.?, iSKKSE=
     25m.27s., iN = 26m.31s., iPSEZ = 28m.15s., ePPS = 29m.13s., eSSNZ = 34m.7s.,
     eSSSZ = 37m.52s. ?, eQEN = 44.9m.
 Edinburgh PPP = 21m.16s., PPS = 28m.59s.
 Stonyhurst iPPP=21m.28s., iSKKS=25m.58s., iPS=28m.25s., iPPS?=28m.47s.,
     SS = 33m.52s. ?
 Tortosa PPPE = 20m.41s., PSE = 27m.52s., SSPE = 34m.14s., QN = 46m.14s.
Sitka e = 21 \text{m.} 58 \text{s.}, i = 26 \text{m.} 28 \text{.}, iS = 26 \text{m.} 40 \text{s.}, ePS = 28 \text{m.} 40 \text{s.}, iSS = 34 \text{m.} 20 \text{s.}, e = 38 \text{m.} 10 \text{s.}
Scoresby Sund iPP = 19m.11s., e = 21m.26s. and 28m.26s., eSS = 34m.1s., e = 39m.37s.
Almeria pP = 15m.1s., sP = 15m.12s., pPKP = 18m.55s., PP = 19m.22s., pPP = 19m.42s.,
     PPP = 21m.50s., pPPP = 22m.6s., SKKS = 25m.51s., PS = 29m.3s., SP = 29m.14s.,
     SS = 35m.2s., SSS = 39m.0s.
Granada iPKP = 17m.49s., pPKP = 18m.21s., PP = 19m.7s., sPP = 19m.36s., S = 26m.46s.,
     sS = 28m.11s., PS = 29m.17s., PPS = 30m.56s., sPPS = 32m.56s., SS = 35m.52s.
Toledo eS = 27m.9s.
San Fernando iPPSE = 29m.28s.; the record has been wrongly interpreted.
Lisbon PPEZ = 19m.52s., iPPE = 19m.56s., iPPZ = 20m.0s., PSZ = 29m.45s. ?, iPSE =
     29m.53s.
Victoria PKP=17m.58s.?, SKKS=27m.0s., PS=28m.52s., PPS=29m.52s.?, SS=
     35m.26s.
Seattle e = 29m.4s.
Ukiah e = 27m.30s., ePS = 30m.24s., eSS = 37m.4s.
Berkeley iPN = 19m.0s., iE = 21m.46s. and 27m.35s., eN = 28m.41s., eZ = 30m.41s.,
     eN = 35m.568.
Ivigtut e = 27m.11s., eSS = 37m.45s., esSS = 38m.13s.
Saskatoon e = 29 \text{m.1s.}
Tinemaha iPKKPNZ = 19m.4s., iZ = 22m.16s.
Bozeman i = 22m.26s. and 27m.59s., eS? = 29m.14s., eSS = 38m.24s.
Pasadena iPKKPZ = 19m.3s., ePPEZ = 21m.5s., isPPEZ = 21m.46s., iSKKPZ = 32m.9s.
Mount Wilson iPKKPZ = 19m.3s.
Riverside iPKKP = 19m.4s., iSKKPZ = 32m.3s.
Palomar iZ = 19m.16s., iSKKPZ = 32m.2s.
Logan i = 19m.27s. and 22m.27s., e = 34m.55s., eSS = 38m.38s., i = 40m.55s.
La Plata Z=19m.37s., E=39m.34s., SSN=40m.28s., PSSE=42m.22s. 7, SSSN=
     44m.52s. ?, SSSE =45m.10s. ?, N =52m.4s. ?, E =53m.52s. ?, and 56m.4s.?
Tucson iPKP=19m.16s., i=19m.44s., 22m.40s., and 31m.29s., iPS=32m.7s., eSS=
     39m.30s., e = 43m.14s.
Seven Falls e = 40m.53s, and 48m.22s.?
Shawinigan Falls e = 42m.28s.
Ottawa PPSN =34m.52s. 7, SSE =40m.40s.7
Chicago e = 31m.36s., 32m.56s., and 35m.29s., eSS = 41m.6s., eSS3 = 42m.6s., eSSS =
     46m.36s.
Vermont ePPP = 25m.58s., e = 40m.34s. and 47m.23s.
Florissant iPP = 22m.48s., iSKP = 23m.6s., iSKP2 = 23m.31s., iPPP = 26m.1s., iSKKS =
     29m.38s., iS? = 31m.16s.
St. Louis iPPN = 22m.49s., iSKPZ = 23m.7s., iSKP<sub>2</sub>E = 23m.32s., iPPPN = 26m.2s.,
    iSKKSE = 29m.38s., iS?N = 32m.16s.
Harvard isPKP = 20m.17s., iPP = 22m.52s., iPKS = 23m.9s., i = 25m.11s., e = 30m.24s..
    ePSKS = 32m.47s., i = 33m.3s., ePPS = 35m.31s., e = 36m.45s. and 41m.33s., i =
    41m.43s.
Fordham iPP = 23m.3s.
Philadelphia iPP = 23m.9s., i = 30m.0s., e = 34m.7s. and 36m.57s., iSS = 41m.56s., eSSS =
    47m.22s.
La Paz iZ = 20m.58s., iPPZ = 24m.8s., iZ = 26m.21s., iPPP = 27m.32s., iSS? = 45m.12s.
Bermuda i = 34m.0s., e = 37m.2s. and 39m.1s.
Huancayo e = 30 \text{m.} 54 \text{s.}, 33 \text{m.} 59 \text{s.}, and 37 \text{m.} 35 \text{s.}, i = 44 \text{m.} 14 \text{s.}, eSS = 46 \text{m.} 52 \text{s.}
Fort de France e = 20m.50s., 21m.8s., 26m.29s., and 28m.37s.
San Juan i = 21 \text{m.} 3s., 25 \text{m.} 5s., 34 \text{m.} 48s., and 35 \text{m.} 58s.
Bogota i = 26m.19s.
Long waves were also recorded at Salt Lake City.
```

July 23d. Readings also at 0h. (near Granada), 3h. (Bogota), 6h. (Bombay, Tashkent, and Stuttgart), 7h. (St. Louis, Kew, Florence, Triest, near Bucharest, Sofia, and Istanbul), 9h. (near Bogota), 10h. (Cape Girardeau, Tucson, and Tinemaha), 12h. (Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 14h. (Haiwee, Mount Wilson, Pasadena, Riverside, Tucson, Palomar, Tinemaha, and near Istanbul), 15h. (Granada and De Bilt), 16h. (near Mizusawa), 18h. and 20h. (Fort de France);

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

283

July 24d. 1h. 43m. 55s. Epicentre 46° ·0N. 12° ·2E. (as on 1939 July 10d.).

E. Trapp. Makroseismische Beobachtungen in den Jahren 1941-1945 Anhang 8, Jahrbuch für 1947 der Zentralanstalt für Meteorologie und Geodynamik in Wien, p. D.48.

Annales de l'Institut de Physique du Globe de Strasbourg, Strasbourg 1951, 2ème partie Seismologie, Tomes VII et VIII, p. 33. Epicentre 46° 0N. 11° 9E.

$$A = +.6814$$
,  $B = +.1473$ ,  $C = +.7170$ ;  $\delta = +9$ ;  $h = -4$ ;  $D = +.211$ ,  $E = -.977$ ;  $G = +.701$ ,  $H = +.152$ ,  $K = -.697$ .

Triest  1.1 108 10 27 + 5 10 46 + 7 — — — — — — — — — — — — — — — — — —
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Milan $2 \cdot 2$ $256$ $10$ $37$ $-1$ $11$ $8$ $+2$ $10$ $41$ $P^{\bullet}$ $-1$ Florence $2 \cdot 3$ $197$ $10$ $39k$ $-1$ $11$ $7$ $-2$ $10$ $45$ $P_{g}$ $11 \cdot 5$ Ravensburg $2 \cdot 5$ $315$ $e0$ $44?$ $+1$ $e1$ $13?$ $-1$ $10$ $48?$ $P_{g}$ $-1$ Zürich $2 \cdot 8$ $299$ $e0$ $47$ $0$ $e1$ $22$ $0$ $10$ $53a$ $P^{\bullet}$ $-1$ Ebingen $3 \cdot 1$ $315$ $e0$ $50$ $-1$ $e1$ $26$ $-3$ $e0$ $58$ $P^{\bullet}$ $-1$ Stuttgart $3 \cdot 4$ $325$ $10$ $56k$ $+1$ $11$ $34$ $-3$ $11$ $6$ $P_{g}$ $2 \cdot 0$
Florence Ravensburg  2.3 197 10 39k - 1 11 7 - 2 10 45 Pr 11.5 Ravensburg  2.5 315 e 0 44? + 1 e 1 13? - 1 10 48? Pr -  Zürich Ebingen 3.1 315 e 0 50 - 1 e 1 26 - 3 e 0 58 P* Stuttgart  3.4 325 10 56k + 1 11 34 - 3 11 6 Pr 2.0
Ravensburg 2.5 315 e 0 44? + 1 e 1 13? - 1 i 0 48? Pr —  Zürich 2.8 299 e 0 47 0 e 1 22 0 i 0 53a P* —  Ebingen 3.1 315 e 0 50 - 1 e 1 26 - 3 e 0 58 P* —  Stuttgart 3.4 325 i 0 56k + 1 i 1 34 - 3 i 1 6 Pr 2.0
Ebingen $3.1 \ 315 \ e \ 0 \ 50 \ -1 \ e \ 1 \ 26 \ -3 \ e \ 0 \ 58 \ P^{\bullet} \ -3 \ Stuttgart 3.4 \ 325 \ i \ 0 \ 56k \ +1 \ i \ 1 \ 34 \ -3 \ i \ 1 \ 6 \ P_{\bullet} \ 2.0$
Stuttgart 3.4 325 10 56k + 1 11 34 - 3 11 6 Pg 2.0
Stuttgart $3.4 \ 325 \ i0.56k + 1 \ i1.34 - 3 \ i1.6 \ P_c \ 2.0$
Basle $3.5 298 10.56 - 1 13.29 L 11.5 P (13.5)$
Neuchatel 3.7 287 10 59 - 1 e 1 54 + 9 11 9 P* -
Strasbourg $4.0 \ 313 \ e1 \ 3 \ -1 \ i1 \ 47 \ -5 \ i1 \ 13 \ P_s \ e2.3$ Cheb $4.1 \ 2 \ e1 \ 8 \ +3 \ e1 \ 54 \ -1 \ e1 \ 19 \ P_s \ e2.3$
Cheb 4.1 2 e1 8 + 3 e1 54 - 1 e1 19 Ps e2.3
Prague 4.3 18 e 1 16 P* 2 21 Sg e 1 26 Pg —
Besançon 4.5 288 e 0 58 -13 e 2.9
Ogyalla 4.5 63 (1 33) P _e (2 21) S* (2 29) S _e (3.1)
Kalossa 4.8 80 e 1 25 P* 1 56 -16 - 2.8
Jena 4.9 356 il 17 0 il 12 - 3 il 29 P° il 2.5
Clermont-Ferrand 6.3 270 e 1 31 - 5 e 3 21 S _g - 4.3
Potsdam 6.4 5 e 1 59? P* e 3 1 + 8 e 3 12 S* 3.4
Uccle 7.1 315 e 1 593 P* — — e 4.8
Paris 7.2 296 e 2 14 P* e 3 2 -11 e 3 45 S*
Copenhagen 9.7 1 2 22 0 — — 6.1
Kew 9.9 308 e 4 56 S* i 5 46 L i 5 30 Sr (i 5.8)
Tortosa E. 9.9 243 e 3 44 7 e 4 37 +17 — e 9.2
Upsala 14.2 13 e 2 19 -65 — — e 7.3

Additional readings:—
Florence iZ = 0m.49s., iS*Z = 1m.16s., iS*Z = 1m.18s.Ravensburg e = 1m.9s.? and 1m.18s.?, iS*Z = 1m.21s.?.

Zürich  $eS_g = 1m.28s$ . Ebingen  $eS_g = 1m.37s$ .

Stuttgart  $iS_g = 1m.578$ . Strasbourg  $iS^* = 1m.558$ .,  $iS_g = 2m.38$ . Ogyalla readings reduced by 1 minute.

Jena iNZ = 1m.20s., i = 1m.37s. and 2m.25s.

Kew iEZ = 5m.35s.?, i = 5m.39s. Long waves were also recorded at Bucharest, De Bilt, and Granada.

July 24d. 3h. 26m. 15s. Epicentre 46° ·0N. 12° ·2E. (as at 1h.).

	Λ	Az.	P.	o -c.	s.	o – c.	Sup	p.	L.
	-	•	m. s.	8.	m. s.	8.	m. s.		m.
Triest	1.1	108	10 24	+ 2	i 0 42	+ 3			
Chur	2.0	295	e 0 35	0	10 59	- 3	-	_	-
Milan	2.2	256	e 0 41	+ 3	i 1 9	+ 3	1 5	8*	
Florence	2.3	197	e 1 11	S	(e 1 11)	+ 2	e 1 26	S.	(e 1·7)
Zurich	2.8	299	e 0 46	- 1	e 1 27	+ 5	i 0 51	S.	
Stuttgart	3.4	325	e 0 54	- 1	i 1 33	- 4	i 1 6	P.	-
Basle	3.5	298	e 0 56	- 1	e 1 36	- 4	e 1 47	S*	_
Neuchatel	3.7	287	10 58	- 2	e 1 54	+ 9	i 1 8	P·	-
Strasbourg	4.0	313	e 1 22	$P_{\mathbf{g}}$	i 2 2	S*	i 2 5	S	

Additional readings:— Florence L given as S. Stuttgart eS₈=1m.47s., e=1m.53s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

284

July 24d. 23h. American shock.

Long waves were also recorded at Pasadena.

Cape Girardeau ePN = 34m.43s., eSN = 38m.47s.St. Louis ePZ = 34m.45s., eSE = 38m.50s., eLE = 40m.49s.Tucson iP = 34m.55s., i = 35m.14s., e = 38m.20s., i = 39m.18s., eL = 43m.16s.Palomar ePZ = 35m.47s.Mount Wilson ePZ = 35m.53s.Riverside ePZ = 36m.5s.Tinemaha iPZ = 36m.12s.Toledo ePZ = 42m.22s., e = 42m.48s.Stuttgart eZ = 42m.51s.

July 24d. Readings also at 5h. (Mizusawa and near Yalta), 6h. (Tinemaha and near Branner), 7h. (Kew, near Andijan, and Tashkent', 10h. (Strasbourg, near Stuttgart, and Ebingen), 11h. (Tinemaha, Pasadena, Mount Wilson, Tucson, Riverside, La Paz, and near Yalta), 13h. (Arapuni and Wellington), 15h. (Upsala, Stuttgart, Helwan, Bombay, New Delhi, Ksara, Tashkent (2), Andijan (2), and Stalinabad), 16h. (De Bilt, Kew, and Prague), 20h. (Stuttgart, New Delhi, Almata, Tashkent, Stalinabad, and near Andijan (2)), 21h. (Tucson and Pasadena).

July 25d. Readings at 1h. (Mount Wilson, Palomar, Riverside, Tucson, and Tinemaha), 3h. (Tashkent and near Andijan), 6h. (Cape Girardeau, near St. Louis, and near Bogota), 7h. (Huancayo, La Paz, Mount Wilson, Pasadena, Tucson, Palomar, Riverside, and Tinemaha), 8h. and 15h. (Istanbul), 18h. (Berkeley), 21h. (near Mizusawa).

July 26d. Readings at 1h. (La Paz and near Fort de France), 2h. (Huancayo, La Paz, St. Louis, and near Lick), 9h. (Tacubaya), 13h. (Haiwee, Mount Wilson, Tucson, Pasadena, Palomar, Riverside, and Tinemaha), 14h. (Stuttgart), 15h. (near Istanbul).

July 27d. Readings at 3h. (Fresno, near Branner, and Lick), 4h. (Granada), 11h. (La Paz , Palomar, Tucson, and Riverside), 18h. (Berkeley).

July 28d. 4h. 4m. 41s. Epicentre 60° 2N. 148° 9W. (as on 1937 July 25d.).

$$A = -.4277$$
,  $B = -.2580$ ,  $C = +.8663$ ;  $\delta = -3$ ;  $h = -9$ ;  $D = -.517$ ,  $E = +.856$ ;  $G = -.742$ ,  $H = -.447$ ,  $K = -.500$ .

College Sitka Victoria Saskatoon Bozeman		∆ 4·7 7·7 18·9 24·5 26·6	AZ. 6 107 118 91 106	P. m. s. i 1 17 e 1 56 e 4 27 e 5 46	O-C. + 3 + 3 + 4	8. i 2 25 e 3 17 e 9 52 e 10 29	O-C. s. S* - 8 +12 +13	m. s.	рр. = =	L. m. i 2·6 e 3·6 9·3 13·3 e 14·2
Salt Lake City Tinemaha Haiwee Santa Barbara Mount Wilson	z.	$30.0 \\ 30.3 \\ 31.2 \\ 32.0 \\ 32.8$	$\begin{array}{c} 113 \\ 127 \\ 127 \\ 130 \\ 128 \end{array}$	e 6 15 e 6 23 e 6 28 i 6 36k	- 0 - 2 - 1	e 11_26 =	+16	i 6 25 i 6 34 i 6 45	pP pP	e 17·3
Pasadena Riverside Palomar Tucson Chicago	z.	32·9 33·3 34·1 37·5 40·9	128 128 127 121 89	i 6 37k i 6 40 i 6 47k i 7 17 e 9 24	- 1 - 1 - 1 PP			i 6 46 i 6 48 i 6 59 e 8 47 e 16 38	pP pP PP SS	e 45·8 e 19·8 e 21·6
St. Louis Cape Girardeau Ottawa Shawinigan Falls Seven Falls	N.	42·1 43·5 44·2 44·8 45·3	94 95 76 72 71	e 7 53 e 9 49 8 12 e 9 17	$\frac{-2}{PP}$	e 14 13 e 9 52 14 47 e 14 55?	-3 $+1$ $-7$	e 9 30 18 1	ss =	$\begin{array}{r} \mathbf{e} \ \ \mathbf{23 \cdot 3} \\ 22 \cdot 3 \\ 24 \cdot 3 \\ 23 \cdot 3 \end{array}$
Pittsburgh Philadelphia Uccle Stuttgart	z.	45.8 48.6 67.3 69.9	83 80 19 15	e 10 57 e 11 14	- 2 - 1	e 15 47 e 19 53	- 1 - 1	e 18 15 e 18 33	ss ses	i 22·4 e 22·3 e 33·3

Additional readings:— Pasadena iZ=6m.49s.

Tucson i = 7m.30s. St. Louis eZ = 7m.56s. and 8m.4s., eSS?E = 17m.19s.

Long waves were also recorded at Scoresby Sund, Columbia, Bermuda, Kew, and De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

285

July 28d. 17h. Undetermined shock.

Ksara eP=33m.30s.?, eS?=35m.10s., eSg?=36m.5s. Helwan iPZ=34m.42s.k, eZ=35m.6s. and 39m.6s., iZ=42m.2s. Tashkent P=36m.1s., eS=39m.48s. Sverdlovsk iP=36m.20s., S=40m.24s. Triest e=36m.37s., i=40m.56s. Florence ePZ=36m.58s.a, eE=46m.29s. Stuttgart eZ=37m.7s. Long waves were also recorded at Granada and De Bilt.

July 28d. Readings also at 1h. (Mizusawa), 3h. (Tacubaya and Istanbul), 5h. (Tacubaya), 6h. (near Tucson), 7h. (Tinemaha, Palomar, Tucson, and Mount Wilson), 8h. (near La Paz), 17h. (Florence and Ksara), 20h. and 21h. (Fort de France).

July 29d. 3h. 2m. 14s. Epicentre 19°·1N. 67°·1W.

Scale V at Bainet, St. Maroc, Port au Prince, Marmelade, Cap. Haitien, and Port de Paix. Observatoire Météorologique du Séminaire St. Martiel, Port au Prince. "Relevé des macroseisms de 1938-1946." Epicentre as adopted quoted from J.S.A. Bulletin of Seismo. Soc. of America, Vol. 33, 1943, p. 296.
Strong earth tremors at Ciudad Trujillo (Dom.) and San Juan, magnitude (estimated at Pasadena) 734.

A = +.3680, B = -.8711, C = +.3252;  $\delta = -1$ ;  $\hbar = +5$ ; D = -.921, E = -.389; G = +.127, H = -.300, K = -.946.

78 <b>4</b> 850-101-104 <b>2</b> 47-105-104-10		Δ	Az.	P. m. s.	0 - C.	s. m. s.	O-C.	m. s.	pp.	L. m.
San Juan Port au Prince Fort de France Bermuda Balboa Heights		$1.2 \\ 5.0 \\ 7.2 \\ 13.4 \\ 15.7$	$128 \\ 265 \\ 127 \\ 9 \\ 232$	i 0 23 1 24 1 43 i 3 9 i 3 44	- 1 P* - 6 - 5	2 41 3 5 (i 5 39) i 6 36	S _e - 8 - 6 - 3	i 1 39 2 35 —	P.	i 5·6 e 8·1
Bogota Columbia Merida Georgetown Philadelphia	N.	15·9 19·4 21·2 21·6 21·9	206 324 279 340 344	e 3 46 i 4 26 i 5 2 i 4 54 i 4 59	$-{1\atop -}{1\atop 4\atop 4\atop +}{1\atop 3\atop 0\atop +}$	i 6 51 e 7 55 i 8 55	$^{+}_{-}\overset{7}{\overset{9}{\overset{13}{5}}}$	e 3 54	PP = =	9·8 - i 10·3
Mobile Fordham Weston Harvard Pittsburgh		22·3 22·4 23·5 23·6 24·0	306 348 353 353 336	6 5 1 e 5 11 i 5 14 e 5 20	- 1 - 1 + 1 + 3	i 9 7 7 1 9 25 1 9 26	+ 3 + 2 + 1			
Halifax Buffalo Vermont Cape Girardeau Ann Arbor	N.	25·6 25·7 25·8 26·7 27·1	341 350 317 333	5 30 i 5 34 e 5 36 e 5 44 e 5 52	$   \begin{array}{c}     - 2 \\     + 1 \\     + 2 \\     + 1 \\     + 6   \end{array} $	9 52 1 10 22 1 10 5 1 10 13 1 10 28	$   \begin{array}{r}     -7 \\     +21 \\     +3 \\     -4 \\     +4   \end{array} $	e 5 55 i 6 14 i 6 35 i 5 48 6 34	PP PP PP	11.8 e 11.0 i 14.5
Ottawa Vera Cruz Shawinigan Falls St. Louis Seven Falls	z.	27·2 27·4 27·8 28·0 28·1	347 276 353 319 355	5 50 i 5 54 i 5 54 i 5 54 5 59	+ 3 + 5 - 1 - 1 + 4	10 28 10 408 1 10 38 10 42	$+ \frac{3}{5} \\ + \frac{5}{2}$	6 24 i 11 31 i 6 36 11 27	SS PP SS	13·3 13·8 13·5 12·8
Oaxaca Chicago Puebla Tacubaya Huancayo	E.	28·3 28·6 29·4 30·3 32·0	272 326 276 276 196	e 6 2 i 5 59 e 6 58 i 6 18 i 6 26	+ 5 - 1 PP + 3 - 4	i 10 45 i 10 52 i 11 18	$-\frac{3}{23}$ $-\frac{23}{24}$	i 13 13	sss	e 11·4
Guadalajara Manzanillo La Paz Chihuahua Denver	E. Z.	34·1 35·1 36·8 38·6	280 277 181 293 310	e 6 53 e 6 54 i 6 57 i 7 8 e 7 32	+ 5 - 3 - 3 + 6	i 12 45 e 13 29	+ <del>11</del> + <del>6</del>	i 15 12 e 9 0	ss PP	i 18·8 e 18·7
Tucson Montezuma Salt Lake City Logan Ivigtut		41·3 41·5 43·8 44·1 44·1	298 182 310 312 13	i 7 48 e 8 42 i 8 9 i 8 11 e 8 10	$     \begin{array}{r}       - & 1 \\       + & 52 \\       - & 0 \\       - & 1 \\       - & 2     \end{array} $	i 14 4 e 13 52 i 14 39 e 14 29 e 14 40	$     \begin{array}{r}       0 \\       -15 \\       -16 \\       -5 \end{array} $	i 9 26 (e 16 56) i 9 51 i 10 17 e 10 9	PP SS PP PP	i 17·4 e 16·9 i 17·5 i 18·2 e 19·0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

286

	<b>△ Az</b> .	P. m. s.	O – C.	S. O-C	m. Supp.	L. m.
Bozeman Saskatoon Palomar Riverside Mount Wilson Z.	44.8 317 45.1 327 46.4 299 46.9 300 47.5 300	i 8 17 8 22 i 8 29 a i 8 33 a	+ 2 - 1 - 1 0	i 14 31 — 24 14 55 — 4	18 11 SS	- e 18·0
Haiwee Pasadena Rio de Janeiro Tinemaha Santa Barbara Z.	47.6 303 47.6 300 47.8 149 48.0 303 48.9 300	i 8 43 i 8 42 a	- 1 - 1 + 2 - 1 - 4	i 15 37 + 5 i 15 26 -15 i 15 45 +		
Fresno N. Spokane Lick Santa Clara Branner E. N.	49·1 303 49·6 317 50·7 304 50·9 304 51·1 304 51·1 304	i 8 56 i 9 7 i 9 7 e 9 10	+ 4 + 1 + 4 + 2 + 7	e 15 59 - 4 e 16 19 + 5 i 16 27 + 6 e 16 32 + 5 e 16 27 + 5		e 25.6 e 26.3 e 25.4 e 24.2
Berkeley Ukiah Seattle Lisbon Victoria	51·2 304 52·1 306 52·8 316 53·5 56 53·7 317	i 9 6 i 9 13 e 9 46	$     \begin{array}{r}                                     $	e 16 18 - 7 i 16 39 + 7 e 18 59 16 56 - 7 16 55 - 7	e 18 20	e 26·2 e 23·8 e 23·2 P 22·4
Reykjavik La Plata E. N. San Fernando	54·2 22 54·4 170 54·4 170 54·4 170 55·7 59	9 40 ? 9 34 ? 9 28 ?	+ 5 + 9 + 3 - 3 + 2	17 11 + 5 19 10 Ses 21 587 SSS 16 58? -13 17 9 -13	20 28 7 SS 20 40 SS	22·4 26·5 - 22·0
Toledo Granada Scoresby Sund Almeria Edinburgh	57·5 55 57·8 57 58·0 16 58·7 58 59·8 36	i 9 57 e 9 56 i 10 3	- 2 + 2 - 1 + 1 - 2	i 17 49 — ; i 17 58 + ; i 17 49 — ; i 18 8 + ; 18 15 — ;		i 27·6
Stonyhurst Aberdeen Kew Tortosa Barcelona	59·9 38 60·6 34 60·9 40 61·0 53 62·2 52	i 10 16 i 10 14 i 10 28	- 1 + 1 - 3 + 10	i 18 20 - ; i 18 27 - ; i 18 31 - ; i 18 43 + ; i 18 49 - ;	i 12 19 PF	- e 27·9 e 28·8
Sitka Paris Clermont-Ferrand Uccle De Bilt	62.4 $325$ $62.5$ $44$ $62.8$ $47$ $63.8$ $42$ $64.3$ $40$	i 10 27 e 10 27 e 10 32k	- 1 - 1 - 3 - 4 - 3	i 18 48 - i i 18 55 - i i 19 9 -	e 13 50 PE 22 59 SS i 23 20 SS i 13 26 PE	- e 29·3 29·8
Marseilles Besançon Bergen Neuchatel Basle	64·5 50 64·8 45 64·9 31 65·5 46 65·9 45	i 10 41 i 10 42? e 10 46	$     \begin{array}{r}       -11 \\       -2 \\       -1 \\       -1 \\       -2 \\    \end{array} $	e 19 10 — 9 e 18 54 — 29 e 19 20 — 9 e 19 28 — 9 e 19 37	) —	— е 29·8
Strasbourg Zürich Stuttgart Milan Chur	66·6 46 66·9 44 67·1 48 67·3 46	e 10 53k e 10 52 i 10 56	- 6 - 1 - 4 - 1	i 19 33 e 21 8 i 19 47 i 19 47	e 13 25 PH e 13 25 PH i 13 26 PH e 24 53 SS	e 31·4 - 30·2
Jena Copenhagen Florence Cheb College	68·8 49 68·9 43 69·0 334	e 11 9 i 11 7k e 11 10	$     \begin{array}{rrr}                                   $		3	<u> </u>
Potedam Prague Triest Upsala Ogyalla	69·1 40 70·2 42 70·3 47 71·1 32 73·0 45	i 11 16 i 11 16 e 11 25	$^{+\ 3}_{-\ 1} \ ^{1}_{+\ 30}$	i 20 16 + 20 24 - 1 20 27 - 20 38 e 21 26 + 2	i 21 10 Se e 13 51 Pi 2 — Pi 3 14 12 Pi 3 14 33 Pi	e 29.8 e 31.8 e 30.8
Kalossa Belgrade Sofia Cernauti Campulung	73·7 46 75·1 47 77·6 49 78·0 43 78·1 47	e 11 45k e 12 2 e 12 4	+ 53 - 1 + 2 + 6	3 O. O.	e 28 46 SS i 14 43 PI e 21 41 S e 22 8 pS 22 25 pS	e 36·6

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

287

	Δ	Az.		o –c.	s. o-c.	Supp.	L.
Bacau Bucharest	79·1 79·1	45 47	m. s. e 12 10 e 12 7	8. + 2 - 1	m. s. s. e 22 8 + 1 22 3 - 4	i 15 6 PP	m. 34·8 34·8
Focsani Istanbul Moscow	79·5 82·2 82·3	46 50 33	e 12 17 12 24 12 26	$^{+}_{0}^{7}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		37·8 44·7
Honolulu Yalta Helwan Ksara	83·9 84·5 87·7 89·8	291 45 59 55	e 12 31 i 12 29 12 52 e 13 87	- 2 - 7 + 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 28 46 SS 15 58 PP e 23 34 SKS	e 39·9
Sverdlovsk	92.7	26	e 13 18	+ 3	1 23 37 [-11]	_ DED	
Tashkent Apia Irkutsk Sapporo Sendai	107.6 108.1 108.5 112.8 117.2	33 261 6 338 335	e 14 26 e 14 38 e 19 40 e 19 32	P P PP	1 25 5 [+ 3] e 25 8 [+ 4] 26 22 8 29 22 PS 29 51 PS	e 29 23 PPS 19 3 PP 35 28 SS	e 50·3 41·2 47·4
Tananarive Nagano Tokyo Cen. Met. Dehra Dun Misima	118.6 119.6 Obs.119.9 N. 120.5 120.7	101 337 335 35 335	e 20 15 e 19 19 e 21 4 e 18 37	PP [+27] PP [-17]	25 45 [ 0] e 24 40 [-70]	37 15 SS  e 37 22 SS	e 57·2 e 65·3 e 65·1 64·8
Nagoya New Delhi Zinsen Osaka Kobe	N. 121·4 122·3 122·4 122·5	337 37 348 338 338	e 20 18 e 36 22 e 20 40 20 34	PP SS PP PP	e 40 51 SSS 25 51 [- 4] = =	23 0 PPP — — — — — — — — — — — — — — — — — — —	74·1 66·8 65·3 e 64·9 50·8
Arapuni Hamada Wellington Auckland Koti	122.8 123.3 123.4 123.5 124.1	236 341 232 237 339	20 467 i 19 41 20 52 20 40	PP [+42] PP PP	e 30 34 ? PS e 30 2 PS 28 1 {+24} 29 11 ?	38 167 SS 20 41 PP 38 21 SS	57·8 47·8 56·8 57·8
Christchurch Bombay Calcutta Kodaikanal Colombo	124·8 E. 125·5 N. 132·2 E. 134·5 E. 138·4	229 49 31 53 55	18 59 e 19 10 e 21 42 e 22 6 e 19 3	[-3] [+7] PP PP [-25]	26 13 [+ 8] 26 11 [+ 4] i 39 22 SS 32 41 PS	e 22 53 PKS 39 56 SS	58·7 e 60·6
Brisbane Riverview Sydney Perth	N. 142·3 143·0 143·0 166·9	$249 \\ 238 \\ 238 \\ 191$	e 19 53 i 19 32 e 19 40?	[+18] [-4] [+4]	e 29 13 {-22} i 29 47 {+ 8} e 29 347 {-5} i 30 51 {-57}	e 35 22 PPS i 22 46 PP — —	e 67·1 i 80·4

```
Additional readings:-
  Port au Prince i = 2m.4s, and 2m.9s.
  Fort de France P^* = 2m.2s., e = 2m.42s.
  Bermuda i = 5m.15s., iS? = 5m.27s.
  Bogota iP = 3m.49s., iSS = 7m.12s.
  Columbia i = 7m.34s.
  Philadelphia i = 5m.3s, and 8m.33s.
  Fordham iP = 5m.4s.
  Harvard i = 5m.19s.
  Buffalo iPPP = 6m.26s., iSS = 11m.30s.
  Vermont i = 7m.40s.
 Ann Arbor SS = 11m.58s.
 Ottawa e = 7m.10s., iZ = 11m.9s., SS = 11m.26s.
 St. Louis iPZ = 5m.59s., iN = 6m.18s., 7m.30s., 7m.36s., 8m.0s., 8m.7s., and 8m.13s.,
      iE = 11m.16s., iN = 12m.40s., 12m.44s., 12m.50s., and 12m.54s.
 Seven Falls e = 8m.18s.
 Chicago i = 9m.56s., iS? = 10m.26s.
  Huancayo i = 12m.38s, and 13m.32s.
 La Paz iZ = 7m.23s., iSSZ = 15m.15s., iZ = 16m.16s.
 Denver eE = 17m.32s.
 Tucson i = 10m.29s, and 13m.37s.
 Salt Lake City e = 10m.13s.
 Logan e = 8m.55s. and 13m.0s.
 Ivigtut e = 8m.58s.
 Palomar iZ = 8m.36s.
 Mount Wilson i = 8m.42s.
 Pasadena iZ = 8m.41s.
 Rio de Janeiro iSSN = 18m.40s.
 Berkeley ePN = 9m.9s., ePE = 9m.12s., iSE = 16m.39s., eN = 21m.9s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
Lisbon iPZ =9m.24s.a, PcP?Z =10m.11s., SN =17m.8s., SSE =20m.37s.
Victoria PPP=12m.29s., eE=18m.12s., SSS=22m.2s.
San Fernando PSE = 17m.30s., SSE = 20m.34s.
Granada PcP=10m.51s., PP=12m.41s., pPP=12m.53s., PPP=13m.23s., pPcS=
    15m.7s., sS = 18m.24s., Q = 25m.34s.?.
Scoresby Sund iSS = 21m.49s.
Almeria PcP = 10m.47s., PP = 12m.16s., PPP = 13m.40s., PcS = 14m.37s., ScS = 19m.39s.,
    SS = 22m.7s., SSS = 25m.4s.
Edinburgh P_cP = 10m.53s., PPP = 13m.46s., PS = 18m.33s., S_cS = 19m.52s., SS = 22m.13s.
    SSS = 24m.44s.
Stonyhurst PPP? =13m.25s., iPS =18m.32s., PPS? =18m.50s., ScS? =19m.17s.,
    SSS = 24 \text{ m.} 52 \text{ s.}, Q = 25 \text{ m.} 40 \text{ s.}
Kew iP_cPEZ = 10m.59s., iPPPN = 13m.29s., iP_cSEN = 14m.48s., iPSN = 18m.41s.,
    iS_cSN = 20m.11s., eSSEN = 22m.23s., eSSSN = 24m.46s.?
Tortosa PcPN =11m.9s., PPPN =13m.52s., PSE =19m.11s., SSE? =23m.0s., SSSE? =
    24m.38s., QN = 25m.23s., ePKP, PKPN = 40m.8s.
Sitka e = 22m.50s., eSS = 23m.16s.
Uccle iP = 10m.35s.
De Bilt eSS = 23m.16s., iSSS = 26m.46s.
Bergen ePPP = 14m.46s., PS = 19m.49s., SS = 23m.34s.
Basle e = 12m.25s.
Strasbourg iP=10m.50s., i=12m.9s., iPPP=14m.6s., i=19m.58s.
Stuttgart iP = 10m.56s.k, i = 13m.46s., ePPPZ = 14m.59s., eSS = 24m.21s., eSSS =
    27m.41s., ePKP,PKPZ = 39m.19s.
Jena iPN = 11m.8s., eEZ = 20m.6s., eN = 21m.2s., eE = 21m.14s., eEN = 24m.30s.
Copenhagen 26m.17s.
Florence iPPPE = 14m.40s., iPSE = 20m.32s.
Potsdam iPN =11m.17s.
Prague ePPP = 15m.52s.?, ePS = 21m.10s.?.
Upsala iE = 12m.7s., PP?N = 14m.15s., iPPPE = 16m.6s., iE = 21m.30s. and 22m,20s.,
    SS?N = 25m.13s.
Ogyalla eSE = 19m.21s., eSN = 19m.41s.
Belgrade i = 12m.2s, and 13m.35s.
Bucharest iZ = 12m.19s., iPPP?E = 16m.38s., SKS?EN = 21m.44s., S?E = 23m.4s.
Honolulu e = 16m.0s., 18m.18s., and 32m.54s.
Helwan PPPZ = 18m.0s., PSEN = 24m.3s., SSEN = 28m.58s.
Apia ePSEN = 28m.10s., eSSEN = 34m.29s., eSKKSEN = 37m.23s., iPKPSKS? =
    45m.19s.
Tananarive PPP=22m.25s., SKKS=27m.9s., PS=29m.42s., PPS=31m.17s., SSS=
    40m.51s.
New Delhi N SKKS = 27m.21s., PS = 30m.11s., PPS = 31m.58s., SSS = 41m.18s.
Wellington iZ = 20m.53s. and 30m.51s., PPPS = 33m.56s., SSS = 38m.41s., i = 47m.46s.,
    Q = 51.8m.
Auckland i = 21m.26s., SSS = 42m.36s., i = 43m.31s., Q = 52m.28s.
Christchurch PKS = 22m.19s., SKKS = 27m.53s., PS = 30m.49s., PPS = 32m.22s., SS =
    37m.53s., SSS = 42m.17s., Q = 51m.59s.
Bombay PKSE = 22m.39s., PPPE = 23m.39s., SKKSE = 27m.51s., PPSE = 32m.29s.,
    SSE = 38m.17s., SSSE = 42m.57s.
Calcutta iPPP?N = 25m.17s.
Brisbane iN =41m.41s.
Riverview iEZ=19m.35s., iPPPZ=25m.57s., iSKSPZ=33m.3s., iE=33m.7s. and
    34\text{m}.27\text{s}., iPPSZ = 35\text{m}.17\text{s}., iN = 35\text{m}.47\text{s}., iE = 35\text{m}.57\text{s}., iSSE = 41\text{m}.20\text{s}.
    iN = 41m.39s., iE = 42m.47s., iZ = 43m.23s., iSSSE = 46m.53s., eQN = 60m.22s.?
Perth i = 41m.46s.
Long waves were also recorded at other Japanese stations.
```

### July 29d. 4h. 7m. 45s. Epicentre 19°·1N. 67°·1W. (as at 3h.).

		Δ	Az.	P.	8	O-C.	s.	0-C.	Su	pp.
			o	m.	8.	8.	m. s.	8.	m. s.	16/10/66/57
Bogota		15.9	206	e 3 5	51	+ 4	e 7 7	+23	1 3 55	$\mathbf{PP}$
Harvard		23.6	353	3.757 (1) (10.4) (1.2)	15	$^{+}_{+}$ $^{4}_{2}$	19 25	0	i 5 31	$\mathbf{PP}$
La Paz		35.4	181		18	-12				-
		41.3	298		19	0	e 13 38	-26	18 2	9
Tucson		46.4	299		31	+ ĭ				
Palomar	Z.	40.4	200	10.	**	3.412 · 🚓				
Riverside		46.9	300	e 8 3	34	0	_		_	
Mount Wilson		47.5	300	i 8 4	10	+ 2	( <del>- 4</del>	_		
Haiwee		47.6	303		39	0	_			
Pasadena		47.6	300		10	+ 1		-		
Tinemaha		48.0	303		13	0			<del></del>	
1 memana		100	000							
Toledo	z.	57.5	55	i 9 5	53	0	1	-	-	_
Stuttgart	z.	66.9	44	e 10 5	55	- 1			vers <del>t</del> dres	-
Perth	200	166.9	191		20	[+12]	-	-	1 23 10	PKS

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

July 29d. 7h. 15m. 14s. Epicentre 12°.9N. 124°.3E. (as on May 3d.).

A = -.5495, B = +.8055, C = +.2218; D = +.826, E = +.564; G = -.125, H = +.183, K = -.975. Supp. L. O-C.m. m. s. m. s. Calcutta Irkutsk i 18 20 46.4 New Delhi N. i 16 5 i 17 22 PPe 19 SS 284 50 49.7 e 10 Bombay E. 9 38 312 Tashkent 55.5 e 20 46? e 22 35 + 10 42 328 65.0 Sverdlovsk + 6 + 2 + 2 142  $71 \cdot 2$ Wellington 2 2 e 12 33? 303 81.6 Ksara  $P_cP$ e 13 13 86.2300 e 12 46 Helwan e 23 22 332 87.1 Upsala  $_{\mathrm{PS}}$ e 25 23 e 24 10 323 92.5Prague e 56.8 e 24 46? +1993.7323 Cheb 319 Triest 94.7e 23 58 [-10] 323  $96 \cdot 2$ Stuttgart e 13 39 e 18  $\mathbf{PP}$ 318 97.1 Florence e 47.8 PS97.9 326 e 26 14 Uccle  $\mathbf{PP}$ 105.8 50 e 18 34 Palomar PKS e 22 23 i 18 57  $\mathbf{PP}$ 320 Toledo 108.9 $\mathbf{PP}$ e 19 4 110.8 48 e 18 58 [+23]Tucson

[+11]

Additional readings:— Bombay eE = 15m.47s.

Bogota

Prague e = 26m.55s. Long waves were also recorded at Bergen and De Bilt.

47

154.8

e 20

July 29d. 11h. 42m. 44s. Epicentre 19°·1N. 67°·1W. (as at 4h.).

		Δ	Az.	P. m. s.	0 -C.	S. m. s.	O -C.	m. s.	pp.	L. m.
San Juan Port au Prince Fort de France Bermuda Bogota		1·2 5·0 7·2 13·4 15·9	128 265 127 9 206	i 0 287 e 1 19 e 1 53 e 5 9 i 3 53	+ 4 + 1 + 4 + 6	i 2 9 e 5 28 e 6 54	$-\frac{9}{17} + 10$			i 2·6
Columbia Philadelphia Harvard Pittsburgh Cape Girardeau	N.	$\begin{array}{c} 19.4 \\ 21.9 \\ 23.6 \\ 24.0 \\ 26.7 \end{array}$	324 344 353 336 317	e 4 24 e 4 56 i 5 30 e 5 50 e 6 2	$   \begin{array}{r}     - & 6 \\     - & 1 \\     + 17 \\     + 33 \\     + 19   \end{array} $	e 8 49 e 8 49 i 9 23 e 9 43 e 10 44	$     \begin{array}{r}       - & 4 \\       - & 5 \\       - & 2 \\       + & 11 \\       + & 27     \end{array} $	e = 47	P <u>P</u>	e 10·3 e 11·3 e 14·3
Ottawa St. Louis Chicago Huancayo La Paz	z.	$27.2 \\ 28.0 \\ 28.6 \\ 32.0 \\ 35.4$	347 319 326 196 181	e 5 467 e 5 51 e 7 0 e 6 59	$- \frac{1}{4} + \frac{30}{1}$	e 11 7 e 10 43 e 12 6	$^{+29}_{-5}_{+24}$			e 13·8 e 13·5
Tucson Salt Lake City Bozeman Palomar Riverside	z. z.	41·3 43·8 44·8 46·4 46·9	298 310 317 299 300	$\begin{array}{c} {}^{i} \begin{array}{c} 7 & 48 \\ e & 13 & 6 \end{array} \\ e & 8 & 30 \\ e & 8 & 32 \end{array}$	$-\frac{1}{7}$ $-\frac{0}{2}$	i 14 11 e 18 7 e 15 48	+ 7 + 53 —	e 9 22 =	PP =	i 18.9 e 19.5 e 19.7
Mount Wilson Haiwee Pasadena Tinemaha Santa Barbara	z.	47.5 47.6 47.6 48.0 48.9	300 303 300 303 300	e 8 38 i 8 40 i 8 39 i 8 41 e 8 47	$\begin{array}{c} & 0 \\ + & 1 \\ 0 \\ - & 2 \\ - & 3 \end{array}$					e 25·6
Toledo Granada Scoresby Sund Kew Uccle		57·5 57·8 58·0 60·9 63·8	55 57 16 40 42	i 9 54 e 10 19	+ 1 + 2	e 17 29 i 16 54 e 17 54 (e 18 16) e 19 10)	-21 $-60$ $-3$ $-18$ $-1$	12 7	PP = =	i 28·4 e 24·2 e 18·3 e 27·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

290

Supp. De Bilt Stuttgart

Additional readings :-St. Louis iZ = 6m.26s., eZ = 11m.10s., and 11m.14s.Long waves were also recorded at College, Sitka, Ukiah, and other European stations.

July 29d. Readings also at 3h. (Bogota and Mizusawa), 4h. (La Paz), 5h. (Bogota, Harvard, Tucson, Palomar, Riverside, and Tinemaha), 6h. (Bogota (2), Harvard (2), Mount Wilson (2), Pasadena, Palomar (2), Riverside (2), Tucson (2), Tinemaha (2), St. Louis and Wellington), 7h. (Tucson and Palomar), 8h. (Bogota (2), Harvard (3), Mount Wilson, Tucson (2), Pasadena (2), Palomar (2), Riverside, Tinemaha (2), and Florence), 9h. (Bogota, Harvard, Chicago, Tucson, Mount Wilson, Pasadena, Palomar (2), Pasadena, Palomar (3), Palomar Palomar, Riverside, Tinemaha, and near Mizusawa), 11h. (La Paz), 12h. (Bombay, Calcutta, New Delhi, and Tashkent), 15h. (Stuttgart), 16h. (Riverview, Arapuni, and Wellington), 17h. (De Bilt and Kew), 18h. (St. Louis), 20h. (Florence, Riverview, Christchuch, Arapuni, and Wellington), 21h. (Granada), 22h. (Columbia), 23h. (Harvard and Tucson).

July 30d. 1h. 2m. 30s. Epicentre 19°·1N. 67°·1W. (as on 29d.).

A =	-+	3680,	B = -	·8711, C	= + .325	2;	-1;	h = +5.		
San Juan Port au Prince Fort de France Bermuda Balboa Heights		∆ 1.2 5.0 7.2 13.4 15.7	Az. 128 265 127 9	P. m. s. i 0 23 i 1 36 1 49 3 10 i 3 47	O-C. s. -1 Pg 0 -4 +3	S. i 0 39 i 2 33 3 10 i 5 37 e 6 44	O - C. s. - 2 - 3 - 8 + 5	m. s. i 1 49 e 5 20	p. P.≇ —	L. m. i 3·0
Bogota Columbia Merida Georgetown Philadelphia	E.	15.9 19.4 21.2 21.6 21.9	206 324 279 340 344	e 3 48 i 4 29 i 4 59 i 4 59 e 4 56	+ 1 - 1 + 10 + 5 - 1	i 7 27 i 8 8 i 8 51 e 8 54	SSS + 4 + 2 0	i 3 52 i 5 1	P = P	e 9·0 e 10·0
Mobile Fordham Harvard Pittsburgh Halifax		22·3 22·4 23·6 24·0 25·6	306 348 353 336 6	i 5 5 e 5 2 i 5 14 e 5 18 e 5 30?	+ 4 + 1 + 1 - 2	i 9 16 i 9 6 i 9 27 i 9 22	$^{+14}_{+2}$ $^{+2}$ $^{-10}$	i 5 9	₽ =	9.5
Cape Girardeau Ottawa Shawinigan Falls St. Louis Florissant	N.	26·7 27·2 27·8 28·0 28·1	317 347 353 319 319	e 5 42 5 47 e 5 53 e 5 54 i 5 56	- 1 0 - 1 + 1	e 10 16 10 24 i 10 35 i 10 40	$- \frac{1}{1} \\ - \frac{3}{0}$	e 6 11 6 183 e 11 24 i 6 32 i 6 34	PP PP SS PP	e 13·3 13·5 13·5 i 13·1
Seven Falls Chicago Huancayo La Paz Tucson		28·1 28·6 32·0 35·4 41·3	355 326 196 181 298	e 6 30 e 5 59 e 6 23 7 1 i 7 49	PP - 1 - 7 + 1	10 40 e 10 46 i 11 38 12 54 e 14 6	$     \begin{array}{r}       0 \\       - & 2 \\       - & 4 \\       + & 20 \\       + & 2     \end{array} $	e 6 13 e 7 35 i 9 27	PP	e 12.5 e 15.8 e 15.2 e 17.4
Salt Lake City Logan Bozeman Saskatoon Palomar	z.	43·8 44·1 44·8 45·1 46·4	310 312 317 327 299	e 8 11 e 8 12 e 8 18 i 8 32a	+ 2 + 1 + 2	e 14 34 i 14 41 e 14 55 e 14 55	- 6 - 4 - 4	e 17 48 e 18 12 e 18 14 i 8 50	SS SS P	e 18·1 e 18·1 e 20·3 22·5
Riverside Mount Wilson Pasadena Haiwee Tinemaha	z.	46.9 47.5 47.6 47.6 48.0	300 300 300 303 303	i 8 34a i 8 39a i 8 40a i 8 41a i 8 42a	+ 1 + 1	i 15 37	+ 2 -	i 8 52	P = =	e 19·6
Santa Barbara Santa Clara Berkeley Ukiah Lisbon		48.9 50.9 51.2 52.1 53.5	304 304 306 56	e 8 49 e 9 8 i 9 0 e 9 12 9 15	- 1 + 3 - 7 - 2 - 9	i 16 27 e 16 40 16 52		= 9 4 9 187	P P	e 28·7 e 30·0 e 26·3 22·6

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
L.
                                                                                  Supp.
                                                0 - C
                                Az.
                                                                                                m.
                                                                             m. s.
                                       m. s.
                                                  8.
                                                                                                24.5
                                                 +22
                                          487
Victoria
                               317
                                                                                                26.0
                                          36
                        55.7
San Fernando
                                59
                                                                                       \mathbf{PP}
                                 55
                        57.5
                                          49
Toledo
                                                                                                24.4
                                                                                       \mathbf{p}\mathbf{P}
                                                                                15
                                                                             10
                                 57
Granada
                        57.8
                                                                                               23.3
                                                                                      PPP
                                 16
Scoresby Sund
                        58.0
                                                                                       PP
                                                                                                28.0
                                                                             12 24
                        58.7
                                 58
                                     i 10
Almeria
                                                           18
                                 36
                        59.8
Edinburgh
                                                                                                28.3
                                                                             10 14
                                    e 10
                        59 \cdot 9
Stonyhurst
                                                                                                28 \cdot 1
                                                                       53
                                     i 10 10
                                                         i 18
                        60.6
Aberdeen
                                                                                               26.5
                                                                                              e
                                                        e 18 31
                        60.9
                               40
                                     i 10
Kew
                                                                                              e 25.5
                                                                    +10
                                                           18
                                                              45
                                53
                                       10 27
                        61.0
Tortosa
                                                                                             e 29·7
                                                        e 18
                                                                       9
                                                              42
                                52
                        62 \cdot 2
                                                                    _
Barcelona
                                                                                       ScS
                                                                                              e 25.7
                                                         e 18
                                                              51
                                                                       2
                                                 +14
                                    e 10 41
                        62.4
                               325
Sitka
                                                                                                26.5
                                                        e 18
                                    e 10
                                          25
                        62.5
Paris
                                                                                              e 28.8
                                                         e 18
                                     i 10
                                          27 k
                        62.8
Clermont-Ferrand •
                                                                                        SS
                                                                                              e 29.5
                                                                                13
                                                         i 19
                                     i 10
                                          32 k
Uccle
                        63.8
                                                                                        SS
                                                                             23 25
                                                                                              e 27.5
                                                              15
                                 40
                                     i 10 36k
                                                         i 19
                        64 \cdot 3
De Bilt
                                                                                              e 29·5
                                                         e 19 20
                                31
                        64.9
Bergen
                                                    3
                                    e 10 51
                                 46
                        66.6
Zürich
                                                                                        SS
                                                                                              e 31.5
                                                        e 19 43
                                                    3
                                     i 10
                                          53
                        66.9
Stuttgart
                                                 _
                                                 -27
                        67 \cdot 1
                                          307
                                 48
Milan
                                     e 10
                                 42
                                     e 11
                        68.3
                                           3
Jena
                                                                                        ScS
                                                                                                32.5
                                                                       3
                                                           20
                                 37
                                     e 11
                        68.6
Copenhagen
                                                                            1 13 20
                                                         i 20
                                                                                       \mathbf{P}\mathbf{P}
                                     e 11
                                                                       6
                        68.8
                                 49
Florence
                   E.
                                                                9
                                                                                              e 32·5
                                                         e 20
                                 43
                        68.9
Cheb
                                                                                              e 31.9
                               334
                        69.0
College
                                                                                              e 30·5
                                                         e 20
                                                              12
                        69 \cdot 1
                                 40
Potsdam
                                                                           e 21 13
                                                                                              e 29.5
                                                                                        S_cS
                                                         e 20
                                                              28
                                                                       0
                                     e 11 15
                         70-2
                                                 -
Prague
                                                                                              e 33.5
                                                         i 20
                                                              23
                                                     2
                                                                       6
                         70.3
                                 47
Triest
                                                                                              e 31.5
                                                         e 20
                                                              297
                                     e 12 30%
                                                 +68
                        71.1
Upsala
                                                                                       SKS
                                                                                               (35.5)
                                                                             (22 21)
                                 47 (e 12
                                                                       5
                        79 \cdot 1
Bucharest
                                                               36
                                       12
                        82.3
                                 33
                                          25
Moscow
                                                         e 22
                                                              58
                        84.5
                                 45
Yalta
                                                                                       PP
                                                                              16 15
                                 59
                                     i 12 51k
                                                           23
                                                              15
                                                                       4]
                        87.7
Helwan
                                                                                       SKS
                                                                              23
                                                         e 23 53
                                 55
                                                 +18
                        89.8
                                       13
                                          20
                                                                        0
Ksara
                                 26
                                                           24
                                                              16
                                       13
                                          16
                        92.7
Sverdlovsk
                                                                                        _{PS}
                                                                   {+
                                     e 18
                                                         i 25
                                                              52
                                                  \mathbf{PP}
                                          57
                       107.6
Tashkent
```

```
Additional readings :-
  Port au Prince i = 1m.58s. and 2m.47s.
  Fort de France Pr = 2m.39s.
  Bogota i = 4m.2s, and 4m.10s.
  Philadelphia e = 8m.42s.
  Fordham i = 8m.59s.
 Cape Girardeau ePPP?N =6m.40s.
 St. Louis iPZ = 5m.58s., iN = 6m.39s. and 6m.45s., iPPPZ = 6m.48s., iN = 6m.51s. and
      6m.57s., eN = 11m.15s., \cdot 11m.24s., 11m.27s., 11m.32s., and 11m.40s.
 Florissant i = 11m.0s., SS = 11m.50s.
 Tucson i = 8m.7s., 8m.41s., and 13m.36s.
 Berkeley iN = 27m.25s., iE = 28m.36s.
 Granada P_cP = 11m.39s., i = 22m.3s.
 Scoresby Sund e = 19m.40s.
 Almeria P_cP = 10m.56s., PPP = 13m.24s., P_cS = 14m.53s., PS = 18m.23s.
 Stonyhurst PS = 18m.32s., ePPS = 19m.3s., S_cS = 19m.49s., SS = 22m.9s.
 Kew ePPZ = 12m.21s.?, ePPPZ = 13m.56s.?, eSSEZ = 22m.21s., eSSEE = 24m.30s.?.
 Florence ePPPE = 14m.2s., ePSE = 20m.38s.
 Bucharest readings increased by 67 minutes.
 Helwan eZ = 12m.58s.
```

```
July 30d. 2h. Undetermined shock in Pacific off South America. Huancayo iP = 13m.2s., i = 14m.27s., iL = 15.5m. Bogota eP = 14m.29s., i = 14m.48s., iS = 17m.39s., iSS? = 17m.42s., i = 18m.39s. La Paz PZ = 15m.3s., S? = 18m.19s., LZ = 19.9m. Cape Girardeau ePN = 19m.30s., eN = 19m.41s. St. Louis ePZ = 19m.43s., eZ = 19m.53s., eS?N = 24m.55s., eS?N = 26m.27s. Tucson iP = 20m.2s., i = 20m.15s. Palomar iPZ = 20m.35s. Riverside ePZ = 20m.39s. Mount Wilson iPZ = 20m.44s. Pasadena iPZ = 20m.45s. Tinemaha iP = 20m.59s. Toledo iPZ = 23m.50s., eSN = 29m.37s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

292

July 30d. 4h. 23m. 15s. Epicentre 19°·1N. 67°·1W. (as at 1h.).

			100				the state of the second			
		Δ	Az.	P.	O-C.	S.	O-C.	Sur	p.	L.
		0	0	m. s.	s.	m. s.	s.	m. s.	0 <del>-0</del> 0000	m.
Fort de France		7.2	127	1 57	+ 8				_	
Bogota		15.9	206	e 3 48	+ 1	e 6 55	+11		_	
Harvard		23.6	353	i 5 16	+ 3	19 29	+ 4	i 5 23	P	i 16.9
Cape Girardeau	N.	26.7	317	e 5 41	- 2	e 11 9	SS		_	
St. Louis	0.00000	28.0	319	e 5 52	- 3	e 10 55	+17	-		e 14·1
Tucson		41.3	298	e 7 47	- 2					
Palomar	Z.	46.4	299	18 27	- 3		-	-	and the same of	-
Riverside	Z.	46.9	300	e 8 33	= 3 = 1		12.0	5100000		
Mount Wilson	Z.	47.5	300	e 8 38	õ			-	-	
Tinemaha	z.	48.0	303	e 8 41	- 2	_	-		_	

Additional readings :-

Harvard i = 5m.33s. and 9m.42s.

Long waves were also recorded at De Bilt and Kew.

July 30d. Readings also at 3h. (Wellington), 5h. (Bogota), 8h. (near Basle, Neuchatel, and Zürich), 9h. (near Sofia), 11h. (near Mizusawa), 12h. (near Bogota), 13h. (near Triest and near Stalinabad), 15h. (near Mizusawa and near Stalinabad, Tashkent, and Tchimkent), 16h. (Florence), 18h. (St. Louis, near Tucson, Palomar, Riverside, Mount Wilson, and Pasadena), 21h. (Huancayo, Tacubaya, La Paz, Columbia, San Juan, Philadelphia, Pittsburgh, St. Louis, Logan, Pasadena, and Tucson), 22h. (Kew, Riverview, and Wellington), 23h. (Wellington).

July 31d. 3h. 22m. 7s. Epicentre 19°·1N. 67°·1W. (as on 30d.).

$\mathbf{A} = +$	·3680, B =	-·8711, C=	$+\cdot 3252$ ; $\delta =$	-1; h	= +5.	
San Juan Port au Prince Fort de France Bermuda Bogota	∆ Az.  1.2 128  5.0 265  7.2 127  13.4 9  15.9 206	m. s. i 0 28 i 1 35 e 1 47 e 3 12	P. S. m. s. 1 0 43 1 2 25 - 2 (e 5 34) + 8 e 6 49	*s•	Supp. m. s.  = = = = = = = = = = = = = = = = = = =	L. m. i 2·6 e 5·6
Columbia Philadelphia Fordham Harvard Pittsburgh	$\begin{array}{cccc} 19 \cdot 4 & 324 \\ 21 \cdot 9 & 344 \\ 22 \cdot 4 & 348 \\ 23 \cdot 6 & 353 \\ 24 \cdot 0 & 336 \end{array}$	e 4 55 i 5 5 i 5 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2 - 2 - 1 - 8 - 9	6 2 PPP 8 50 PcP	e 9·2 e 10·0 =
Cape Girardeau N. St. Louis Chicago Huancayo La Paz	26.7  317 $28.0  319$ $28.6  326$ $32.0  196$ $35.4  181$	e 5 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5 - 14 + 13	6 45 PP	e 13·2 e 14·0 e 17·0 22·4
Tucson Palomar z. Riverside z. Mount Wilson z. Pasadena	41·3 298 46·4 299 46·9 300 47·5 300 47·6 300	i 8 30 e 8 32 i 8 37	- 2 = = = = = = = = = = = = = = = = = =	— e		e 22·1 = e 25·4
Tinemaha Santa Barbara z. Toledo Granada Almeria	48.0 303 48.9 300 57.5 55 57.8 57 58.7 58	e 8 48 i 9 16 i 9 58	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-64	8 58 P = = 10 16 pP	24·9 29·4
Kew Paris Clermont-Ferrand Uccle De Bilt	60.9 40 62.5 44 62.8 47 63.8 42 64.3 40	e 10 26 e 10 30 e 10 397	+ 2 e 18 39 - 2	$+ \frac{5}{-2} \\ -12$		e 25.9 28.9 e 30.8 e 29.9 e 27.9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

293

	Δ	Az.	Р.	O-C.	s.	o - c.	Suj	pp.	L.
		0	m. s.	s.	m. s.	в.	m. s.		m.
Stuttgart	66.9	44	e 10 53	- 3	S	-	5 to 10 to 1		-
Copenhagen	68-6	37		-	20 7	- 2		<del></del>	-
Florence	68.8	49	i 11 27	+19		7	e 21 8	$s_cs$	

Additional readings:-

Bogota i = 4m.5s. Harvard i = 5m.26s., 5m.29s., 9m.20s., and 9m.29s.

St. Louis eZ =6m.7s., iPPZ =6m.26s.

Tucson e = 8m.8s. Long waves were also recorded at Bozeman, Logan, Sitka, and other European stations.

July 31d. 4h. 37m. 40s. Epicentre 43°-9N. 13°-1E. (as on 1937 Nov. 26d.).

Scale V at Ancona and Osimo; IV at Maccrata and Pesaro, epicentre 43°·8N. 13°·1E. (Strasbourg).
R. P. Coppede.

"Annuario Sismico del Osservatorio Ximeniano," Florence, p. 18.

$$A = +.7041$$
,  $B = +.1638$ ,  $C = +.6909$ ;  $\delta = -7$ ;  $h = -3$ ;  $D = +.227$ ,  $E = -.974$ ;  $G = +.673$ ,  $H = +.157$ ,  $K = -.723$ .

		Δ	Az.	P. m. s.	O – C.	s. m. s.	0 – C. s.	m. s.	pp.	L. m.
Florence	z.	1.3	265	i 0 30	+ 5	i 1 1	8	i 1 11	3	-
Triest		1.8	15	e 0 29	- 3		_			
Milan		3.2	299	e 1 4?	$P_g$	2 19	Sg	6- <del>5-3-3</del> -	: <del>: : : : :</del>	
Zürich		4.7	318	= (		e 2 14	+ 4			
Basle		5.3	316	e 1 21	- 1					-
Stuttgart	z.	5.6	332	e 1 26	- 1	e 2 26	- 7	e 1 56	Pe	4.3
Strasbourg	253	6.0	324	e 2 37	S	i 3 44	S.	i 3 6	8*	
Jena		7.1	352	e 2 44	- 3	i 3 14	+ 4	i 4 1	S.	-

Additional readings:— Stuttgart e = 2m.47s.,  $eS_z = 3m.15s.$ 

Jena eN = 2m.51s. Long waves were also recorded at De Bilt, Uccle, and Potsdam.

### July 31d. 20h. Undetermined Caribbean shock.

Fort de France e=4m.13s. Port au Prince eP=4m.26s., eS=5m.16s., iS=5m.21s., iL=5m.35s. Bogota iP=6m.34s., i=6m.44s., e=9m.30s. and 9m.56s. Philadelphia eP=7m.44s., e=8m.31s., eS=11m.24s., eL=13m.12s. Harvard eP=7m.55s., i=8m.14s., iS=12m.7s., i=30m.31s. Fordham iP=7m.57s., iS=11m.51s. Pittsburgh ePNW=8m.26s., eSNW=12m.30s. La Paz P=9m.46s., LZ=25·0m. Tucson iP=10m.33s., i=10m.43s. Palomar iPZ=11m.14s., iZ=11m.27s. Riverside iP=11m.19s., iZ=11m.27s. Mount Wilson iPZ=11m.24s.k. Tinemaha iP=11m.24s.k. Tinemaha iP=11m.27s., eZ=11m.37s. Santa Barbara iPZ=11m.32s., iZ=11m.46s.

Long waves were also recorded at De Bilt, Uccle, Granada, and Bermuda.

July 31d. Readings also at 0h. (Tucson, Palomar, and Bogota), 3h. (Tchimkent, Sverdlovsk, and near Tashkent), 5h. (Harvard), 6h. (Kew, Tchimkent, and near Tashkent), 8h. (Fort de France and Harvard), 9h. (Clermont-Ferrand and near Florence), 10h. (Suva), 13h. (near Mizusawa), 17h. (Kew, Mount Wilson, Palomar, Tucson, and Tinemaha), 19h. (Balboa Heights, Palomar, Tucson, and Tinemaha), 20h. (Fort de France and Harvard), 21h. (Bogota, St. Louis, Florence, and Stuttgart), 22h. (Fort de France and near Tashkent), 23h. (Mount Wilson, Tucson, Palomar, Riverside, and Tinemaha).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

294

Aug. 1d. 1h. Undetermined shock. Probably aftershock of July 31d. 3h. (off Puerto Rico).

Fort de France e=14m.1s. Philadelphia e=17m.25s., eS=21m.13s., eL=22·7m. Harvard eP=17m.40s., eS=21m.44s., e=40m.34s. St. Louis ePZ=18m.20s., eZ=18m.33s., eSE=23m.44s., eLE=27·4m. Tucson iP=20m.1s., e=21m.41s. Palomar iPZ=20m.42s., eZ=20m.57s. Riverside ePZ=20m.45s., eZ=20m.58s. Mount Wilson iPNZ=20m.49s. Pasadena iPZ=20m.50s. Tinemaha iP=20m.50s. Pittsburgh eS?NW=22m.0s., eL?NW=28·1m. Long waves were also recorded at Kew and De Bilt.

Aug. 1d. 14h. 18m. 32s. Epicentre 54°-6N. 162°-3E.

$$A = -.5544$$
,  $B = +.1769$ ,  $C = +.8133$ ;  $\delta = +11$ ;  $h = -7$ ;  $D = +.304$ ,  $E = +.953$ ;  $G = -.775$ ,  $H = +.247$ ,  $K = -.582$ .

		Δ	Az.	1	٠.	0 - C.	s.	0 – C.	Sup	p.	L.
			•	m.	8.	s.	m. s.	s.	m. s.		m.
Sapporo		17.9	239	e 4	12	- 0		_	-		
Sendai		21.9	231	4	56	- 1	9 3	+ 9			-
Kakioka		23.9	231	e 5	15	- ī				-	
Nagano		24.4	234	e 5	20	- 1				•	-
Tinemaha		55.0	74	i 9		+ 1					_
Haiwee		55.8	74	i 9	42	+ 1	<u> </u>				
Santa Barbara	$\mathbf{z}$ .	56.1	77	e 9	43	Ō					
Mount Wilson	118	57.2	76	i 9		0	****		-	-	
Pasadena		57.2	76	i 9	51 a	0	1	20.03	-	-	e 27.5
Riverside		57.7	76	e 9	Contract Con	- 2	5-2			<del></del>	-
Palomar	z.	58.5	76	i 9	59 a	- 1				-	
Tucson		62.7	72	i 10	30	+ 1	25		i 10 53	pP	_
Jena	N.	72.0	341	e 11	26	- 2	<del></del> 2	*****	75:4555 (545)	* 72	_
Harvard		72.9	39	i 11	31	- 2	<del></del>			_	
Stuttgart		74.5	342		39	- 3	e 21 28?	+11	-	_	e 41·5
Zürich		76.0	343	e 11	53	+ 2	<u> 21—1</u> 2		1000	_	
Neuchatel		76.7	343	e 11	52	- 3		-			
Toledo	Z.	85.2	350	i 12	38	- 1			-	-	51.7
Helwan	Z.	85.9	320	12	40	- 3	50 Notice()	-	e 12 49	$\mathbf{pP}$	
Granada		87.8	350	i 12	54	$-3 \\ +2$	e 22 54	[-25]	23 57	$_{\mathrm{PS}}^{\mathrm{pP}}$	45.1
Almeria		88.0	348	e 12	41	-12	23 14	[-6]	16 36	$\widetilde{\mathbf{P}}\widetilde{\mathbf{P}}$	45·1 47·0

Additional readings:— Granada SSS = 31m.55s.

Almeria PPP = 18m.40s., PS = 26m.15s.

Long waves were also recorded at other European stations.

August 1d. 16h. 18m. 38s. Epicentre 19°.9S. 169°.9E. Depth of focus 0.020.

Pasadena suggests 20°S. 170°E., depth 230 km.

$$A = -.9264$$
,  $B = +.1651$ ,  $C = -.3384$ ;  $\delta = -1$ ;  $h = +5$ ;  $D = +.175$ ,  $E = +.984$ ;  $G = +.333$ ,  $H = -.059$ ,  $K = -.941$ .

		Δ	AZ.	P.	O-C.	8.	O-C.	Suj	pp.	L.
		0	0	m. s.	s.	m. s.	s.	m. s.		m.
Suva		8.3	80	i 2 5	+ 7	i 3 32	+ 1		200	
Brisbane	N.	17.2	241	i 3 53	+ 1	i 6 59	+ 3		( <del></del>	i 8.3
Auckland		17.4	168	4 223	+28	7 32	+31	4 41	$\mathbf{pP}$	
Apia		18.6	74	i4 6	- 1	e 7 20	- 6	e 4 13	pΡ	
Arapuni		18.8	167	4 287	+18	7 463	+16			
New Plymouth		19.4	170	4 16	0	7 39	- 3			· -
Tuai		19.9	164	4 17	- 4	7 44	- 7	_		
Riverview		21.7	226	i 4 38 a	- 1	i 8 20	- 4	i 5 15	DΡ	e 10·2
Sydney		21.7	226	-	-	i 8 22	- 2	e 9 34	$_{ m SS}^{ m P}$	
Wellington		21.7	171	4 38	1	i 8 16	8	5 10	$\mathbf{pP}$	12.4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

295

	Δ	Az. P.	o – c.	s. o-c.	Supp.	L.
Christchurch Honolulu Yokohama Tokyo Cen. Met. O Nagoya	51·7 62·1 b. 62·2	m. s.  176 4 56 39 e 11 49 332 e 10 7 333 (10 12) 331 i 10 16	PPP + 1 + 5 + 3	m. s. s. 7 48 -70 i 16 0 0 e 18 22 + 6 (18 24) + 6 18 29 0	m. s. i 5 25 pP e 19 40 SS (i 11 28) sP	e 21·7
Miyazaki Kobe Koti Nagano Sendai	63·5 63·5	324 10 16 329 i 10 17 326 i 10 15 332 e 10 10 335 i 10 19	$^{+}_{+}$ $^{2}_{0}$ $^{-}_{+}$ $^{7}_{1}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i 19 55 sS	
Mizusawa E N Wazima Hukuoka Sapporo	64.6 64.9 65.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 2 - 3 + 2 + 3	$ \begin{array}{rrrr} 18 & 52 & + & 5 \\ 18 & 46 & - & 1 \\ 18 & 44 & - & 7 \\ \hline 20 & 26 & + 59 \end{array} $		
Santa Clara Ukiah Berkeley Santa Barbara Pasadena	85·7 85·7 85·8 86·0 87·0	48 e 12 27 46 — 48 i 12 23 52 i 12 22 52 i 12 29 a	$+5 \\ + 1 \\ -1 \\ + 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 22 40 S i 13 23 pP	e 39.8 e 42.8
Mount Wilson Riverside Palomar z. Haiwee Tinemaha	87·5 87·6 88·0 88·2	52 i 12 29 a 52 i 12 30 a 54 i 12 31 a 50 i 12 33 a 50 i 12 34 a	- 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 13 24 pP i 13 26 pP i 13 29 pP i 13 33 pP	
Sitka Victoria College Irkutsk Tucson	89.6 90.3 90.5 91.6 91.8	26 — — 583 38 e 13 583 16 — — — — 56 56 i 12 52	sP + 1	i 23 12 - 3 e 23 22 0 e 22 50 [- 8] i 23 1 [- 4] i 23 41 + 6	e 22 48 SKS e 24 53 PS e 16 9 PP i 14 7 8P	e 38·7 e 39·5
Colombo Salt Lake City Logan Kodaikanal E. Bozeman	94·3 94·7	276 23 5 48 — 47 i 16 4 279 —	SKS	$egin{pmatrix} (23 & 5) & [-3] \\ e & 23 & 18 & [-1] \\ e & 23 & 17 & [-5] \\ e & 23 & 12 & [-16] \\ e & 24 & 18 & +4 \end{bmatrix}$	i 24 0 S i 24 4 S 25 2 ? e 30 53 SS	e 40·5
New Delhi Saskatoon Andijan Huancayo St. Louis	101·6 108·3	296 — 38 — 307 e 17 37 10 e 18 50 55 e 17 51	PKP PP [-20]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 19 30 pPP e 18 46 PP	53·4 e 51·5
Cape Girardeau N. Tashkent La Paz z. Sverdlovsk Pittsburgh N.W.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56 — 307 e 17 48 19 i 19 5 a 25 e 19 7 53 —	[ - 25] PP PKP	e 25 30 SKKS i 24 35 [- 2] i 24 57 [- 5] i 24 58 [- 7]	e 26 8 S e 18 54 PP (27 53) SP 26 11 SKKS	27·9 =
Ottawa Philadelphia Fordham Harvard Seven Falls	120.9 $121.4$ $122.4$ $124.1$ $124.2$	48 e 18 31 54 e 20 10 53 e 17 16 51 i 18 38 45 —	[-2] PP [-2]	e 25 11 [- 5] e 25 14 [- 6] 30 223 PS	e 36 22 SS i 21 51 SKP e 21 287 SKP	The second secon
San Juan Bermuda Fort de France Upsala Yalta		81 e 20 53 63 e 21 19 88 e 18 48 40 e 21 45 13 e 21 37	PP PP [ - 5] PP PP	e 25 32 [- 3] e 38 14 SS e 26 18 [+34] e 25 44 [-10] 25 46, [- 9]	e 21 47 SKP e 22 13 SKP i 21 57 SKP e 22 13 SKP 28 10 SKKS	
Ksara Copenhagen Helwan z. Potsdam Ogyalla	140.4 3 141.3 2 142.9 3	98 e 18 507 40 22 9 92 19 4 36 e 19 15 27 e 19 47	[-14] PP [- 7] [+ 1] pPKP	e 25 55 [- 9]	e 22 28 SKP 22 20 SKP 22 27 SKP i 22 31 PP	=

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

296

```
Supp.
                            Az.
                                                                                     L.
                                  m. s.
                                                                                    m.
                                                   m. s.
Sofia
                                                            ss
                                              5]
                           332
Prague
                                                 e 28 59
                                                          SKKS
Kalossa
                    144 \cdot 4
                           324
Jena
                    144.6
                           335
De Bilt.
                    145.7
Uccle
                                                                            PP
Stuttgart
                                              31
                                i 19 25k [+
                                                                                  e 67.5
Kew
                           348 e 19 25
Triest
                    147.7
                           328 e 19 22
Strasbourg
                    148.0
                           337
                                e 19 33
                                          [+10]
                                                                  i 20 41 sPKP
Chur
                    148.7
                           334 e 19 30
Zürich
                    148.7
                           335 e 19 28
                                             4]
Basle
                    148.9
                           336 e 19 29
                                                                  e 19 34 PKP.
                                             4]
Paris
                    149.4
                           343 i 19 31k
                                          [+6]
                                                                  i 23
                                                                                    78.4
                                                                            \mathbf{P}\mathbf{P}
Neuchatel
                    149.6
                           336 e 19 30
                                          [+4]
Milan
                               e 19 30
                    149.9
                           331
                                          [+4]
                                                   29 33 SKKS
Florence
                    150 \cdot 2
                           327 i 19 36a [+10]
                                                                            PP
                                                 1 29 27 SKKS
Clermont-Ferrand
                    152.0
                           340 i 19 28
                                                                  i 23 21
                                                                            \mathbf{PP}
                                         [-1]
                                                                                  e 83.4
                N. 157·3
                           338 i 20 22
Tortosa
                                         PKP,
                                                                    24
                                                                            _{\rm PP}
Toledo
                    159.4
                           346
                                i 20 20
                                         PKP.
                                                   30 31 SKKS
                                                                    23 57
                                                                            \mathbf{PP}
                    161.8
Almeria
                           340
                                  20 28
                                         PKP,
                                                                  i 24 10
                                                                            PP
                                                                                    74.9
Granada
                    161.9
                           344 i 19 53
                                                   26 34 [+ 5]
                                         [+11]
                                                                   20 33 pPKP
                                                                                    76.8
San Fernando
                    163.1
                           349 e 20 36
                                         PKP,
                                                 e 44 35
                                                            SS
                                                                  e 24
                                                                                    76.4
  Additional readings :-
    Auckland i = 5m.9s., 5m.37s., and 7m.47s., P_cP? = 8m.15s.
    Apia i = 8m.34s.
    Riverview is P = 5m.51s., iN = 8m.25s., iNZ = 8m.38s., iEZ = 8m.43s., iN = 8m.46s.
        and 9m.15s., iSSZ = 9m.23s., isS = 9m.35s., iE = 9m.46s., iS_cSE = 15m.35s.
    Wellington sPZ = 5m.40s., i = 6m.32s., iZ = 6m.53s., S = 8m.7s., iZ = 8m.39s., P_cP =
        8m.58s., sS? = 9m.29s., sP_cP = 10m.19s., S_cP?Z = 11m.19s.
    Christchurch P_cP = 9m.37s.
    Tokyo i = (11m.55s.), (14m.28s.), (19m.18s.), (19m.47s.), and (20m.45s.). All readings
        have been increased by 2m.
    Riverside eEZ = 22m.54s.
    Sitka ePS = 24m.47s., e = 32m.46s.
    College eSS = 29m.28s.
    Irkutsk iS = 23m.33s., PS = 24m.51s.
    Tucson i = 13m.52s., 15m.40s., and 24m.50s., e = 28m.58s. and 34m.48s.
    Logan iSP = 25m.18s.
    Bozeman e = 34m.49s.
    Huancayo eS = 26m.6s., e = 28m.3s.
    St. Louis eSKKSE = 25m.26s., iSN = 26m.10s., esSN = 27m.49s., eSP7E = 28m.11s.,
        ePPS?E = 29m.49s., eE = 33m.29s.
    Cape Girardeau esSN = 27m.51s.
    Tashkent SKKS = 25m.34s., PS = 28m.10s.
    Ottawa eZ = 21m.46s., e = 27m.44s.
    Philadelphia e = 26m.49s., 30m.36s., eSSS = 41m.13s.
    San Juan e = 27m.12s., eSS = 37m.52s., e = 41m.54s.
    Bermuda 26m.39s.
    Upsala iE = 28m.13s., e = 31m.22s.?.
    Ksara e = 23m.32s.
    Copenhagen 31m.31s.
    Helwan eZ = 19m.58s., PPZ = 22m.18s., eZ = 25m.1s.
    Jena eEN = 19m.18s., EN = 19m.21s., E = 19m.34s.?, e = 20m.22s., N = 20m.30s.,
        E = 20m.34s., and 22m.40s.
    De Bilt ipPKP = 20m.17s.a, iPPP = 26m.0s.
    Uccle ipPKPZ = 20m.20s., eZ = 22m.33s., iSKKSZ = 29m.22s.
    Stuttgart iZ = 20m.21s. and 20m.33s., e = 23m.46s. and 38m.17s., eSS = 41m.46s.?.
    Kew eZ = 20m.22s., eNZ = 29m.7s.
    Strasbourg e = 21m.24s.
    Paris ePPP = 26m.24s.
    Florence ipPZ = 20m.43s., iPSE = 30m.16s., eSSE = 34m.22s., eSSSE = 38m.13s.
    Clermont-Ferrand i = 21m.16s., 25m.47s., and 31m.54s.
   Toledo pPZ = 21m.25s.
    Almeria pPKP=21m.0s., sPKP=21m.12s., PKS=25m.3s., PPP=27m.49s., PPS=
        37m.13s.
    Granada PKP<sub>2</sub>=21m.3s., PP=24m.17s., PPP=24m.57s., sPP=25m.12s., PPP=
        28m.19s., pPPP = 28m.49s., SKKS = 30m.48s., SKSP = 33m.53s., PPS = 38m.12s.,
```

iSS = 44m.19s., sSS = 45m.22s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

297

August 1d. Readings also at 1h. (near Port au Prince), 2h. (Bogota), 3h. (Balboa Heights), 5h. (Fort de France), 6h. (Haiwee, Mount Wilson, Palomar, Pasadena, Riverside, Tinemaha, and Tucson), 7h. (St. Louis and near Port au Prince), 8h. (Bucharest), 10h. (near Andijan, Tashkent, and near Mizusawa), 14h. (Huancayo, La Paz, La Plata, Rio de Janeiro, Pittsburgh, and Wellington), 15h. (Harvard), 18h. (Tacubaya, Palomar, and Tucson), 22h. (Tucson and near Florence), 23h. (near Reykjavík, near Chur, Stuttgart, and Triest).

August 2d. 0h. 46m. 43s. Epicentre 45°·0S. 167°·0E. Depth of focus 0·005.

(as on 1938 Dec. 16d.).

Intensity VI in the southern part of South Island, New Zealand. Epicentre 45°.5S. 166°.8E. Depth of focus 50-80 km.

R. C. Hayes.
"Earthquakes in New Zealand during the year 1943," Wellington 1944, extracted from New Zealand Journal of Science and Technology, vol. XXV, No. 5B, p. 228, one epicentral chart.

A = -.6913, B = +.1596, C = -.7047;  $\delta = -3$ ; D = +.225, E = +.974; G = +.687, H = -.159, K = -.710. Supp. L. 0-C. 0-C. P. AZ. m. 8. m. s. m. s. s. m. s. e 8·1 i 3 51  $_{\mathrm{PP}}$ -216 47 i 3 43k 6 -307 16.5 Riverview e 9.3 -+ + i 6 35 -14307 13 47 16.5 Sydney 18 40 SS 324i 4 39 20.7Brisbane i 10.0 PP i 8 39 SS i 4 49 i 4 40 32420.7 N. i 6 59 PPPe 13.6 e 10 32 +1e 5 47 28.4  23 Suva e 17.6 e 16 26 +19e 12 47 38 e 6 56 35.9 Apia  $\mathbf{PP}$ i 20.0 9 13 47 47 + 271 41.5 Perth -56 $_{\rm PS}$ e 31·6 e 21 44 e 19 54 e 11 24 73.4 35 Honolulu -6311 17 83.1 330Kagosima 3 331 84.2 Kumamoto ---335 e 12 24 84.3 Nagoya e 12 31 33885.4 Nagano 12 26 341 86.2 Sendai -29e 12 27 343 90.6 Sapporo SSS 39.1 33 29 23 41 146 90.7La Plata N. (23 24) [ -SKS 23 24 92.8 277 Colom bo E. 24 39 40.0 e 23 51 91 237 95.9 Tananarive 27 PPS 49.5 SKS (i 23 51)[-4] i 23 51 96.8 278 Kodaikanal [+ i 24 6 29498-4 N. Calcutta e 39·5 e 25 21 [+10]PP $100 \cdot 2$ 119 Huancayo SS 32 23 47.3PSi 13 42 - 2 128 101.0 La Paz e 24 17?[-12]  $_{\mathrm{PS}}$ e 27 11? e 43·2 + 1 e 13 58 56 103.9Pasadena  $\mathbf{P}\mathbf{P}$ e 18 12 Mount Wilson 56 104.0 e 27 44  $\mathbf{p}\mathbf{s}$ PPe 18 29 104.051 Santa Clara  $\mathbf{PP}$ + 6 e 14 3 104.1 Palomar  $_{\mathrm{PS}}$ e 27 37 e 18 16 PP 51 104 2 Berkeley PS 27 45 e 43.8 e 25 34 PP e 18 25 49 104.6 Ukiah 54 PKKP e 29 e 18 20 PP54105.9Tinemaha SSS i 43.3 SS 37 27 33 18 281 106.0 Bombay  $\mathbf{PP}$ 107.0 152Rio de Janeiro e 28 36 PPS PSe 41.8 e 28 e 17 34 62 107.0Tucson i 37 58 SSS 1 65.7 292109.5 New Delhi PS 28 24 e 21  $_{\mathrm{PPP}}$  $\mathbf{PP}$ 18 45 324 110.9Irkutsk  $\mathbf{PS}$ 51.3e 28 537 PPe 18 41?  $111 \cdot 2$ 42 Victoria e 50·3 e 40 56 112.055 Salt Lake City e 28 P8e 47.8  $\mathbf{PP}$ e 19 23 112.5Sitka SSS  $\mathbf{ps}$ e 28 53 e 39 19  $\mathbf{PP}$ e 19 19 112.7Logan e 47.8 PS PP 2 SKKS e 29 16 e 19 41 19 115.1 College e 25 50 [+16] 1] 42 299  $120 \cdot 1$ Andijan 58.3 e 20 17? PP 47 121.8Saskatoon

Continued on next page.

[-

e 18 46

298

70

122-4

 $123 \cdot 9$ 

 $124 \cdot 1$ 

Tashkent

St. Louis

Cape Girardeau

2]

3]

 $\mathbf{PP}$ 

 $_{\rm PP}$ 

e 59.8

e 59.5

i 20 32

e 28 35

[+9]

SKKS

i 25 51

e 25

26

51

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

298

```
Az.
                                                O - C.
                                                                  O-C.
                                                                                 Supp.
                                                                                                L.
                                                  8.
                                                          m. s.
                                                                            m. s.
                                                                                               m.
 Chicago
                                                        e 31
                                                 \mathbf{p}\mathbf{p}
                                                                    _{PS}
                                                                           e 38
                                                                                     SSP
                                                                                            e 43.0
 San Juan
                                                 \mathbf{PP}
                                                                           e 32
                                                                                     PPS
                                                                                             e 64·1
                       131.9
 Pittsburgh
                 N.E.
                                                 \mathbf{PP}
                                                                           i 22
                                                                                     \mathbf{PKS}
                                                                                            e 62.4
 Sverdlovsk
                        134.3
                                                                    SS
                                                                                     \mathbf{PKS}
 Philadelphia 

                       134.9
                                                                    \mathbf{SP}
                                                                                     PKS
                                                                                            e 63·5
 Fordham
                        136 \cdot 1
                                                                   PKS
                                                                                      \mathbf{P}\mathbf{P}
                        136.8
 Ottawa
                                                                   PKS
                                                                                     PPS
                                                                                            e 57·3
 Vermont
                        138.1
                                                        e 40
                                    e 21
                                                                    ss
                                                                                      \mathbf{p}
                                                                                            e 63.6
                        138.4
 Bermuda
                                 90
                                     e 19 19
                                                        e 32 20
                                                                    _{\mathrm{SP}}
                                                                          e 22
                                                                                      PP
                                                                                              49.4
                       138-4
 Harvard
                                                        e 28 56 SKKS
                                                 -11]
                                                                                      \mathbf{P}\mathbf{P}
                                                                                            e 66·3
 Seven Falls
                       140.6
                                65
                                    e 19 177
                                                    51
                                                        e 28 56
                                                                 SKKS
                                                                          e 22
                                                                                173
                                                                                      \mathbf{PP}
                                                                                              63.3
 Ksara
                       141 \cdot 2
                               271
                                     e 19
                                                 -201
                                                                            22
                                                                               30
                                                                                      \mathbf{p}\mathbf{p}
 Helwan
                       142-2
                               263
                                       19
                                                    81
                                                                  SKP
                                                          22 55
                                                                            22 32
                                                                                      \mathbf{PP}
 Moscow
                       146.7
                               308
                                       19
                                          35
                                                    2]
                                                          29
                                                             44
                                                                 SKKS
 Yalta
                       146.9
                               286
                                    e 19
                                                   6]
 Bucharest
                       152.4
                               284
                                    e 19
                                                                                              49.3
 Ivigtut
                       153.8
                                39
                                    e 19
                                          58
                                               [+14]
                                                                                            e 61.5
 Sofia
                       153.8
                               278
                                    e 19
                                          57
                                                [+13]
                                                                          e 20 1
                                                                                              43.3
 Scoresby Sund
                       154 \cdot 1
                                    e 19
                                          43
                                                - 1]
                                                        e 43 26
                                                                    SS
                                                                          e 23 39
                                                                                     \mathbf{PP}
                                                                                            e 59·4
 Belgrade
                       156.4
                               281
                                    e 20 20
                                               PKP,
                                                                                            e 50·3
                               319
                                    e 20
 Upsala
                       156.4
                                               pPKP
                                                        e 37 10
                                                                  PPS
                                                                          e 50 17
                                                                                     SSS
                                                                                            e 72·3
                       156.4
                               319
                                    e 19
                                          51
                                               [+4]
                                                        e 49 59
                                                                   SSS
                                                                          e 33
                                                                                 1 PPKP
                                                                                            e 68.3
Kalossa
                       157.7
                               287
                                    e 20
                                          22
                                               PKP.
Ogyalla
                       158.4
                               289
                                    e 20
                                               PKP<sub>2</sub>
Copenhagen
                       160.7
                               313
                                    e 19
                                          48
                                                   5]
                                                                            24 16
                                                                                     PP
                       160.7
Triest
                               282
                                         56
                                                   3]
                                    e 19
                                                                 SKKS
                       160.8
Prague
                               296
                                    e 20
                                         33
                                               PKP.
                                                       e 30 597 SKKS
                                                                                              76.3
                               331
                       161·1
Bergen
                                    e 19 49
                                                  4]
                                                       e 35
                                                                            37 57
                                               [ --
                                                                                     PPS
                                                                                            e 74·3
Cheb
                       162 \cdot 2
                                    e 20 17
                               297
                                              PPKP
                                                                                            e 83·3
Florence
                       162.6
                               276
                                    e 19 51k
                                                        i 26
                                                   4]
                                                             42
                                                                 -
                                                                     9]
                                                                          e 21
                                                                                 4k PKP
                                                -
Chur
                       164 \cdot 2
                               287
                                    e 19 50
                                                  6]
                                                                          e 24 35
Milan
                               280
                       164.4
                                    e 19 427
                                                -14]
                                                         28 35
                                                                  PPP
                                                                                              78.3
Stuttgart
                               293
                                                -10]
                       164 .4
                                    e 19 46
                                                       e 44 53?
                                                                   SS
                                                                                    PKP.
                                                                                           e 85.8
                      166.0
                               335
Aberdeen
                                    i 19 59
                                               [+
                                                       i 45 14
                                                   1]
                                                                   SS
                                                                          i 24 46
                                                                                     \mathbf{P}\mathbf{P}
                                                                                            e 73·0
Neuchatel
                       166.0
                               287
                                    e 19 51
De Bilt
                               307
                                    i 19 56k
                       166-1
                                                                   SS
Uccle
                       167.0
                               303
                                    e 19 52
                                                       e 31 32 SKKS
                                                   6]
                                                                         e 21
Barcelona
                       168.4
                              258 1 24 54
                                                PP
                              230 i 19 53
Almeria
                       168.6
                                             [- 7] i 31 56 SKKS
                                                                           21
Clermont-Ferrand
                      168.7
                                                      i 26 42 [-13]
e 26 39 [-16]
e 26 41 [-14]
                              278
                                   i 19 55k [- 5]
                                                                                   PKP, e 81.0
                              295 i 19 54 [-6]
324 e 24 50 PP
Paris
                      168.7
                                                                         e 31 42
                                                                                   SKKS
                                                                                             57.3
                                                       e 26 41
Stonyhurst
                  E. 168.8
                                                                         i 32
                                                                                   SKKS
                                                                                           e 69·3
                                                \mathbf{PP}
                  E. 169·3
                              252
                                      25 17
Tortosa
                                                       i 32 7
                                                                SKKS
                                                                          i 46
                                                                                     ss
                                                                                           e 80.3
                      169.4
                              311 i 19 56k [- 4]
Kew
                                                       e 31 46 SKKS
                                                                                    \mathbf{PP}
                                                                                           e 86.3
Granada
                      169.5
                              227
                                     19 58
                                                         22 52
                                                                 SKP
                                                                           20 12 pPKP
                                                                                             77.2
San Fernando
                      170.0
                              214 e 19 55
                                                         46 6 SS
32 10 SKKS
                                                                           25
                                                                              3 PP
                                                                                             85.3
                              235 119 55
                      171.7
Toledo
                                                                         i 21 18 PKP,
                                                                                             76.3
Lisbon
                      173.1
                                     19 571
                              207
                                                                           25 117 PP
                                                                                             75.2
  Additional readings :-
    Riverview iN = 4m.30s. and 6m.51s., iSSZ = 7m.7s.
    Suva e? = 7m.45s. and 8m.12s., eP_cP = 8m.57s., iP_cS = 12m.32s.
    Perth PPP = 9m.47s., SS = 16m.32s.
    La Plata E = 28m.55s.
    Tananarive N = 24m.45s., SS = 31m.0s.
    Kodaikanal eSE = 34m.7s.
    Huancayo e = 26m.48s., eSS = 32m.28s.
    La Paz iPPZ = 17m.54s.
    Pasadena ePPZ = 18m.14s., eSS = 32m.29s.?, eSSSZ = 36m.17s.?.
    Ukiah eSS = 33m.43s.
    Tucson e = 18m.33s., eSS = 34m.25s.
    Irkutsk SS = 33m.44s.
    Tashkent eSKKS = 27m.22s., S = 28m.19s., iPS = 30m.22s.
    St. Louis eSKPE = 21m.56s., ePPP? E = 24m.46s., eSKKSE = 27m.27s., eS? E = 28m.30s., ePSE = 30m.38s., ePPS?N = 31m.38s., ePPPS?N = 32m.26s., eSSN =
```

Continued on next page.

eSSSN = 42m.6s., eSSSSN =

37m.30s., ePPSSE = 38m.25s., eN = 40m.47s.,

46m.10s., eN = 49m.12s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

299

```
Chicago e = 27m.55s.
Sverdlovsk ePP = 21m.40s.
Philadelphia e = 28m.40s., eSS = 39m.47s.
Fordham ePP = 25m.6s., e = 32m.0s. and 34m.13s.
Vermont e = 33m.42s.
Bermuda eSS = 40m.26s.
Harvard ePPP = 25m.7s., ePS = 32m.27s.
Seven Falls e = 41m.59s.?.
Helwan eZ = 20m.50s., PSKSZ = 32m.44s.
Ivigtut e = 21m.31s., 30m.23s., and 38m.40s.
Scoresby Sund e = 33m.57s., 38m.47s., and 48m.19s.
Belgrade e = 30m.13s., 34m.21s., and 39m.33s.
Upsala ePP?E = 23m.28s., eSS = 43m.17s.?
Copenhagen 25m.19s., 31m.47s., and 44m.27s.
Prague e = 34m.59s.7, 39m.47s.7, and 44m.27s.
Bergen eE = 31m.47s., eZ = 35m.12s., and 40m.47s., SS = 44m.37s., eE = 51m.7s.
Cheb e = 23m.30s., 27m.47s., and 30m.52s.
Florence iPPZ = 24m.34s.k, iSKKSE = 31m.11s., iPSKSE = 35m.20s., iSSE = 44m.43s.,
    eSSSE = 52m.35s.
Stuttgart ePKPZ = 19m.52s., ePPZ = 24m.25s., e = 37m.59s.?, eQ = 76m.47s.?.
Aberdeen iE = 30m.50s.
De Bilt ePP=24m.45s.a, ePPP=28m.57s., iE=35m.14s., eSSS=51m.17s.?.
Uccle ePPEZ = 24m.50s., eN = 32m.4s., ePSKSE = 35m.21s., eE = 37m.24s., iSSN =
    45m.38s.
Almeria iPP = 24m.58s., PPS = 38m.39s., SS = 45m.53s., SSS = 51m.59s.
Clermont-Ferrand iPP = 24m.50s., iPPP = 28m.24s.
Paris e = 29m.28s., iPSKS = 35m.22s., i = 38m.43s.
Stonyhurst eE = 34m.43s., 38m.1s., and 45m.36s., E = 49m.41s., iE = 53m.56s.
Kew iPKP, =21m.20s., ePPPEZ =29m.34s., eSKSP? =35m.40s., eSS =45m.52s.,
    eSSSZ = 53m.47s., eQN = 75.3m.
Granada PKP<sub>2</sub> = 21m.10s., pPKP<sub>2</sub> = 21m.32s., PP = 24m.58s., pPP = 25m.7s., PPP =
    28m.46s., pPPP = 29m.18s., SKKS = 31m.31s., SKSP = 35m.27s., sSKSP = 36m.6s..
    SS = 45 \text{m.} 30 \text{s.}, SSS = 46 \text{m.} 8 \text{s.}
Toledo PPZ = 25m.8s.
Lisbon E = 29m.57s.?
Long waves were also recorded at Columbia, Edinburgh, Potsdam, and Jena.
```

## August 2d. 8h. Undetermined shock.

```
Suva eP = 39m.15s., iS = 40m.30s., eL = 41m.8s.
Brisbane iP = 41m.54s., iSE = 45m.44s., eLN = 49m.50s.
Riverview iPEZ = 42m.44s., iN = 45m.41s., iSEN = 47m.15s., eRN = 49.2m.
Wellington P = 43m.23s., PPZ = 43m.50s., S = 47m.17s., R = 49m.
Apia eN = 44m.24s.? and 46m.30s.?.
Auckland S = 47m.0s.?, L = 48.3m.
Christchurch S = 47m.51s., Q = 49m.4s., R = 51m.21s.
Mount Wilson iPZ = 49m.45s.
Pasadena iPZ = 49m.45s., eLZ = 75m.
Palomar iPZ = 49m.48s., iZ = 49m.52s.
Tinemaha iPZ = 49m.48s., iZ = 49m.52s.
Tinemaha iPZ = 49m.51s.
Tucson eP = 50m.11s., i = 50m.14s.
Long waves were also recorded at Honolulu, Paris, and De Bilt,
```

#### August 2d. 12h. 1m. 32s. Epicentre 19°.1N. 67°.1W. (as on July 31d.).

$\mathbf{A}$ :	= + -	3680, 1	3 = -	·8711, C	= + .325	$2; \delta =$	=-1;	h=+5.	e e	
		Δ	Az.	Ρ.	O-C.	s.	O-C.	Su	pp.	L.
		o	0	m. s.	8.	m. s.	8.	m. s.		m.
San Juan		1.2	128	i 0 25	+ 1	i 0 43	+ 2			i 1 · 5
Fort de France		$7 \cdot 2$	127	e 1 50	+ 1	ANNON TOTAL				
Cape Girardeau	N.	26.7	317	e 5 43	0	<del>,</del>		e 6 40	PPP	_
St. Louis		28.0	319	e 5 51	- 4	e 11 10	9	e 6 47	$\mathbf{PP}$	
Tucson		41.3	298	i 7 49	0			-	-	(1)
Palomar	z.	46.4	299	i 8 31	+ 1				-	-
Riverside	z.	46.9	300	e 8 34	0				-	
Mount Wilson	Z.	47.5	300	i 8 38	0			-	-	72 <del>-111</del>
Pasadena		47.6	300	i 8 40	+ 1		-			-
Haiwee	Z.	47.6	303	i 8 39	0					-
Tinemaha	Z.	48.0	303	i 8 42	- 1		*****			-

St. Louis also gives eZ = 6m.25s. and 6m.37s., eSSE = 12m.55s. Long waves were also recorded at Philadelphia, Kew, and De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

300

August 2d. 20h. Undetermined shock.

Port au Prince eP = 21m.0s., iS = 21m.35s., i = 21m.49s. and 22m.6s., iL = 22m.23s. Fort de France e = 22m.58s. Bogota iP = 24m.9s., e = 24m.29s. and 27m.6s. Philadelphia e = 25m.18s., eL = 29m.15s. Harvard eP = 25m.24s., eS = 29m.25s., e = 46m.19s. and 46m.50s. St. Louis ePZ = 25m.58s., eSE = 30m.18s., eL?E = 33m.4s. Tucson eP = 27m.45s., i = 27m.54s. Riverside ePZ = 28m.31s. Tinemaha iPZ = 28m.40s. Chicago e = 31m.11s., eL = 50m.19s. Long waves were also recorded at Bermuda.

August 2d. Readings also at 2h. (St. Louis, Palomar, Riverside, Pasadena, Mount Wilson, Tinemaha, Tucson, and Tacubaya, and near Andijan), 3h. (near Triest), 4h. (Tinemaha, Palomar, Tucson, St. Louis, Cape Girardeau, Harvard, near Port au Prince, and near Apia), 5h. (Tinemaha, Pasadena, Mount Wilson, Riverside, Palomar, Tucson, St. Louis, Cape Girardeau, La Paz, and Bogota), 7h. and 8h. (Fort de France), 9h. (near La Paz and near Port au Prince), 10h. (Bogota, Philadelphia, St. Louis, and Harvard), 12h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, and Tucson), 13h. (Triest and Bogota), 14h. (near Stuttgart), 17h. (near Stalinabad), 20h. (Fort de France).

August 3d. Readings at 0h. (Copenhagen), 5h. (Riverview), 6h. (Riverview, Palomar, Tinemaha, and Tucson), 8h. (Yalta and Tananarive), 13h. (Ebingen and Stuttgart) 18h. (near Berkeley, San Francisco, Fresno, Lick, and Branner), 19h. (Tucson, Palomar, Auckland, Wellington, and Suva), 20h. (Christchurch and Suva), 22h. (near Branner).

August 4d. 0h. Undetermined shock. Caribbean Sea.

San Juan eP = 55m.8s., i = 55m.31s., iL = 56m.1s.Port au Prince e = 55m.44s., i = 56m.53s., 57m.8s., and 57m.34s.Bogota iP = 58m.26s., e = 58m.39s., eS? = 61m.27s.Harvard iP = 60m.6s., iS = 63m.59s., e = 82m.29s.St. Louis ePZ = 61m.1s., eS?N = 65m.25s., ePS?N = 65m.41s., eN = 69m.16s., eE = 71m.27s.Tucson eP = 62m.21s.Palomar ePZ = 63m.4sRiverside ePZ = 63m.4sRiverside ePZ = 63m.7s.Mount Wilson ePZ = 63m.12s.Pasadena ePZ = 63m.12s.Tinemaha iPZ = 63m.15s.Long waves were recorded at Philadelphia, Kew, and De Bilt.

August 4d. Readings also at 6h. (Tucson, Pasadena, Mount Wilson, and Palomar), 10h. (Tashkent), 11h. (near Apia), 17h. (near Mizusawa), 22h. (Pasadena, Mount Wilson, Palomar, and Riverside), 23h. (Balboa Heights).

August 5d. Readings at 0h. (Bogota and Harvard), 1h. (Fort de France, Florence, Triest Stuttgart, Granada, and Tortosa), 2h. (near Yalta (4)), 3h. (Ksara and Yalta), 4h. (Granada, near Tashkent, and Andijan), 8h. (near Bogota), 10h. (Riverside, Tinemaha, and La Paz), 17h. (Pasadena, Mount Wilson, Tucson, Tinemaha, and Palomar), 22h. (La Paz and Bogota).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

301

August 6d. 11h. 55m. 47s. Epicentre 8°-0S. 112°-0E.

Rough. Pasadena suggests deep focus.

$$A = -.3710$$
,  $B = +.9183$ ,  $C = -.1383$ ;  $\delta = +4$ ;  $\hbar = +7$ ;  $D = +.927$ ,  $E = +.375$ ;  $G = +.052$ ,  $H = -.128$ ,  $K = -.990$ .

		Δ	Az.	m.	e. 8.	0 – C. s.	s. m. s.	0 - C.		upp.	L.
Perth		24.1	$1\overset{\circ}{7}2$	507462		(c./.000-FT)//.		8.	m. s.		m.
Riverview		44.3	131	i 14	23 41	$^{+}_{\mathrm{SP}}^{5}$	i 9 28 i 18 6	- 6	1 10 10	<u>-</u>	07.7
Hikone		48.7	27	8	52		and the second second	SS	i 18 10	SS	e 21·5
Misima		49.9	29	9	04	+ 4			-	-	-
Nagano		50.8	26	e 8	58	+ 4 - 6			•	_	_
Tragano		30.9	20	60	00	- 6	_		-	-	7.
Wazima		50.8	26	9	7	+ 3	-	_			
Mizusawa		54.1	28	e 9	29	ŏ	e 17 4	- 1	e 9 32	2	
Andijan		60.7	326	e 10	10	- š	e 18 29	ŝ	0 5 52		
Tashkent		62.8	325	10	27	- š	18 49	- 9			
Sverdlovsk		77.0	333	i î i	44	-12	21 38	- Ť	1	-	_
Granada		115.1	307	19	9	[+26]			19 39	pPKP	00.0
Tinemaha		126.1	50	i 19	5	1 01			i 21 9	PP	68.6
Haiwee		126.6	50	î 19	7	[+ 1]			i 21 5	PP	\$3 <u>4</u>
Pasadena		127.1	52	î 19	7 a	[+ 1]		200	e 21 3	PP	
Mount Wilson		$127 \cdot 2$	52	î 19	8 a	[+ 2]		-	1 21 7	PP	
Palomar	Z.	128-4	53	i 19	10	[+ 1]		23-35	. 91 11	DD	8=6
Tucson	44.	134.4	52	e 19	18	[ + 1]	-		e 21 11	PP	
St. Louis		143.5	30	i 19	35	i - 11		<u> </u>	e 21 48	PP	
Fordham		146.9	37	i 19		1 + 21		520			
A SEE SEESSEELE				ONLY AND SECTION OF	35.35	£ 1 #1			-		

Additional readings :--

Riverview iE = 14m.44s.

Pasadena iZ = 19m.32s., eLZ = 21m.12s.Tucson e = 19m.40s., i = 22m.45s.

St. Louis eN = 19m.39s, and 19m.47s.

Long waves were also recorded at Kew and Scoresby Sund.

August 6d. Readings also at 1h. (near Bacau, Bucharest, Campulung, and Focsani) 5h. (Kew, Port au Prince, and near Reykjavik (2)), 7h. (Kew and near Reykjavik), 8h. (Tucson), 10h. (Brisbane, Palomar, Tucson, and near Mizusawa), 20h. (Cheb), 23h. (near Andijan).

#### August 7d. 15h. Central America.

Pasadena suggests depth 200 km. Oaxaca eN = 59m.44s. Merida eN = 60m.20s. Tacubaya eN = 61m.3s. St. Louis ePZ=64m.0s., epPZ=64m.29s., eZ=64m.45s., and 65m.5s., eS?E= 67m.56s., esS?E = 68m.48s., eE = 69m.10s.Tucson iP = 64m.12s., i = 64m.34s., e = 68m.51s., 70m.29s., and 71m.15s., eL = 72m.23s. Palomar iPZ =64m.56s.k, ipPZ =65m.36s., iZ =65m.58s. Mount Wilson iP = 65m.7s.k, ipPZ = 65m.48s., eZ = 66m.14s. Pasadena iP = 65m.7s.k, ipPZ = 65m.47s., iZ = 66m.13s. Haiwee ePE =65m.17s. Tinemaha iP = 65m.22s.k, epPZ = 66m.4s., iZ = 66m.25s., iS_cPZ = 71m.38s.

#### August 7d. 19h. Undetermined shock.

```
Ksara eP = 48m.13s., sS_g = 51m.59s.
Helwan ePZ = 48m.48s., eZ = 49m.45s. and 50m.22s., eE = 52m.11s., eEN = 54m.6s.
Tashkent iP = 49m.24s., eS = 52m.58s.
Sverdlovsk eP = 50m.46s., eS = 55m.22s.
Stuttgart eZ = 52m.0s. and 52m.10s., eQ = 65m.42s.?.
New Delhi eN = 54m.24s., iN = 60m.24s.
Copenhagen 57m.44s.
Florence eS?E = 61m.4s.
Long waves were also recorded at Granada.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

302

August 7d. Readings also at 3h. (Granada, Kew, Andijan, Tashkent, Calcutta, Bombay, and near New Delhi), 8h. (near Istanbul), 9h. (Jena), 10h. (Stuttgart, Brisbane, Riverview, and Christchurch), 11h. (Pittsburgh, Mount Wilson, Pasadena, Tinemaha, Tucson, and Sitka), 12h. (Stuttgart (2), Basle, Chur, Neuchatel, Zürich, and Clermont-Ferrand), 20h. (near Mizusawa (2)), 21h. (Fort de France and near Mizusawa).

August 8d. 0h. 38m. 41s. Epicentre 19°·1N. 67°·1W. (as on 2d.).

Epicentre 19°N. 68°W. (Pasadena).

$$A = +.3680$$
,  $B = -.8711$ ,  $C = +.3252$ ;  $\delta = -1$ ;  $h = +5$ ;  $D = -.921$ ,  $E = -.389$ ;  $G = +.127$ ,  $H = -.300$ ,  $K = -.946$ .

		Λ	Az.	P.	0-0	). S.	0-C.	Su	pp.	L.
		-	0	11 (40 CH C )	8. 8.	m. s.	8.	m. s.	2000	m.
San Juan		1.2	128			i 0 46	+ 5	i 0 42	S*	_
Fort de France		7.2	127	e 1 5	28 + 50 + 5	1 3 13	0	2 9	P.	-
Bogota		15.9	206	i 3 4	4 - :	3 e 6 34	-10	i 3 56	$\mathbf{PP}$	e 7·5
Columbia		19.4	324	e 4 2		3 e83	- 1	-	-	e 9·4
Philadelhpia		21.9	344	e 4 5	9 + :	2 i 9 6	+12	-		e 10·6
Fordham		22.4	348	i 5 1	5 +13	3 i 9 0	- 4	i 9 12	$_{\mathbf{PP}}^{\mathbf{PcP}}$	_
Harvard		23.6	353	i 5 1		3 i 9 31	+ 6	i 5 34	$\mathbf{PP}$	e 11·3
Pittsburgh		24.0	336		21 + 4	1 1935	+ 3			
Cape Girardeau	N.	26.7	317		2 -	l e 10 13	- 4	e 6 6	$\mathbf{PP}$	
Ottawa	121.00	$27 \cdot 2$	347	e 5 4	91 +	e 10 19	1 – 6	<del></del>	-	13.3
Ct. Torrio		28.0	319	e 5 5	2 - :	e 10 34	- 4	e 6 54	PP	e 13·1
St. Louis		28.6	326		$\tilde{0} - 1$		- ŝ			e 13.9
Chicago		32.0	196	e 7	$\tilde{1}$ $+\tilde{3}$		-12		-	e 21·5
Huancayo La Paz		35.4	181	6 5	COMPANY 1				-	21.3
C-00-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		41.3	298	i 7 4	7 -	2 e 14 0	- 4	i 9 31	$\mathbf{PP}$	e 23·1
Tueson		0.700	KE TOTAL	5555 H255	10//		4.75		27/77	
Palomar	Z.	46.4	299		29. —		_	18 36	3	
Mount Wilson		47.5	300		37 - 3	L	$\equiv$	18 44	3	-
Pasadena		47.6	300		38 — :	l		i 8 47	Ŷ	e 26·3
Haiwee	E.	47.6	303		39	<u> </u>	_			•
Tinemaha	SWING	48.0	303	i 8 4	11 - :	2 —		18 50	¥	
Santa Barbara		48.9	300	e 8 4	17 - :	3	-		_	
Toledo		57.5	55	i 9 5	66 + 3	3 —	-	-		30.3
Granada		57.8	57	i 10	2 +	7 11754	0	D=0	-	26.9
Almeria		58.7	58	e 10	9 +	7 e 18 14	+ 8	12 29	$\mathbf{PP}$	30.3
Stuttgart		66.9	44		58 +	2 —	-	-	-	e 38·3

Additional readings:—
Fort de France  $P_{\epsilon} = 2m.43s$ .
Bogota i = 4m.11s. and 7m.13s.
Cape Girardeau eN = 5m.54s.
St. Louis ipPZ = 6m.1s., iZ = 6m.5s., ePPZ = 6m.15s., eSSN = 12m.3s.
Tucson e = 9m.17s., i = 9m.49s., e = 14m.52s.
Almeria pP = 10m.17s.
Long waves were also recorded at Bermuda, Sitka, and at other European stations.

August 8d. 6h. Undetermined shock-

```
Misima P = 58m.26s., S = 61m.55s.

Kobe P = 58m.35s., S = 62m.10s.

Nagano P = 58m.43s., S = 62m.34s.

Merida eN = 66m.6s.

Tinemaha iPZ = 66m.34s., iZ = 70m.33s.

Pasadena ePZ = 66m.38s., eLZ = 80m.

Mount Wilson ePZ = 66m.39s., eZ = 70m.17s.

Palomar ePZ = 66m.46s., iZ = 70m.4s.

Tucson e = 67m.10s., i = 69m.22s., e = 77m.39s., eL = 80m.15s.

Bogota e = 68m.18s.

Cape Girardeau ePN = 69m.0s.

St. Louis ePZ = 69m.11s., eZ = 69m.34s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

303

```
August 8d. 8h. Mexican shock.
```

Oaxaca PZ = 32m.21s.Puebla ePN = 32m.59s. Vera Cruz PN = 33m.4s. Tacubaya PN = 33m.12s.Merida eN = 34m.36s. Tucson iP = 36m.51s., i = 37m.19s., eS = 40m.25s., iL = 43m.0s.Bogota e = 37m.41s. Cape Girardeau ePN = 37m.5s., ePPN = 37m.28s., eSN = 41m.9s.St. Louis ePZ = 37m.16s., iPZ = 37m.19s., iZ = 37m.26s., ePPZ = 37m.43s., eZ = 37m.50s., ePPPZ = 37m.56s., eZ = 38m.8s., eSE = 41m.31s.Guadalajara eN = 37m.36s. Palomar iPZ = 37m.36s. Mount Wilson iPZ = 37m.49s. Pasadena iP = 37m.49s., eLEN = 43m.Haiwee ePZ = 37m.59s. Tinemaha iP = 38m.5s. Long waves were also recorded at Salt Lake City, Santa Clara, and Bozeman.

#### August 8d. 15h. South American shock.

Pasadena suggests deep focus. La Paz iPZ = 30m.53s. a, LZ = 31m.59s. La Plata N = 32m.54s., E = 33m.12s., LEN = 35m.36s. Bogota e = 35m.1s. and 35m.43s. Cape Girardeau ePN = 39m.35s., epPN = 40m.25s., eS?N = 47m.45s., esS?N = 49m.3s. Tucson iP = 40m.13s., e = 40m.59s. Palomar iPZ = 40m.40s., iZ = 40m.56s., epPZ = 41m.27s. Mount Wilson iPZ = 40m.47s., ipPZ = 41m.37s. Pasadena iPZ = 40m.48s., ipPZ = 41m.33s. Haiwee iPZ = 40m.54s. Tinemaha iP = 40m.58s., iZ = 41m.8s., epPZ = 41m.46s. Long waves were also recorded at Kew.

August 8d. Readings also at 0h. (Fort de France), 1h. (near Port au Prince), 7h. (near Branner), 9h. (near Belgrade and near Mizusawa), 11h. (near Fort de France), 14h. (Granada), 15h. (St. Louis, Tinemaha, Mount Wilson, Pasadena, Palomar, Tucson, Guadalajara, and near Mizusawa), 21h. (Tashkent).

August 9d. 5h. 30m. 4s. Epicentre 38° 2N. 118° 2W.

Scale VI at Basalt, Dyer, and Fallon; V at Keeler and Pinehurst Ranger Station, Goldfield, and Schurz. Macroseismic area 34,000 sq. m. Epicentre given by Pasadena. R. R. Bodle.
United States Earthquakes 1943, Washington 1945, p. 14. Isoseismic chart p. 13.

$$A = -.3723$$
,  $B = -.6943$ ,  $C = +.6159$ ;  $\delta = -1$ ;  $h = -1$ ;  $D = -.881$ ,  $E = +.473$ ;  $G = -.291$ ,  $H = -.543$ ,  $K = -.788$ .

		Δ	Az.	Р.	O-C.	s.	o –с.	Su	pp.	L.
		o	•	m. s.	8.	m. s.	8.	m. s.	Er-André	m.
Tinemaha Fresno	N.	1·1 1·9	$\frac{182}{221}$	i 0 20 a i 0 36	- 2 + 2	1 0 30	9	i = 0	-	
Haiwee Lick	5300000	2·1 2·9	175 252	i 0 34 a e 0 52	- 3 P•	i 2 30	9	i 0 55	Pg	. =
Santa Clara		3.1	254	i 1 2	P.	i 1 44	S	6 <del></del>	Parties.	77
Berkeley Branner	N.	3·2 3·3	264 256	i 0 56 i 0 57	+ 4 + 4	i 1 32 i 1 41	s.0	e 1 3	Pr	_
Santa Barbara	170.50	3.9	198	i 1 6	$+$ $\bar{4}$	i 2 1	8.		_	
Mount Wilson		4.0	178	i 1 2 a	<b>– 2</b>	i 2 3	8*			
Pasadena		4.1	180	i 1 3 a	- 2	i 2 2	******	-	_	
Ukiah		4.1	285	e 1 17	P*	i 2 10	8*	_	· _	e 2·4
Palomar	Z.	5.0	167	i 1 14 a	- 4					-
Ferndale		5.2	299	i 1 54	_ }	i3 0	9			
Salt Lake City		5.5	60	e 1 337	P*	e 2 30?	0			i 2·9
Tucson		8.5	132	i 2 3	4	i 3 34	-11	i 2 40	$\mathbf{P}_{\mathbf{z}}$	14.2
Bozeman		9.2	33	e 2 20	+ 4	e 4 11	+ 8	e 2 58	Pr	e 4.8
Seattle		9.9	344	<del></del>		e 4 14	— в			6 5 ⋅ 7
Victoria		11.0	342	e 2 447	+ 2			-	Sec. 1906	5.9
Saskatoon		16.1	27	3 56	+ 7	7 11	+22	55 V 11 V 12 S	-	8.5
St. Louis		21.9	80	i 4 56	- 1	e 8 58	+ 4	i 5 16	PP	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

304

		Δ	Az.	Р.	0 - C.	s.	0 - C.	Sur	p.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Sitka		22.4	335	-	-	e 9 13	+ 9			e 11.6
Cape Girardeau	N.	22.7	83	e 5 6	+ 2	e 9 11	+ 2			e 11.8
Chicago		23.7	72	e 5 14	Ō	e 9 30	+ 3		-	e 12·1
Pittsburgh		29.5	74	(1) (1) (1) (1) (1) (1) (1) (1)	1 200	e 11 6	+ 4	e 12 23	SS	i 16.0
Philadelphia		$33 \cdot 2$	74		-	e 12 0	0	12 0 B T 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	193	e 13·8
Bogota		52.2	118	e 9 14	- 1	. —		· .	_	_
Granada		83.8	47	_		e 21 38	-77			32.9

Additional readings :-

Santa Clara eN = 1m.21s.

Berkeley iZ = 1m.0s., iN = 1m.36s., iE = 1m.43s., eZ = 1m.47s., eN = 1m.56s. and 3m.21s.

Branner iN = 1m.7s.

St. Louis eZ = 5m.1s., iZ = 5m.5s., ePPP?Z = 5m.29s., eZ = 5m.36s. and 6m.46s., iN = 11m.45s.,  $eS_cPZ = 12m.46s$ .

Long waves were also recorded at Kew, Scoresby Sund, San Juan, and other American stations.

August 9d. 16h. 57m. 51s. Epicentre 9°·0N. 128°·0E. (as on 1940 April 14d.)

$$A = -.6082$$
,  $B = +.7785$ ,  $C = +.1554$ ;  $\delta = +12$ ;  $h = +7$ ;  $D = +.788$ ,  $E = +.616$ ;  $G = -.096$ ,  $H = +.122$ ,  $K = -.988$ .

		Δ	Az.	P.	0 -c.		o-c.	Suj	pp.	L.
Calcutta Brisbane Irkutsk Colombo Riverview	N. E.	40·3 43·6 47·3 47·7 47·9	296 147 341 272 154	m. s. e 7 48 8 40 i 8 38	- 20 + 3 - 4	m. s. i 13 41 e 14 29 15 35 i 15 35 i 15 32	s. - 8 - 9 + 4 - 7	m. s. i 14 40 i 17 46 — i 18 54	ss ss	e 24·2
Sydney Hyderabad Kodaikanal New Delhi Bombay	E. E.	47.9 48.8 49.8 51.5 54.3	154 285 277 300 287	e 8 46 e 8 49 e 10 11 e 9 31	- 3 - 7 PcP + 1	e 18 15 15 39 i 15 42 i 16 16 16 58	SS -13 -24 -13 - 9	10 40 10 45 18 41 10 32	PP PP SeS PcP	27.2
Andijan Tashkent Christchurch Sverdlovsk Moscow		58·4 60·7 66·1 70·2 82·9	312 313 146 328 325	e 9 59 i 10 17 21 41 i 11 17 12 38	$-1 \\ +2 \\ 0 \\ +10$	i 18 1 i 18 31 28 1 20 17	- 1 - 1 -11		=	(28·0) —
Sitka Ksara Helwan Upsala Copenhagen		86·8 91·3 92·3 96·5	34 304 300 331 329	e 12 47 e 12 52? e 13 7	+ 3 + 5 - 2	e 23 18 e 23 26? e 24 2 e 23 9? 24 9	$\begin{array}{c} + & 0 \\ + & 1 \\ - & 4 \\ [ -37] \\ [ & 0 ] \end{array}$	e 29 30 e 23 36	sks =	e 33·3 e 50·2
Scoresby Sund Triest Stuttgart Florence Tinemaha	E. Z.	98·1 100·0 101·4 102·4 103·0	350 319 323 318 49	e 17 42 e 15 25 e 13 53 i 16 55 e 18 19	PP ?	e 24 21 i 24 23 e 24 29 i 24 29	[ + 4] $[ - 4]$ $[ - 5]$ $[ -10]$	e 27 39 1 27 14	PS PS	e 52·1 e 53·7
Uccle Pasadena Mount Wilson Riverside Kew	z. z. z.	$\begin{array}{c} 103 \cdot 1 \\ 104 \cdot 1 \\ 104 \cdot 2 \\ 104 \cdot 8 \\ 105 \cdot 2 \end{array}$	327 51 51 51 329	e 18 26 e 18 26 e 18 18 e 18 40	PP PP PP	e 26 21? e 29 33? —	<u>:</u>			e 54·2 e 47·8 e 59·2
Paris Palomar Tucson Harvard San Juan	z.	105·2 105·4 110·5 125·7 149·4	325 51 50 17 26	e 18 23 e 18 38 (i 19 2) e 12 20	PP [+ 4] [- 1]	e 36 8	sss 	e 19 16 (i 21 0) e 19 48	PP PP PKP	62·2 e 53·5 e 74·2) e 24·5
Bogota Fort de France La Paz		154·2 154·7 162·6	59 21 116	e 20 49 e 19 56 1 20 6k	[+56] $[+2]$ $[+3]$			=	Ξ	<u>=</u>

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

305

NOTES TO AUGUST 9d. 16h. 57m. 51s.

Additional readings:—
Riverview iN = 15m.29s. and 19m.1s.
Hyderabad  $S_cSE = 18m.35s.$ , SSE = 19m.45s.Kodaikanal iE = 15m.59s.
New Delhi iN = 11m.38s.
Bombay PPE = 11m.32s.,  $S_cSE = 19m.10s.$ ,  $S_cSE = 19m.13s.$ , eN = 20m.17s., SSE = 20m.55s.Stuttgart eS = 25m.31s.Florence iPKPE = 20m.12s., iSKKS?E = 28m.33s., eSE = 29m.44s.San Juan e = 12m.31s. and 23m.59s.Long waves were also recorded at Wellington, Vladivostok, Huancayo, and other European stations.

August 9d. Readings also at 3h. (Mount Wilson, Palomar, and Tinemaha), 4h. (San Fernando, near Granada, Toledo, Almeria, and Tortosa), 7h. (near Fresno), 8h. (La Plata), 9h. (Triest), 10h. (near Fort de France), 15h. (Belgrade and near Reykjavik), 16h. (Granada), 18h. (Fort de France), 21h. (Granada), 23h. (Tananarive).

August 10d. 3h. Undetermined shock. Pasadena suggests depth of focus 600 km.

Suva i=50m.38s., e=50m.51s. and 51m.19s.Santa Barbara ePZ=60m.4s.Mount Wilson iPNZ=60m.16s.k, epPZ=62m.28s., eSEN=69m.33s.Pasadena iP=60m.16s.k, epPZ=62m.26s., eSEN=69m.34s.Riverside iPZ=60m.17s.k, epPZ=62m.28s.Palomar iPZ=60m.19s.k, epPZ=62m.27s.Haiwee iP=60m.23s.Tinemaha iP=60m.24s.k, epPZ=62m.35s., eSN=69m.52s.Tucson iP=60m.38s., i=60m.47s., e=62m.49s., eS?=70m.20s.Granada i=66m., L=90m.Copenhagen P=67m.33s.Florence ePE=67m.39s., ePPE=72m.40s., iSKSE=79m.17s., iPSE=82m.21s.Stuttgart eZ=67m.46s., iZ=67m.53s., eZ=68m.5s. and 70m.16s.

#### August 10d. 12h. Northern California.

Fresno eN = 25m.6s. and 27m.15s. Tinemaha ePZ = 25m.39s., i = 25m.57s., iSEZ = 27m.2s. Logan iP = 25m.49s., i = 25m.57s., iS = 26m.53s., iL = 27m.17s. Mount Wilson ePZ = 26m.19s., eSZ = 28m.36s. Pasadena iPZ = 26m.20s., iZ = 27m.11s., eS = 28m.36s., eNZ = 29m.16s. Haiwee e = 26m.21s., iS = 27m.37s. Riverside ePZ = 26m.22s., eZ = 26m.57s., eSEZ = 28m.46s. Palomar ePZ = 26m.32s., eZ = 27m.4s. and 29m.16s. Tucson eP = 27m.9s., e = 27m.58s., eL = 30m.35s. Santa Barbara eSNZ = 28m.27s. Long waves were also recorded at Ukiah.

August 10d. 13h. 48m. 48s. Epicentre 3°.3S. 126°.5E. (as on 1941 February 23d.).

```
A = -.5938, B = +.8025, C = -.0572; \delta = -12; h = +7; D = +.804, E = +.595; G = +.034, H = -.046, K = -.998.
```

		Δ	Az.	P. m. s.	O – C.	s. m. s.	0 – C. s.	m. s.	p.	L. m.
Perth Brisbane	E. N.	30·2 34·9 34·9	198 136 136	i 6 12 i 6 53 i 6 46	- 2 - 2 - 9	i 11 27 e 13 13 i 13 6	$^{+14}_{P_cS}$	i 7 12 i 11 33 i 16 55	PP,	i 19·8
Kumamoto Riverview	ORRETA	36·2 38·1	7 146	7 11 16 20k	$^{+}_{-62}^{5}$	12 55 i 11 30	+ 8		=	e 15·2
Sydney Hikone Nagoya		38·1 39·4 39·6	146 15 14	e 7 45 i 7 33 e 7 40	$^{+23}_{-0}$	13 38 13 41	+ 3 + 3	e 12 18?	-	
Nagano Kakioka		41·2 41·4	14 17	7 47 7 35	-15	$\begin{array}{ccc} 14 & 3 \\ 14 & 0 \end{array}$	$\frac{+}{-}$ $\frac{1}{5}$		=	_

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
Supp.
                                             O-C.
                                                                         m. s.
                                                                                            m.
Wazima
Sendai
                               16
                                                                          14 35
Mizusawa
                              283
Colombo
                                                        15 39
Sapporo
Kodaikanal
                                                                                   \mathbf{PP}
                              286
                                                                                   SSS
Hyderabad
                                        15
                                                           29
                              295
                                                                 +57
                                                                          21 41
                       51.7
                  E.
                       52.9
                              110
                                   i 15
                                        14
                                                                        i 18
                                                                              - 8
Suva
                              308
                                    e 9
                                                                        i 14
                                                                             23
                                                                                   PcS
                       57.0
                                        52
New Delhi
                                               +
                  N.
                                                                          21
                                                                                            30.0
Christchurch
                       57.1
                              141
                                               -56
                                                        16
                                                                                   SS
                                        54
                                                                              6
                                                        18
18
                              295
                                                                                   P_{c}P
                                        54
                                                           46
                                                                 +60
                                                                          10
                                                                             40
Bombay
                                                  33324
                  E.
                                               +++
                       58.5
                              344
                                                           17
                                                                 +14
                                     10
Irkutsk
                                                                                   P_cP
                              318
                                     10
                       66.0
                                                                          11 31
Andijan
                       68.3
                                   i 11
                                                                          13 55
                                                                                   PP
                              318
Tashkent
                                                                        e
                       79.8
                              330
Sverdlovsk
                       92.3
                              303
                                  e 13
                                                           28
                                                                -18]
                                               +16
                                                       23
Ksara
                                                                                   PS
                              299
                       96.4
                                               +62
                                                       23
                                                           42
                                                                -27]
                                                                        e 26
                                   e 14 34
Helwan
                       97.2
                               32
                                                                        1 23 33
                                   e 17 14
                                               \mathbf{PP}
                                                      e 26
                                                           24
                                                                 PS
Sitka
                              314
                       99.7
                                                      i 10 52
Bucharest
                                                                         38 12
Upsala
                      102.3
                              331
                                   e 19 12?
                      107.8
                                        123
Cheb
                      108.1
                              317
                                   e 19
                                        12
                                               PP
Triest
                                                                                           36.2
                      109.9
                              349
                                                                +301
Scoresby Sund
                                        11
                                               PP
                                   e 19
                      110.2
                              321
                                                        24 40
                                                                                            58.2
                                   e 18
                                        14
                                                                                   \mathbf{PP}
                                             [-19]
                                                                 -33]
Stuttgart
                                                                                 SKKS
                      110.4
                              316
                                                               [-31]
                                                                         25
Florence
                                               PP
                              325
                                                                                         e 54.2
                      111 4
                                                                -8
                                                                             32
De Bilt
                                                             6
                                                P
                     112.0
                                   e 14
                                                       21
                                                           27
                                                                SKP
                                                                        e 18
Tinemaha
                               51
                                        22
                                                                                  PKP
                                                                        i 18
                               53
                                                           38
                                                                [-45]
                                                                             12
                                                                                  PKP
                      112.7
                                  e 14
Pasadena
Mount Wilson
                                                        21
                                                           29
                                                                SKP
                                                                                  PKP
                      112.8
                               53
                                                                        e 18 13
                                   e 14 20
                              332
                                                               [-26]
                     112.8
Aberdeen
                     113.4
                                                P
                                                                                   PP
                               53
Riverside
                                                P
                      114.0
                               54
                                                                \mathbf{skp}
                                                                        i 19
                                                                              6
                                                                                   \mathbf{PP}
Palomar
                                                                        e 23
                      114.3
                              323
                                               \mathbf{P}\mathbf{P}
                                                        30
                                                                PPS
                                                                                            64 \cdot 2
Paris
                              327
                                               \mathbf{P}\mathbf{P}
                                                           277[- 4] (e 29 127)
                                                                                           29.2
                      114.8
                                                                                   _{\mathrm{PS}}
Kew
                                               \mathbf{PP}
                      115.3
                              320
                                                       30
                                                           20
                                                                 PPS
Clermont-Ferrand
                     118.9
                                               PP
                                                                                   PPS
                              315
                                  e 19
                                                                         31
                                                                                         e 66.2
Tortosa
                      119.1
                               54
                                  e 18
                                               -28]
                                                                        i 19
                                                                                   PP
Tucson
                  z. 122·4
                              316 e 18 38
                                              [-19]
                                                      i 32
                                                                 PPS
                                                                        i 20 39
Toledo
                      123 \cdot 2
                              313
                                                        31
                                                                                  PPP
                                     20
                                             [+64]
                                                                          23 15
                                                                                            63 \cdot 4
                                                                 PS
Granada
                  E. 125.4
                              313 e 21
                                               PP
                                                                                            70.2
San Fernando
Cape Girardeau N. 132.7
                                               PP
                               39
                                   e 22
                                                      e 28 16 {-20}
                      136.0
                               29
                                   e 21 44
                                               \mathbf{PP}
              N.W.
Pittsburgh
                                                                                   PP
                                   e 19
                               22
                                               -21]
                      138.4
Fordham
                                     19 33
                              144
                      155.5
                                                                        i 19 39
                                               -221
La Paz
                               37
                                   e 19 48
                      160.6
                                              [-13]
San Juan
  Additional readings :-
    Perth i = 10m.2s.
     Brisbane iN =11m.28s., iSSN =16m.0s.
```

```
Riverview i = 7m.43s., iN = 12m.36s., iE = 12m.41s.
Kodaikanal SSE = 21m.37s.
Hyderabad PSE = 17m.57s.
Christchurch Q = 25m.27s.
Bombay sPE = 10m.59s., PPE = 12m.15s., PSE = 19m.10s., sSE = 19m.59s.,
    20m.42s., eE = 20m.46s., iN = 21m.48s., SSE = 23m.1s.
Stuttgart eZ = 22m.50s.
Tinemaha iPPZ = 18m.54s.
Pasadena eZ = 14m.35s., ePPZ = 18m.59s., eSKPZ = 21m.24s., iEN = 25m.37s.
    eSN = 26m.24s., ePSZ = 28m.8s., ePPSZ = 29m.42s., eSSNZ = 34m.24s., eSSSN = 26m.24s.
    38m.30s. ?.
Mount Wilson eZ = 14m.36s., iPPZ = 19m.0s.
Palomar eZ = 14m.29s.
Kew eZ = 20m.35s., ePP?Z = 20m.54s.
Clermont-Ferrand e = 19m.52s., i = 30m.47s.
Tucson e = 21m.39s.
Granada SKP = 26m.51s., SKKS = 32m.37s., S = 33m.10s.
San Juan e = 30m.30s., 34m.21s., and 43m.49s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

August 10d. 15h. 13m. 17s. Epicentre 55°.0N., 161°.6E.

Epicentres 54°N. 161°E. (U.S.C.G.S.); 56°·0N., 162°·5E. (Pasadena).

A = -.5468, B = +.1818, C = +.8173;  $\delta = +2$ ; h = -7; D = +.316, E = +.949; G = -.776, H = +.258, K = -.576.

$\mathbf{D} = +$	D = +.316, $E = +.949$ ; $G =776$ , $H = +.258$ , $K =576$ .										
Sapporo Mizusawa Sendai Sendai Nagano Wazima	△ A 17.8 23 21.0 23 21.8 23 24.3 23 24.3 23	m. s. 9 4 11 80 e 4 44 88 4 52 83 e 5 19	O-C. s. 0 - 3 - 4 - 1 - 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Supp. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	L. m. 11·5					
Tokyo Cen. Met. Ob Gihu Nagoya College Koti	26·0 23 26·1 23 26·4	81 e 5 35	$     \begin{array}{r}       - & 2 \\       - & 1 \\       + & 7 \\       0 \\       + & 13     \end{array} $	10 15 + 9 i 10 13 + 1 10 54 0	(e 10 58) SS	e 11·0					
Irkutsk Sitka Victoria Honolulu Seattle	44·8 45·3 1	91 e 6 38 80 e 6 50 86 8 2- 92 e 8 24 96 e 9 39	$     \begin{array}{r}       -3 \\       +2 \\       -15 \\       +3 \\       +14     \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 7 52 PP 18 12 SS e 18 24 SS e 15 39 PPS	e 14.5 20.7 e 19.2 e 18.6					
Saskatoon Ukiah Sverdlovsk Berkeley Bozeman	51·1 51·5 52·5	54 9 133 75 e 9 8 17 9 9 77 i 9 16 62 e 9 20	$\begin{array}{cccc} + & 9 \\ + & 2 \\ - & 1 \\ - & 1 \end{array}$	16 19 - 1 e 16 24 0 16 30 + 1 i 16 40 - 3 e 16 46 - 4	18 52 ScS e 19 24 8 e 20 33 SS	e 24·3 e 25·3 e 24·2					
Santa Clara Fresno N. Scoresby Sund Tinemaha Logan	54·7 54·8 55·3	77 e 9 30 75 e 9 32 3 e 9 36 74 i 9 36 66 i 9 39	$^{+}$ 0 $^{+}$ 1 $^{+}$ 2 $^{+}$ 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 13 1 PPP i 9 39 ? e 19 26 SeS	e 25·6 i 24·7 23·3					
Haiwee Salt Lake City Santa Barbara Andijan Mount Wilson	56·1 56·4 57·5 2	74 i 9 42 67 e 9 42 77 i 9 44k 97 e 9 58 76 i 9 51	- 1 - 1 - 1 + 5 - 2	e 17 33 + 1 e 17 32 0 e 17 57 PPS 18 3 PS e 17 48 - 2	e 17 54 PPS e 10 52 PcP	e 24·8					
Pasadena Riverside Tashkent Palomar z. Moscow	58·0 58·7 58·8	76 i 9 51k 76 i 9 54k 99 i 9 59 76 i 10 1k 28 10 11	- 2 - 3 - 3 - 1 - 4	i 17 49 - 1 e 17 54 - 3 18 21 PS 18 26 - 4	e 39 42 P'P' i 20 0 ScS e 39 34 P'P'	e 24·4					
Ivigtut Upsala Tucson Bergen New Delhi N.	61.9 3 62.9 63.4 3	17 e 10 22 41 i 10 27 73 i 10 29 48 10 377 84 i 10 36	$     \begin{array}{r}       - & 1 \\       + & 3 \\       - & 1 \\       + & 3 \\       - & 2     \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 14 19 PPP i 11 26 PeP i 10 42 i 20 19 SeS	e 25·9 e 29·7 e 26·7 e 28·7 32·4					
Copenhagen Chicago Aberdeen Ottawa Seven Falls	67·4 67·4 68·9	43 i 10 55 51 e 10 56 52 e 10 59 40 11 6 36 11 8	$     \begin{array}{r}                                     $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 20 48 ScS e 29 43 7 13 43? PP 27 58 SSS	32·7 e 24·8 e 35·3 33·7 35·7					
Cape Girardeau N. Potedam Vermont Stonyhurst E. Pittsburgh	69·9 3 70·6 70·7 3	55 e 11 13 41 e 11 14 39 — 51 e 15 0 46 e 11 15	$-\frac{1}{9}$	e 20 19 - 4 e 20 31? + 7 i 20 41 + 7 i 20 36 - 6	e 11 22 PeP e 21 3 PPS e 25 49 3 i 21 4 PS e 16 23 ?	e 34·7 e 29·9 e 31·7					
De Bilt Jena Bacau Prague Prague Hyderabad E.	71.5 3 71.8 3 71.8 3	46 i 11 24 a 41 i 11 23 31 — 40 e 11 12 75 —	$-\frac{0}{14}$	i 21 3 PS e 20 557 +12 e 21 3 PS e 20 38 - 8 20 36 -13	i 11 41 a PcP e 15 43 PPP	e 31·7 e 31·7 e 34·7					

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

308

		٥	Az.	P. m. s.	0 – C.	S. m. s.	0 – C.	m. s.	pp.	L. m.
Cheb Focsani		$\substack{72 \cdot 2 \\ 72 \cdot 5}$	$\frac{341}{329}$	e 15 45 e 11 55?	$P_{cP}$	e 20 51 e 21 373	$_{\mathrm{PPS}}^{}}}$	= '	_	e 38·7
Kew Harvard		$72.8 \\ 72.9$	349 39	i 11 31 a i 11 31	- 1 - 2	e 20 56	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	i 11 44	$P_{c}P$	e 36·2
Uccle		72.9	347	î 11 32	– ĩ	e 20 56	- 3	i 11 48	PcP	e 35·7
Ogyalla Worten		73.0	336	e 10 37	-56	e 21 36	PS	e 12 3	$P_{\mathbf{c}}P$	40.7
Weston Fordham		$73 \cdot 1 \\ 73 \cdot 5$	39 41	i 11 37 e 11 34	$+\ \frac{3}{2}$	e 20 56 i 20 59	- 5 - 7	e 16 18	PP	e 37·7
Halifax Philadelphia		73·6 73·7	32 43			e 21 3	-4			36.7
		11207.032	40	1000 Section 1	+ 1	i 21 2	- 6	e 21 39	$_{\mathrm{PS}}$	e 33·7
Georgetown Bucharest		$73.9 \\ 74.0$	$\frac{44}{329}$	e 11 39 e 11 44	+ 5	e 21 3 e 21 23	$^{-7}_{+12}$	22 2	PPS	34·2 38·7
Kalossa Stuttgart		74·0 74·0	336	e 11 43?	+ 4		- 12			-
Bombay	N.	144-176	$\frac{342}{281}$	i 11 38 a 11 35	$-\frac{1}{5}$	e 21 11 21 25	$+13^{0}$	$\frac{22}{21} \frac{17}{58}$	$_{ m PPS}$	e 38·0 —
Suva Strasbourg		74·3 74·5	165 343		n =	i 21 14	- 1	i 22 24	PPS	e 39·1
Paris		75.1	347	i 11 57a i 11 46	$\mathbf{P_{c}P}_{0}$	21 31	+ 7	e 14 51	$\overline{PP}$	38·7 36·7
Belgrade Basle		75·2 75·5	333 343	e 11 46 e 11 48	0	e 21 46	PS	e 12 10	$P_cP$	e 42·0
Zürich		75.5	343	e 11 47a	- 1	e 21 44	+16	e 12 53	•	
Chur Neuchatel		75·8 76·1	341	e 11 49	- <u>î</u>	e 21 19	-12			
Triest		76.1	343 338	e 11 51 i 11 53	$+ \frac{0}{2}$	e 22 58 i 21 47	$^{\mathrm{PPS}}_{+12}$			e 36·7
Columbia		76.4	50	e 11 54	+ 1	e 21 31	- 7	e 26 10	SS	e 32.5
Sofia Milan		76·4 77·2	$\frac{330}{341}$	e 11 56 i 11 56	+ 3	e 21 373 22 3	- 1	e 32 7	8	42.1
Clermont-Ferrance Kodaikanal	55	78.0	345	i 12 1a	- <b>i</b>	e 22 12	SeS SeS	e 22 40	$\overline{PS}$	e 35·5
Florence	E.	$78.3 \\ 78.4$	$\frac{272}{339}$	e 11 43 i 12 7a	$^{-20}_{+3}$	e 21 56 i 22 7	- 3 + 7	i 22 17	$s_c = s$	e 39·6
Ksara		80.1	317	e 12 16	+ 3	e 22 31	SeS			
Barcelona Tortosa		82·4 83·2	346 346	e 12 8 i 12 34	-17	e 23 5	$s_cs$	·	<del></del>	e 46·2
Bermuda		84.3	39	e 12 35	0	i 23 2	$+ 5 \\ + 2$	$\begin{array}{cccc} 18 & 7 \\ e & 28 & 21 \end{array}$	PPP	e 34·7
Toledo		84.7	350	i 12 38	+ 1	i 23 15	$s_{e}s$		-	36.7
Helwan Lisbon		85·3 86·2	319 354	i 12 40 12 32k	$-12^{0}$	23 87 23 28	- 2	23 49	PS	<del>3 - 3</del> 3
Granada		87.3	349	i 12 47	- 3	i 23 47	$+$ 9 $S_{e}S$	$\begin{array}{ccc} 16 & 3 \\ 24 & 49 \end{array}$	$_{\mathbf{PS}}^{\mathbf{PP}}$	41-4
Almeria San Fernando	E.	87·5 88·3	$\frac{349}{351}$	e 13 33	$-11 \\ {}_{3}$	e 23 44 e 23 55	ScS ScS	$\begin{array}{c} 12 & 57 \\ e & 16 & 42 \end{array}$	$_{\mathbf{PP}}^{\mathbf{P}}$	41.2
Riverview		88.9	189	i 13 10a	$P_{c}P$	e 23 43	- 1	23 17	SKS	e 36·3
San Juan Wellington		96·4 96·6	46 171	e 13 34 e 17 43?	$^{+}_{\mathbf{PP}}^{2}$	e 24 46	- 4	e 24 4	SKS	e 48.0
Christchurch		98.6	173	<del></del>	_	40 55	3	43 28	Q	44.7
Bogota		105.0	59	e 14 8	- 3					<u></u> -7
Huancayo La Paz		$118.5 \\ 126.0$	70 65	20 9	PP_	e 30 0 22 38	$_{ m PS}^{ m PS}$	e 37 14 32 48	SSP	e 48.6 58.7
Rio de Janeiro	E.	143.0	40	e 21 43	3	_	~~~			00 1

```
Additional readings :-
  Scoresby Sund i=19m.43s., e=21m.8s.
  Logan i = 9m.47s., eSS = 21m.4s.
  Pasadena iZ = 10m.0s.
  Palomar iZ = 10m.9s.
 Upsala ePP?E=13m.15s., eSN=18m.38s., eN=20m.30s., and 22m.51s., eSS?E=
      23m.23s., eSSS?E = 25m.52s.
 Tucson i = 10m.41s., e = 20m.46s., eSS = 23m.5s.
 Ottawa SS = 24m.31s.?
 Cape Girardeau eN = 20m.36s.
 Potsdam ePE = 11m.17s.
 Stonyhurst iPPSE = 21m.18s., iSKSE = 21m.24s., iS<sub>c</sub>SE = 21m.32s., E = 21m.42s.
     and 22m.34s., SSE = 24m.14s., eQE = 28.7m.
 De Bilt iPP=14m.5s.a, ipPP=14m.23s.a, ePPP=15m.53s., isS=21m.23s.
 Jena N = 11m.268.
 Kew eE = 12m.12s., ePPNZ = 14m.18s., ePPPNZ = 16m.3s., ePSEN = 21m.17s.,
      ePPS = 21m.50s., eSSNZ = 25m.43s.?, eQEN = 30 · 2m.?.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

309

```
Uccle ePPZ = 14m.16s., iN = 21m.52s., SSN = 25m.43s.?.
Ogyalla eSE = 21m.52s.
Weston SS = 25m.29s.
Fordham eSS = 25m.42s.
Philadelphia e = 14m.53s, and 16m.20s, eSS = 25m.53s, e = 29m.24s.
Bucharest PSE = 22m.9s.
Stuttgart iP_cPZ = 11m.55s., ePPZ = 14m.25s., ePPP = 16m.13s., eSS = 26m.23s.
Bombay SSN = 26m.50s.
Suva e = 28m.22s.
Belgrade e = 32m.45s.
Columbia e = 30m.0s.
Clermont-Ferrand iPP =14m.58s., iPPP =17m.6s.
Florence iPPE = 14m.52s., iPPE = 16m.56s., iPSE = 23m.18s.
Tortosa SSN = 29m.2s.
Bermuda e = 13m.44s.
Helwan eZ = 13m.12s, and 14m.43s, eNZ = 19m.49s, SN = 24m.17s, PSN = 25m.27s.
Lisbon PN = 12m.46s.
Granada SS = 29m.14s., SSS = 32m.26s.
Almeria sP = 13m.18s., PP = 16m.33s., S = 22m.58s., PS = 24m.42s., SS = 29m.43s.
Riverview eN = 19m.53s., ePSZ = 24m.45s., eZ = 28m.45s., eN = 29m.3s.
San Juan ePP = 18m.8s., eSS = 31m.16s.
Huancayo eSSS? = 41m.0s.
Long waves were also recorded at Colombo and Besançon.
```

August 10d. 15h. 36m. 29s. Epicentre 55° 0N. 161° 6E. (as at 15h. 13m.).

		Δ	Az.	1	٥.	0-c.	s.	0-c.	Su	pp.	L.
		0	0	m.	8.	8.	m. s.	8.	m. s.		m.
Sapporo		17.8	239	e 4	9	<b>– 2</b>	<del>-</del>	-	-	_	
Mizusawa	E.	21.0	230	4	44	- 3	8 44	+ 7			_
Sendai		21.8	228	4	53	- 3	8 52	0	-	-	-
Wazima		$24 \cdot 3$	235	е 5		+ 2	(				
Tokyo Cen. Met.	Ob.	24.5	228	e 5	20	<b>– 2</b>		1	200	<del>2001</del> :	-
Gihu		26.0	-231	e 5	37	+ 1	10 24	+18	-		-
Nagoya		$26 \cdot 1$	234	e 5	40	$^{+}_{+}$ $^{1}_{3}$					-
Tinemaha		$55 \cdot 3$	74	e 9	36	- 2	( <del></del>	_	i 9 39	Ŷ	1
Logan		55.4	66	i 8		-52			_		-
Halwee		56.1	74	e 9	45	+ 2	-				_
Santa Barbara		56-4	77	i 9	46	+ 1	32 <del>2374</del>	<u> </u>	o di <del>co d</del> i lo	-	1000
Mount Wilson		57.5	76	e 9	50	- 3	· <del></del>	-	i 9 53	8	
Pasadena		57.5	76	e 9		- 2	i 17 53	+ 3	e 39 43	P'P'	-
Riverside		58.0	76	i 9		- 2					
Palomar	z.	58-8	76	i 10	3	+ 1	-	_	e 38 48	P'P'	-
Tucson		62.9	73	i 10	29	- 1	-	_	i 18 13	9	S <del></del>
Copenhagen		66.8	343	10	58	+ 2		-	- 1		28.5
Cape Girardeau	N.	69.8	55	e 11	17	+ 3	e 20 24	+ 1	e 11 26	PcP	
Jena.		71.5	341	i 11	25	+ 1			e 11 28	$\mathbf{P_{c}P}$	
Harvard		72.9	39	e 21	25	$_{\rm PS}$	e 25 11	SS		-	-
Stuttgart	z.	74.0	342	i 11	40	+ 1	-	_			
Basle		75.5	343	e 11	49 a	+ 1					
Zürich		75.5	343	e 11	49	+ 1					
Chur		75.8	341	e 11	43	- 7	· ·	-		<del></del>	-
Neuchatel		76.1	343	e 11	53	+ 2	-	_			_
Tortosa	N.	83.2	346	i 12	40	$P_{c}P$		3 <u>—77</u>	1/2	<u>15-1</u> 0	
Toledo	Z.	84.7	350	i 12	39	+ 2	-	-	· ·	<del>)</del> (	_
Helwan	z.	85.3	319	i 12	43	+ 3	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	i 12 54	$P_{e}P$	
Lisbon	Z.	86-2 87-3	354 349	e 12	491	+ 5 - 3	$(23 \ 37)$ $22 \ 53$	+18			23.6
Granada		87.3	349	e 12	47	- 3	22 53	8	1.72	7.00	

Long waves were also recorded at Tananarive.

August 10d. Readings also at 0h. (Tananarive), 1h. and 3h. (near Mizusawa), 4h. (near Fresno), 5h. (Pasadena and Tucson), 9h. (Bombay and New Delhi), 10h. (New Delhi, Bombay, and Tashkent), 12h. (Bombay and near Triest), 13h. (near Mizusawa), 14h. (New Delhi, Almata, near Tashkent, and Andijan), 15h. (Pasadena (2), Mount Wilson (3), Tinemaha (3), Riverside (3), Haiwee (2), Palomar (3), Tucson (3), Toledo, La Paz, and Christchurch), 16h. (Tucson, Riverside, Tinemaha, and Palomar), 18h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, and Palomar), 23h. (near Andijan).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

310

```
August 11d. 5h. Pacific ocean.
```

```
Mizusawa ePN = 22m.51s., ePE = 22m.55s., SE = 24m.35s., SN = 24m.40s. Irkutsk eP = 27m.53s., eS = 33m.35s. Tashkent P = 30m.54s., eS = 38m.58s. Tinemaha ePZ = 33m.4s.k. Haiwee iPZ = 33m.8s. Mount Wilson iPZ = 33m.11s.k. Pasadena iPZ = 33m.11s.k, eLN = 57m. Riverside ePZ = 33m.13s. Palomar iPZ = 33m.13s., iZ = 33m.30s. Tucson e = 33m.44s., eL = 63m.42s. La Paz PZ = 40m.44s. Copenhagen 43m.56s. New Delhi eN = 52m.27s. Long waves were also recorded at Stuttgart, De Bilt, and Kew.
```

August 11d. Readings also at 3h. (Palomar, Tinemaha, Tucson, and near Irkutsk), 5h. (Florence), 8h. (near La Paz and near Mizusawa), 11h. (San Juan), 12h. (Tucson, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Santa Barbara, Cape Girardeau, Philadelphia, Fort de France, and near Port au Prince), 13h. (Granada, Tortosa, Kew and Pittsburgh), 14h. (near Tashkent), 18h. (near Branner). 22h. (near Fort de France).

August 12d. 4h. 50m. 37s. Epicentre 37°·3N. 139°·8E.

Scale V at Shirakawa, Tukubasan; IV at Niigata, Hukusima, Yamagata, Mito, Sakata, Kakioka, and Takada; II-III at lida, Nagano, Tokyo, Titibu, Yokohama, and Hamamatu.

Radius of Macroseismic area 300 km. Shallow. Damage caused by ground movement and falling masonry. Thirty-nine aftershocks were recorded. Seismological Bulletin of Central Meteorological Observatory Japan for 1943, Tokyo 1950, pp. 36-37, two macroseismic charts.

H. Kawasumi: "Seismology in Japan 1939-1947." Bull. Seism. Soc. America, vol. 39, 1949, p. 161. Epicentre as adopted.

A = -.6091, B = +.5147, C = +.6034;  $\delta = +1$ ;  $\hbar = -1$ ; D = +.645, E = +.764; G = -.461, H = +.389, K = -.797.

	Δ	Az.	Р.	o-c.	s.	O-C.	Su	pp.	L.
	•	c	m. s.	8.	m. s.	в.	m. s.		m.
Hukusima	0.7	50	0 15	- 2	0 23	- 5			
Utunomiya	0.8	176	0 17	- 1	0 29	- 2		-	****
Onahama	0.9	113	0 16k	- 4	0 21	-13		_	
Kakioka	1.1	164	0 13	- 9	0 33	- 6			-
	1.1	213	0 23	⊥ ĭ	0 39	ŏ		_	
Maebasi	1.1	210	0 20	one★	0 00	1 380	20		
Mito	1.1	150	0 22	0	0 45	+ 6			-
Tukubasan	1.1	167	0 22a	0	0 37	- 2		-	
Sendai	1.3	42	0 23k		0 41	- 3	-	-	_
Aikawa	1.4	300	0 28	+ 1	0 45	- 1			-
Tokyo Cen. Met. Ob.	1.6	181	0 30	Õ	0 50	- 1	-	-	-
TORYO COL. Mcc. CD.		101	0 00	Š	0 00				
Tyosi	1.8	151	0 33	+ 1	1 3	+ 7		_	
Kohu	1.9	211	0 36	+ 2	1 0	+ 1			
Mizusawa E.	2.1	30	0 38	+ 1	1 8	+4			-
Misima	2.3	197	0 40	0	1 13	+ 4			-
Wazima	2.3	272	0 40k		1 12	+ 4 + 3		-	
vv azıma					77 TAGE:	9) 32%			
Akita	2.4	6	0 46	+ 5 + 2	1 22	S.		-	
Shizuoka	2.6	204	0 46 a	+ 2	1 18	+ 1	-	-	3 <del>-31</del>
Miyako	2.9	36	0 49k	+ 1	1 31	+ 7		-	-
Omaesaki	3.0	205	0 49 a		1 31	+ 4 S.	-	****	-
Gihu	3.1	232	0 52k		1 43	S.	_		11
оши					AST 1.28 ES				
Hamamatu	3.1	213	0 54 8	+ 3	1 41	S.		\$ <del></del>	
Nagoya	3.1	227	0 54 k	+ 3	1 42	S		-	-
Hatinohe	3.5	22	0 57	0	1 43	+ 3	-	2	(2 <del>.27.5</del>
Hikone	3.5	236	0 58k	+ 1	1 40	0	=	_	-
Kameyama	3.7	229	1985 Table 1	+ 2	1 55	S.	_	_	
Lameyama		220							

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943		311

	Δ	550000	P. O-C.		) -C,	Sup	p.	L.
Kyoto Hatidyozima Toyooka Kobe Wakayama	4·0 4·2 4·4 4·6 4·9	236 1 180 1 247 1 236 1 232 1	. s. s. 1 5 + 1 1 7 0 1 11 + 1 1 12k 0 1 18k + 1	m. s. 2 10 1 41 2 12 2 7 2 30	S _g -16 +10 0	m. s.		m. = =
Sumoto Siomisaki Sapporo Koti Hamada	5·0 5·1 5·9 6·3 6·7	235 1 222 1 11 1 236 1 251 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 27 2 34 3 17 2 51	S* S* + 1			
Matuyama Hukuoka Kumamoto Unzendake Kagosima	6·7 8·5 8·7 9·1 9·5	241 1 247 2 242 2 243 3 236 2	2 10k 0	3 45 4 32 4 5 4 47 5 0	S: S: +15 S: S:			
Nake Irkutsk Calcutta College Tashkent	12·4 29·0 46·4 49·6 53·3	313 - 267 - 32 e 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 10 48? i 15 17 e 16 1 i 16 55	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			i 27·0 e 23·6
Sverdlovsk Moscow Upsala Tinemaha Copenhagen	54·1 66·3 72·1 76·7 77·1	319 9 324 10 334 e 16 54 i 11 333 -	6 31 9	i 17 3 19 39 e 20 44 21 44	- 2 - 3 - 6 - 2	e 28 55	sss —	e 37·4 39·4
Santa Barbara Z. Haiwee Mount Wilson Z. Pasadena Riverside	77·3 77·4 78·5 78·5 79·1	56 e 17 56 i 17 56 i 17 56 e 17	1 58a 0 2 3a - 1 2 3a - 1	e 2 <u>1</u> 1	<u>=</u>			=
Potsdam E. N. Palomar Z. Jena N. Stuttgart Uccle	79·4 79·8	330 i 15 330 e 15 56 i 15 329 e 15 330 i 15 334 i 15	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	e 22 10 e 22 14 e 21 473 e 22 58	$+\frac{0}{4} \\ -\frac{67}{2}$	e 22 53 ?	_ _ PS	e 42·4 e 45·4 e 42·4
Triest Tucson Kew Helwan Paris	84·2 84·5 85·0 85·4 86·3	325 54 i 15 336 e 15 304 15 333 i 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 22 54 e 23 2 e 23 11 e 23 9	- 5 - 5 0 0	e 15 46 e 36 23?	PP Q	e 40·0 e 42·4 47·4
Milan Florence Clermont-Ferrand Cape Girardeau N. Tortosa E.	200 AV 100	38 e 1		e 23 30 e 24 21	[ 0 ] [-10] [+6] + 1 [+3]	i 16 14k e 25 28 e 31 20	PP PS SSP	e 49·6 e 50·4
Pittsburgh N.W. Toledo Almeria Granada La Paz	94.5 96.3 98.4 98.5 147.8	330 e 13 331 e 20	3 29 - 3 8 40 ? 0 55 ? 9 50 [+ 6	e 28 34 29 34	- 1 + 22 *	1 <del>7</del> 23	P <u>P</u>	49·0 56·4 e 57·3

Additional readings:—
Mizusawa SN = 1m.13s.
Upsala eN = 20m.11s.

Tucson e = 13m.8s.
Florence iSKKSE = 23m.23s.7, iSE = 23m.47s., iPSE = 24m.32s., iPPSE = 25m.4s., iSSSE = 33m.40s.

Long waves were also recorded at Bozeman, Harvard, Philadelphia, and other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

312

August 12d. 11h. 17m. 26s.. Epicentre 19°·1N. 67°·1W. (as on 8d.).

Pasadena suggests deep focus.

A	=+	3680,	$\mathbf{B} = -$	·8711, C	= + .325	$2; \delta =$	-1;	h=+5.		
		Δ	Az.	Ρ.	O-C.	S. (	0-c.	Sup	p.	L.
				m. s.	s.	m. s.	s.	m. s.	TO CO.	m.
Port au Prince		5.0	265	e 1 22	+ 4	i 2 22	+ 4	i 2 33	8*	i 2.8
Fort de France		7.2	127	e 2 46	$P_{s}$					22
Bogota		15.9	206	e 3 50	+ 3	e 6 55	+11	<del></del>		
Harvard		23.6	353	e 5 7	- 6	e 9 15	-10	-	-	
Cape Girardeau	N.	26.7	317	e 5 52	+ 9	e 10 41	+24	-	+	e 13·4
Tucson		41.3	298	i 7 44	- 5		-	2.122		
Palomar	z.	46.4	299	i 8 27	- š	- Administration	-	- <del> </del>	(900000)	_
Riverside		46.9	300	i 8 29	- š		_			-
Mount Wilson		47.5	300	e 8 35	- 3	-		( primary)		and the same of
Haiwee		47.6	303	i 8 50	+11	_	_			
Pasadena		47.6	300	i 8 36	- 3	2	_		_	
Tinemaha		48.0	303	i 8 37 a	- š	_		-		100
Santa Barbara		48.9	300	i 8 45	- š		_		-	
Granada		57.8	57			18 34 9	+40	2000		
Kew		60.9	40				+60	-	-	e 19.6

Additional readings :-

Bogota e = 4m.0s.

Harvard e = 5m.25s, and 9m.20s.

Tucson i = 7m.58s.

Palomar iZ = 8m.40s., eZ = 8m.51s.

Riverside iNZ = 8m.43s., iZ = 8m.54s.Mount Wilson iNZ = 8m.48s., iZ = 8m.59s.

Pasadena eEN =8m.50s.

Tinemaha iZ = 8m.53s. and 9m.21s.

Santa Barbara iZ = 8m.59s., e = 9m.9s.

Long waves were also recorded at Philadelphia and Pittsburgh.

August 12d. Readings also at 3h. (Tucson, Palomar, and Tinemaha), 4h. (New Delhi), 5h. (Cape Girardeau, Mount Wilson (2), Pasadena, Riverside (2), Tinemaha (3), Palomar (2), Tucson (2), Bozeman, La Paz, and near Mizusawa), 6h. (near Mizusawa (2)), 7h. (Rio de Janeiro, Mount Wilson, Riverside, Tucson, near Fort de France, and near Mizusawa), 8h. (Philadelphia, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and Mizusawa), 9h. (near Mizusawa), 11h. (De Bilt, Kew, Stuttgart, Florence (2), Triest, Bucharest, Sofia, La Paz, and near Fort de France), 12h. (Zürich and Sofia), 16h. (La Paz), 19h. (Fort de France), 21h. (La Paz).

August 13d. 7h. 37m. 9s. Epicentre 0°-7N. 29°-4W. (as on 1937 Dec. 28d.).

$$A = +.8711$$
,  $B = -.4909$ ,  $C = +.0122$ ;  $\delta = -5$ ;  $h = +7$ ;  $D = -.491$ ,  $E = -.871$ ;  $G = +.011$ ,  $H = -.006$ ,  $K = -1.000$ .

	Δ	Az.	P.	O-C.	S.	0-c.	Sup	p.	L.
	0	0	m. s.	s.	m. s.	s.	m. s.	0.5-1000-	m.
San Juan	40.1	296	e 7 38	- 1	e 13 44	- 2	e 9 13	$\mathbf{PP}$	e 16.8
San Fernando	41.6	29	-		e 14 3	- 5	e 18 1	SSS	23.9
La Paz z.	41.9	246	7 54	0	14 20	+ 7	-		21.9
Granada	43.4	30	6 21	P	i 12 48	3	8 18	$\mathbf{p}\mathbf{P}$	20.1
Almeria	43.8	32	8 4	- 5	14 10	-30	8 13	$\mathbf{pP}$	20.4
Bogota	44.8	276	e 8 18	+ 1		_		-	
Toledo	45.3	28	i 8 20	- 1	i 15 10	- 8		*****	19.9
Huancayo	47.3	253	e 8 41	+ 4	e 15 30	- 1	e 10 26	$\mathbf{PP}$	e 24·2
Tortosa E.	48.3	32	e 9 7	+22	15 51	+6	e 10 8	$\mathbf{PP}$	e 24·4
Clermont-Ferrand	53.2	29	e 9 27	+ 5	e 17 4	+12	•		e 26·0
Paris	55.2	25	e 9 36	- 1	i 17 26	+ 6	-	_	25.9
Florence	56.1	35	i 9 45	+ 2	e 17 37	+ 5	e 11 56	$\mathbf{PP}$	e 27·8
Kew	$56 \cdot 2$	22	e 9 567	+12	e 17 42	+ 9		_	e 23·9
Uccle	57.5	25	<del>4-</del> 1.		e 17 54	+ 4			e 26.9
Stuttgart	58.3	29	e 9 56	- 3	e 18 1	0	e 10 41	$P_{c}P$	e 29·6

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943 213

		Δ	Az.	P.	O-C.	s.	0 -C.	Sup	p.	L.
		•	0	m. s.	s.	m. s.	8.	m. s.		m.
Columbia		58.5	311		-	e 18 5	+ 2		200	e 27·1
Triest		58.6	34	e 8 13	- 3	i 18 11	+ 7			
De Bilt		58.8	25			e 18 11	+ 4		-	e 27·9
Ottawa		60.3	324	e 10 11	- 2	e 18 29	+ 3	(e 24 51)	SSS	e 24·9
Pittsburgh		60.5	318	- 10 11		e 18 32	+ 3	e 24 49	SSS	
Trompourbit			200			25TY 25TY 25TY		Workerson A	openano.	
Copenhagen		64.4	25	10. <del>Hard</del> 10. S		19 25	+ 7			
Helwan		64.5	58	e 10 42	+ 1	e 19 15	- 4		_	_
Chicago		66.3	317	e 10 52	0	e 19 35	- 7			e 34·4
St. Louis		67.1	313	e 10 55	- 2	e 19 48	- 3	e 11 7	$\mathbf{pP}$	31.5
Ksara		69.2	55	e 11 21	+11	e 20 32	+16		-	_
Upsala		69.2	23	e 10 32	-38				-	e 33·9
Tucson		82.4	303	i 12 27	The second secon	-		e 15 34	$\mathbf{PP}$	e 41·3
Palomar	Z.	87.5	304	e 12 53	$^{+}_{+}$ $^{2}_{2}$		-			
La Jolla	z.	87.8	303	e 12 55	+ 3				_	_
Riverside	z.	87.9	304	e 12 55	$+\ 3 + 2$	-		e 16 29	PP	
Haiwee	z.	88-4	306	e 12 59	+ 4	522		2223		
Mount Wilson	z.	88.5	304	e 12 57	$+$ $\bar{1}$		-		-	
Pasadena		88.6	304	e 12 57	+ 1			e 16 29	$\mathbf{PP}$	e 42.4
Tinemaha .	z.	88.7	307	e 12 59	$+$ $\bar{2}$		-		3	

Additional readings :-Granada  $P_cS = 12m.12s$ .

Almeria sP = 8m.21s., PP = 9m.50s.,  $P_cP = 10m.2s.$ , PPP = 10m.26s., sS = 14m.43s.SS = 17m.17s.

Huancayo e = 19m.18s. Tortosa iE = 7m.55s.

Florence iSSE = 21m.4s. St. Louis iPZ = 10m.58s., eZ = 11m.1s., esSE = 20m.13s., eE = 25m.5s., esSSS?E =

27m.23s. Upsala eE = 23m.26s., eN = 26m.51s.?

Long waves were also recorded at Scoresby Sund, Bergen, Potsdam, Harvard, and Philadelphia.

August 13d. Readings also at 0h. (St. Louis, Riverside, Palomar, Tinemaha, Tucson, near Bogota (2), and Balboa Heights (2)), 1h. (Cape Girardeau), 3h. (near Mizusawa), 4h. (Granada), 7h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, and Mizusawa), 9h. (near Stuttgart), 14h. (Bogota), 15h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, and St. Louis), 17h. (near Andijan), 18h. (Mount Wilson, Tucson, Tinemaha, and Palomar).

August 14d. 8h. 7m. 48s. Epicentre 31°.0S. 178°.5W. (as on 1938 January 3d.).

$$A = -.8584$$
,  $B = -.0225$ ,  $C = -.5125$ ;  $\delta = +1$ ;  $h = +2$ ;  $D = -.026$ ,  $E = +1.000$ ;  $G = +.512$ ,  $H = +.013$ ,  $K = -.859$ .

		Δ	Az.	P.	0-C.	s.	0-c.	Su	pp.	L.
		0		m. s.	s.	m. s.	s.	m. s.		m.
Auckland		8-1	222	2 4	+ 2	3 1	-34	-		_
Arapuni		8.5	212	2 301		4 121				-
Wellington		11.6	206	2 21	-29	i4 2	-59		-	6.0
Suva		13.1	347	i 3 35	PPP	6 32	SSS	e 4 54	?	7.8
Christchurch		14.4	207	<del></del>	-	5 36	-33	5 56	Q	7.2
Brisbane	E.	25.1	271	i 5 30	+ 2	e 9 52	+ 1	i 5 45	$\mathbf{PP}$	-
Riverview	1000	25.7	255	5 30	$^{+}_{-}$ $^{2}_{3}$	i 9 56	- 5	i 6 11	$\mathbf{PP}$	e 12·2
Sydney		25.7	255	e 6 24 9				-		
Santa Barbara		85.5	45	e 12 40	- 1			-	-	_
La Jolla		85.9	48	e 12 43	0	-	-		$\overline{}$	-
Pasadena		86.2	46	i 12 45	+ 1	e 25 0	PPS	i 12 55	$P_{c}P$	e 39·4
Mount Wilson	Z.	86.3	46	i 12 45				i 12 56	PcP	
Palomar	z.	86.5	47	i 12 46	The second secon		-	i 12 57	PcP	2,000
Riverside		86.6	46	1 12 46	T 1			i 12 57	PcP PcP	8
Haiwee		87.6	45	e 12 53	+ 2	<del></del>				2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

314

	Δ	Az.	P.	O-C.	s.	O-C.	St	ipp.	L.
			m. s.	s.	m. s.	s.	m. s.	. T. T.	m.
Tinemaha	88.1	44	i 12 54 a	0	terestation in the	-	i 13 5	PcP	
Tucson	89.9	50	i 13 1	- ĭ	e 25 8	PS	i 13 12	PeP	e 41·7
Huancayo	94.9	107			e 23 49	[-12]	e 30 55	SS	e 43.2
La Paz	98.2	114	13 45	+ 5		,	26 11	$\widetilde{\mathbf{P}}\widetilde{\mathbf{S}}$	45.2
St. Louis	107.4	55	e 18 47	$\mathbf{PP}$	e 25 48	<b>{+ 1}</b>	e 27 39	PŠ	
Ksara	150.9	282	e 19 46	[- 3]				-	-
Helwan z.	154.3	274	19 48	1 - 61		_			
Kew	159.5		(e 19 12?			_	-	-	e 19·2
Stuttgart	161.3	343	e 19 56	[-6]	38 12	PSKS	e 20 50	PKP.	e 83·2
Paris	162.2	357	i 19 58	[-5]			i 23 38	PKS	89.2
Clermont-Ferrand	165.2	356	i 20 0	[-6]			1 24 52	PP	e 86·2
Toledo z.	170.1	25	i 20 6	$\tilde{I} - \tilde{3}\tilde{1}$			i 21 27	PKP.	0 00 2
Tortosa	170.2	4	e 20 4	Î - 51			e 46 27	SS	e 94 · 2
Granada	172.5	33	20 33	1 + 221	32 45	$\{+29\}$	22 1	PKP.	84.0

Additional readings:—
Riverview iPPPN = 6n .26s., iE = 6m.42s., iN = 10m.14s., iEN = 10m.29s.

Pasadena ePPZ=16m.15s. Mount Wilson iZ=13m.2s. Palomar eZ=13m.23s. Riverside eZ=13m.14s. Tinemaha eZ=13m.21s. Tucson ePP=16m.28s.

Ksara e = 20m.15s. and 29m.31s. Helwan eZ = 20m.12s. and 21m.15s.

Stuttgart ePP?Z = 24m.22s., eZ = 35m.12s.?.

Toledo iPPZ = 25m.19s.

Tortosa eE = 24m.27s., iE = 24m.38s.

Granada iPP == 25m.57s., SKSP = 36m.55s., SS = 46m.51s. Long waves were also recorded at Harvard and Uccle.

August 14d. Readings also at 2h. (Oaxaca, Tacubaya, Bogota, Cape Girardeau, San Juan, St. Louis, Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Santa Clara, Bozeman, and Philadelphia), 3h. (Harvard), 4h. (Pittsburgh, near Bogota, and near La Paz), 9h. (Mizusawa), 12h. (near Andijan and near Mizusawa), 15h. (near Fort de France), 16h. (Tortosa), 17h. (near La Paz), 20h. (Cheb), 22h. (Bogota and Fort de France).

August 15d. 0h. 13m. 15s. Epicentre 19°-5N. 68°-0W.

A = +.3534, B = -.8746, C = +.3318;  $\delta = -9$ ; h = +5; D = -.927, E = -.375; G = +.124, H = -.308, K = -.943.

	Δ	Az.	P. ·	o -c.	s.	O-C.	Su	pp.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.		m.
San Juan	2.1	122	10 29	- 8	i 0 47	-17		-	
Port au Prince	4.2	258	10 54	-13	i 1 19	-38			i 1.8
Fort de France	8.1	125	e 1 52	-10	3 20	-15			-
Bermuda	13.2	13	e 3 18	+ 7	e 5 34	- 6			e 6.9
Balboa Heights	15.3	228	e 3 38	- 1				_	-
Bogota	15.9	203	e 3 43	- 4	e 6 33	-11		# <b>==</b> #	i 7·1
Columbia	18.5	325	e 2 45?	7	e 6 19?	- 8	-	-	e 7.6
Philadelphia	21.3	346	e 4 58	+ 8	e 8 40	- 3	i 5 28	PP	e 9.9
Fordham	21.9	350	i 5 11	+14	i 8 50	- 4		-	
Harvard	23.1	355	e 5 28	+20	e 9 23	+ 7	_	-	e 12·8
Pittsburgh	23.3	337	e 5 12	+ 2	i 9 32	+12			e 11·3
Ottawa	26.6	348	e 5 45	$^{+}_{+}$ $^{2}_{3}$					10.3
St. Louis	27.1	320	i 5 47	+ 1	e 10 26	+ 2	action :		e 12.5
Seven Falls	27.7	356	e 6 45 ?	+53	e 10 36	+ 3		-	12.8
Chicago	27.8	327	e 6 14	+21	e 10 34	- 1		-	e 12.8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

315 1943

	Δ	z. P.	0 – C. s.	m. s.	O –C.	m. s.	p.	L. m.
Huancayo La Paz Rapid City Tucson Salt Lake City	$   \begin{array}{r}     32 \cdot 2 & 1 \\     35 \cdot 8 & 1 \\     38 \cdot 2 & 3 \\     40 \cdot 3 & 2   \end{array} $	o m. s. 94 e 7 28 80 i 7 1 19 e 8 19? 98 i 7 42	PP - 2 PP + 2	e 11 33 13 1 e 12 363 e 13 52	$^{-12}_{+20}$	i 9 22 (e 17 56)	PP SS	e 13·3 e 15·4 e 20·5 e 17·9
Bozeman Palomar z. La Jolla Riverside Mount Wilson	45.5 2 45.8 2 46.0 3	17 99 i 8 25 a 98 i 8 26 a 00 i 8 27 a 00 i 8 33 a	+ 1			e 18 18	ss 	e 22·4
Pasadena Tinemaha Santa Barbara Scoresby Sund Toledo	47.0 3	00 18 32 a 03 18 36 a 00 e 8 43 17 — 55 19 54		i 15 27 — e 17 58 e 17 55	+ 5 + 4 0	i 10 27 — 12 4	PP = PP	e 23·8 e 29·0 27·1
Granada Almeria Tortosa Sitka Paris	58·3 59·2 61·4 61·6 62·8	58 i 10 12 58 9 58 54 e 8 44 25 e 10 27	$+13 \\ -7 \\ -3$	i 18 23 i 18 11 i 18 38 e 20 12	+ 22 - 1 - 2	1 <u>2</u> 15	PP =	24.6 29.2 e 27.8 e 31.2 29.8
Clermont-Ferrand Uccle Stuttgart z. Florence Triest Helwan	63 · 2 64 · 0 67 · 2 69 · 1 70 · 6 88 · 2	48 e 10 28 42 — 44 e 10 54 49 e 11 35 47 1 10 27 59 e 12 57	$     \begin{array}{r}         -4 \\         -4 \\         +25 \\         -52 \\         +3 \\    \end{array} $	e 18 47 e 19 10 e 20 10 i 20 26 e 23 35	-16 -3 -5 -7 -3		=	e 35·2 e 29·8

Additional readings:-Fort de France e = 2m.9s. and 2m.42s. Bogota i = 3m.52s., 4m.11s., and 4m.58s.Philadelphia e = 6m.36s. Fordham i =9m.2s. Rapid City e = 2m.27s.?.

Tucson i=8m.6s. and 13m.29s.

Palomar iZ = 8m.35s.

Pasadena iZ = 8m.48s. Almeria  $P_cP = 10m.39s.$ , PPP = 13m.52s.,  $P_cS = 14m.41s.$ ,  $S_cS = 19m.47s.$ 

Long waves were also recorded at other European stations.

August 15d. 2h. 29m. 42s. Epicentre 13°.7N. 147°.6E.

$$A = -.8206$$
,  $B = +.5208$ ,  $C = +.2354$ ;  $\delta = +3$ ;  $h = +6$ ;  $D = +.536$ ,  $E = +.844$ ;  $G = -.199$ ,  $H = +.126$ ,  $K = -.972$ .

	^	Az.	Ρ.	0 -C.	S.	0-C.	Su	pp.	L.
		0	m. s.	s.	m. s.	s.	m. s.		m.
Nake	22.3	314	e 4 56	- 5	7 20	9		-	-
Misima	22.7	343	e 5 12	+ 8	9 14	+ 5		-	
Tokyo Cen. Met. Ob.		344	e 5 28	+21	-	-		-	
Nagoya	23.4	339	e 5 13	+ 2	-	-	_		-
Koti	23.6	330	i 5 13	Ō	9 28	+ 3		_	*****
Kagosima	23.7	322	5 13	- 1	9 36	+ 9	-		-
Kobe	23.7	335	e 5 20	$-1 \\ +6$	9 36	+ 9	100		
Hikone	23.8	338	e 5 19	+ 4	9 31	+ 3		-	<del></del>
Nagano	24.4	342	e 5 32	+11					
Riverview E.	47.4	176	_	-	i 15 2	-30	i 18 40	SS	-
Irkutsk	51.7	328	_		16 33	+ 1	e 20 29	SS	
Andijan	70·1	309	e 11 17	+ 1	e 20 27	0	11 51	$P_{c}P$	
Sitka	71.6	34	7 - 2 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	·	e 20 52	+ 8			e 30.9
Tashkent	72.4	310	11 27	- 3	20 53	. 0		-	
Sverdlovsk	77.0	326	e 11 56	ŏ	21 20	-25	-	i <del>circle</del>	10000

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

316

		Δ	Az.	Р.	o – c.	s.	0 - C.	Su	pp.	L.
seems to state ou		0	•	m. s.	8.	m. s.	s.	m. s.		m.
Santa Barbara		84 6	56	e 12 36	0	-		-	-	
Tinemaha		85-1	54	i 12 39	0	-		1.	0.00	-
Mount Wilson 2	Z.	85.9	56	i 12 42	1	eran S <mark>iversi</mark> e cann				
Pasadena	727.1	85.9	56	i 12 42	- 1	i 23 21	+ 5		-	e 35·3
Riverside		86.5	56	i 12 44	- 2	_	-			
La Jolla 2	z.	86.9	57	e 12 47	- 1		_	-		_
	Z.	87-1	56	i 12 49	õ					4.3
Tucson	967	92.3	56	e 13 7	- 6	e 23 52	[+6]	e 25 35	PS	e 42.7
Helwan 2	Z.	104.9	306	18 33	PP					
Triest		107.7	328			e 25 9	[+7]		33	e 54·4
Uccle		108.2	337	i 18 58	$\mathbf{PP}$	-		-	×	e 50·3
Kew		109.4	340	e 19 6	$\mathbf{P}\mathbf{P}$	-	-			e 27·3
Florence	2.	110.3	327	e 28 33	PS	e 39 0	SSS		-	e 40·1
Paris		110.5	337	i 19 14?	$\mathbf{PP}$		A 14			64.3
Clermont-Ferrand		112.7	334	i 19 28	$\mathbf{PP}$			3		e 68·3
Almeria		122.3	332	e 20 34	$\mathbf{PP}$	-	-	-	S. (	60.3
Granada		122.6	333	e 23 3	PPP	25 39	[-19]	e 32 21	PPS	59.0

Additional readings :-

Helwan eZ = 19m.0s. and 19m.44s. Almeria e = 23m.54s. and 34m.23s.

Long waves were also recorded at Huancayo, Philadelphia, and at other European stations.

August 15d. Readings also at 4h. (near Fresno and near Bogota), 6h. (Potsdam, near Basle, Zürich, Ravensburg, and Stuttgart), 8h. (Bogota, Fort de France, and La Paz), 9h. (La Plata, Huancayo, and near Basle), 10h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, and Bogota), 11h. (Suva and Kew), 12h. (Stuttgart), 13h. (Pasadena, Riverside, Tinemaha, Palomar, Tucson, and Sitka), 14h. (Pasadena, Mount Wilson, Tinemaha, and Granada), 16h. (near Triest and Florence), 17h. (near Granada and Almeria), 19h. (Tacubaya).

August 16d. Readings at 3h. (Strasbourg, Ravensburg, near Basle, Neuchatel, Zürich (2), and Stuttgart (2)), 4h. (near Stalinabad, Tashkent, and Tchimkent), 5h. (near Tashkent), 6h. (Tucson, Palomar, and Tinemaha), 8h. (Cheb, La Plata, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and Mizusawa), 9h. (near Bogota), 10h. (near Stuttgart), 15h. (Tucson, Mount Wilson, Palomar, Riverside, and Tinemaha), 16h. (Fort de France, Ksara, and near Branner), 18h. (near Tananarive), 20h. (near Bogota), 21h. (Tucson, Tinemaha, and near Branner).

#### August 17d. 9h. Undetermined shock.

```
Riverview iPZ = 12m.21s.a, ipPZ = 14m.22s., iSE = 18m.9s., iE = 19m.2s., isSEN =
    21m.34s.
Andijan eP = 14m.8s., eS = 22m.20s.
Tashkent P = 14m.24s., iS = 22m.50s.
Sverdlovsk eP = 15m.34s., S = 24m.58s.
Irkutsk eS = 20m.50s.
Stuttgart eZ = 22m.4s.
Tinemaha ePKPZ = 22m.29s., eZ = 23m.16s., ePKKPZ = 23m.26s., eZ = 23m.34s.,
    iPKKPZ = 33m.178.
Mount Wilson ePKPZ = 22m.31s., eZ = 23m.20s.
Pasadena iPKP = 22m.31s., eZ = 23m.24s.
Riverside ePKPZ = 22m.32s., eZ = 23m.31s.
La Jolla ePKPZ = 22m.33s.
De Bilt iZ = 22m.38s., eL = 58m.
Tucson e = 22m.43s., 23m.54s., 32m.48s., and 36m.15s.
St. Louis eP?Z = 23m.4s., eZ = 26m.16s., eE = 26m.31s., eE = 33m.56s.
Bogota e = 23m.54s, and 24m.44s.
La Paz P = 23m.578.
Long waves were also recorded at Kew.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

317

August 17d. Readings also at 0h. (near Mizusawa), 1h. (Stuttgart, Tucson, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, St. Louis, and near Mizusawa), 3h. (Fort de France, Bogota, Cape Girardeau, Philadelphia, St. Louis, Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, and Kew), 7h. (near Tashkent), 9h. (Reykjavik (2), near Fort de France, and near Stuttgart), 11h. (Reykjavik), 13h. (Suva, Arapuni, Auckland, Christchurch, Wellington, Brisbane, Sydney, Riverview, Perth, Riverside, Tucson, Tinemaha, and La Paz), 14h. (Kew, De Bilt, Uccle, Paris, Clermont-Ferrand, Stuttgart, Tortosa, Granada, Toledo, Scoresby Sund, Huancayo, and Pasadena), 15h. (De Bilt, Uccle, Stuttgart (2), Jena, Andijan, Tashkent, Irkutsk, Sverdlovsk, Riverview, La Paz, Mount Wilson, Palomar, Tucson, Tinemaha, and near Branner), 16h. (Kew, Andijan, and Pasadena), 18h. (Tacubaya), 19h. (Andijan).

August 18d. Readings at 0h. (Tucson), 1h. (Andijan, Tashkent, and New Delhi), 5h. (near Andijan and Tashkent), 6h. (Suva, Wellington, Riverview, Palomar, Tucson, and Tinemaha), 8h. (Bucharest, Sofia, and near Istanbul), 9h. (near Ksara and near Mizusawa), 11h. (near Mizusawa), 12h. (Tacubaya), 13h. (near Berkeley), 15h. (Tucson, Palomar, and Tinemaha), 16h. (Haiwee, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Santa Barbara, Tinemaha, Tucson, St. Louis, Bogota, Fort de France, and near La Paz), 21h. (near Almeria, Granada, and Toledo).

August 19d. Readings at 1h. (Tananarive and Sofia), 2h. (Mount Wilson, Pasadena, Riverside, Tucson, and Tinemaha), 5h. (La Paz, Rio de Janeiro, Fort de France (2), Mount Wilson, Pasadena, Palomar, Tucson, Riverside, and Tinemaha), 9h. (Ksara), 10h. (Haiwee, Mount Wilson, Pasadena, Palomar, Tucson, Riverside, Tinemaha, St. Louis, Stuttgart, Tashkent, and Mizusawa), 12h. (Helwan, Ksara, Stuttgart, Tashkent, Riverside, Tinemaha, and Tucson), 16h. (near Fort de France), 23h. (Oaxaca, Puebla, Vera Cruz, Tacubaya, St. Louis, Tucson, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Clermont-Ferrand, Ebingen, Strasbourg, Ravensburg, near Basle, Zürich, Stuttgart, and near Berkeley).

August 20d. 1h. 22m. 5s. Epicentre 10°-3N. 126°-0F. (as on 1942 December 3d.).

$$A = -.5784$$
,  $B = +.7962$ ,  $C = +.1776$ ;  $\delta = +2$ ;  $h = +6$ ;  $D = +.809$ ,  $E = +.588$ ;  $G = -.104$ ,  $H = +.144$ ,  $K = -.984$ .

		23				and the second				
		Δ	AZ.	P.	0-C.	s.	0-c.	Su	pp.	L.
		0	0	m. s.	s.	m. s.	S.	m. s.	(5.55).Te	m,
Kôti		24.2	15		+ 4		-			
Nagoya		26.7	20	e 6 1	+18					
Zinsen		27.1	ĩi	e 5 40	- 6		-		- 533	
Nagano		28.5	19	e 6 2	+ 3	3				
Mizusawa		31.7	23	e 6 29	$+$ $\overset{3}{2}$	11 33	- 4	e 6 32	2	AET.
		0-000000		0.0.20	, -	11 00		0 0 02	•	
Sapporo		35.3	19	e 7 1	+ 2	1				
Calcutta	N.	38.0	294	e 2 26	. 3	i 13 5	- 9	i 9 41	$P_{c}P$	i 17.8
Irkutsk	(50.5	45.4	342	8 24	<b>→ 2</b>	15 2	- 2		r 6r	1110
Colombo		45.7	269	8 25	i ī	15 2	- <del>6</del>	-		22.9
Brisbane	N.	45.8	145			i 14 48	-21	i 18 6	SS	22 8
2312375440	? <b>`</b> `	•••	***					110 0	1313	\ <u></u>
Hyderabad	E.	46.6	284	8 39	+ 7	15 39	PPS	10 32	$\mathbf{pP}$	23.4
Kodaikanal	E.	47.4	275	i 8 43 a	÷ 5	i 15 49	PS	10 37	₽₽	20 1
New Delhi	N.	$\hat{49} \cdot \hat{1}$	298			i 16 3	+ 7	i 19 45	ŝŝ	27.7
Riverview	200	50.0	152	i 8 56 a	- 2	i 15 50	-19	i 10 58	PP	
Sydney		50.0	152			1 10 00	10	e 21 13	SSS	e 24·2
og anog		00.0	102		200000	Refle	: <del>3=</del> 1:	C LI II	000	
Tashkent		58.4	313	i 9 59	- 1	i 18 20	+18		-	
Suva		59.0	117	e 12 30	PP	i 18 0	-10	e 13 34	PPP	
Arapuni		66.8	139	e 7 55 7	8			C ID DE	* * *	33.9
Sverdlovsk		68.0	328	10 55	- š	19 56	- 6	-	_	33.3
Wellington		68.2	143			19 45	-19	35 551	Q	40.9
" CITIES COL		00.0	-10			10 10	-10	00 001	W.	40.5
Honolulu		73.5	70	e 11 11	-25	250	22	e 16 52	5	e 20·9
Moscow		80.7	325	12 14	$-\tilde{2}$	-	-	0.10.02		0 20 0
Ksara		84.4	303	e 12 40	$+\tilde{4}$	e 23 23	+22			
Sitka		86.0	32	~ ~= .~	<u> </u>	e 23 11	- 6			e 35·4
Helwan		88.9	300	12 55	- 3	23 55	+11	16 28	PP	6 22 4
		00.0		00		20 00	1.44	10 20	* *	-
Bucharest		89.8	316	e 14 55?	3	e 23 43?	$\{+3\}$		_	47.9
Upsala		90.2	332			e 23 34	1 01	e 23 43	SKKS	e 35.9
Copenhagen		$94 \cdot 4$	329	13 24	+ 1	24 11	{ - 3}		~~~	0 00 5
Potsdam		95.4	326			e 24 11 e 24 14	[+11]			e 51·9
Bergen		95.5	335	-		25 0	+18	_	===	e 35.9
		HO 000 10 MICH	- 1907, SEC. 1907.			a.c. 0	1.40			0 00 0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

318

Prague Victoria Scoresby Sund Cheb	95.6 95.6 96.5 96.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- e 24 37	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SS e 35.2
Stuttgart De Bilt Florence Berkeley Uccle	97·7 99·9 99·9 E. 100·1 100·4 101·0	323 e 13 41 328 e 13 47 318 e 18 1 49 e 24 25	- 4 e 25 19 - 1 e 24 35 PP i 24 36 SKS (e 24 25	7 + 5 e 26 43 [+ 8] e 26 53 [+ 9] e 26 53 [- 4] e 27	PS e 47.9 PS = 46.0
Paris Kew Tinemaha Mount Wilson Pasadena	z. 103·0 103·1 z. 103·6 z. 104·9 104·9	329 e 14 4 49 e 14 3 50 e 18 20	PP e 24 56 + 2 e 24 36 - 1 PP = 27 37	[-6] e 27 10 - e 18 13	PS e 50·9
Riverside Palomar Tortosa Tucson Toledo	Z. 105.5 Z. 106.2 E. 108.5 111.3 111.9	320 e 14 12 49 e 18 37	P i 25 10 [+1] e 28 42	(2) ************************************	PP e 45.6
Almeria Granada St. Louis Bermuda San Juan Bogota La Paz	112.6 113.2 120.7 136.4 149.1 155.1 165.0	318 19 40 33 e 18 51 14 e 22 3 22 e 20 2 54 e 19 56	PP 29 15 [- 3] e 30 6 PP 15 [+ 16] e 42 41 [+ 1] 15 [- 42]	PS 21 4: PS e 31 3: — e 40 1:	PPS e 51·7 SS — — —

Additional readings:—
Hyderabad SSE = 18m.38s.
Riverview iE = 15m.54s., iSSEN = 19m.14s.
Suva e = 16m.3s., 17m.35s., and 24m.25s.
Helwan eZ = 14m.0s., 15m.49s., and 17m.55s.
Stuttgart ePP?Z = 17m.47s., eZ = 22m.31s.?, eSSS? = 36m.7s.?.
De Bilt ePP = 17m.55s.
Kew ePPZ = 18m.16s., ePPPZ = 21m.17s., eSKKSE = 25m.32s., ePPSEZ = 28m.14s., eZ = 31m.37s., eSSSE = 38m.25s.?
Tucson e = 21m.12s., 22m.8s., 33m.12s., and 37m.22s.
Granada PPP = 24m.3s., SS = 38m.33s. Readings wrongly identified.
St. Louis eSKKS?N = 30m.48s., eSSE = 36m.45s.

/ La Paz iZ = 21m.10s., PPPZ = 28m.19s.

August 20d. Readings also at 0h. (near Mizusawa), 1h. (Mount Wilson, Tucson, Riverside, Tinemaha, and Palomar), 2h. (Ksara), 3h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, and Palomar), 5h. (Palomar, Tucson, and St. Louis), 8h. (near Fort de France and near Marseilles), 10h. (La Paz), 18h. (near Mizusawa), 19h. (Triest), 21h. (Tucson, Pasadena, Mount Wilson, Tinemaha, and Palomar), 23h. (Jena).

Long waves were also recorded at Auckland, Christchurch, Huancayo, Philadelphia,

### August 21d. 9h. Undetermined shock.

Stonyhurst, and Clermont-Ferrand.

Huancayo eP=19m.52s., eS=23m.52s., eL=27m.10s. Tucson iP=20m.26s., e=21m.41s., i=23m.36s., eS=28m.40s., eL=39m.25s. Palomar iPZ=20m.33s. Riverside ePNZ=20m.37s. Mount Wilson iPNZ=20m.38s. Pasadena iPNZ=20m.39s.k, eLE=36m. Haiwee ePZ=20m.51s. Tinemaha ePNZ=20m.58s. Cape Girardeau ePN=21m.24s. St. Louis ePZ=21m.33s., eZ=21m.37s., eSE=30m.38s., eSS?E=38m.21s. Christchurch S=34m.56s., Q=37m.36s., R=41m.36s. Long waves were also recorded at La Paz, Honolulu, Riverview, and De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

### 1943

319

August 21d. Readings also at 0h. (near Tananarive), 1h. (near Mizusawa), 7h. (near Lick), 8h. (Ferndale), 10h. (near Andijan and Tashkent), 14h. (La Paz), 15h. (near Irkutsk), 17h. (near Mizusawa), 18h. (Ksara and near Bacau, Bucharest, Campulung, Focsani), 19h. (Helwan and Ksara), 20h. (De Bilt), 23h. (Belgrade, Triest, near Bucharest and Sofia).

August 22d. 1h. 24m. 37s. Epicentre 36°·8N. 140°·9E. Depth of focus 0·005.

Intensity V at Tukubasan; IV at Sendai, Shirakawa, Mito, Kakioka, Titibu; II-III at Kumagaya, Miyako, and Hatinohe.

Epicentre as adopted. Radius of macroseismic area 200-300 km.

Seismological Bulletin of the Central Meteorological Observatory, Japan, for the Year 1943, Tokyo 1950, pp. 37-38, with macroseismic chart p. 37.

$$A = -.6229$$
,  $B = +.5062$ ,  $C = +.5964$ ;  $\delta = -6$ ;  $h = -1$ ;  $D = +.631$ ,  $E = +.776$ ;  $G = -.463$ ,  $H = +.376$ ,  $K = -.803$ .

Mito Kakioka Tukubasan Utunomiya Tyosi		° 0.5 0.8 0.9 1.1	Az. 220 225 228 253 181	0 0 0	s. 15k 21k 18k 19k 21	O-C. + 2 + 4 + 1 + 1	S. m. s. 0 21 0 33 0 33 0 31 0 36	O - C. s. - 2 + 4 + 2 0	m. s.	рр. <u>=</u> =
Tokyo Cen. Met. Maebasi Sendai Kohu Misima	Ob.	1·4 1·5 1·5 2·2 2·3	$220 \\ 255 \\ 0 \\ 238 \\ 223$	0 0 0	28 28 19 40 41	+ 4 + 2 - 7 + 4	$\begin{array}{c} 0 & 47 \\ 0 & 50 \\ 0 & 34 \\ \hline 1 & 17 \end{array}$	$+4 \\ +5 \\ -11 \\ +13$		
Mizusawa Aikawa Shizuoka Miyako Omaesaki	E.	$2.3 \\ 2.4 \\ 2.7 \\ 3.0 \\ 3.1$	$\begin{array}{r} 5 \\ 300 \\ 228 \\ 17 \\ 225 \end{array}$	0	30 37 44 41 55	- 7 - 1 + 2 - 6 + 7	0 53 1 13 1 24 1 8	$-11 \\ + 6 \\ + 10 \\ -14$		
Hamamatu Wazima Gihu Nagoya Hatidyozima		3·3 3·6 3·6 3·8	$231 \\ 280 \\ 249 \\ 244 \\ 193$	1 0 1 1	50k 59 0 4	$^{+10}_{-1}$ $^{+4}_{+5}$	1 40 1 29 1 47 1 46 1 46	$^{+11}_{0}_{+10}$ $^{+3}_{+4}$		
Hatinohe Aomori Hikone Kameyama Kyoto		3·8 4·0 4·1 4·1 4·5	359 250 243 249	0 1 1	52 53 4 k 16	$   \begin{array}{r}     - & 6 \\     - & 8 \\     + & 2 \\     + & 14 \\     + & 4   \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-10 \\ -6 \\ +13 \\ +12$		
Owase Kobe Siomisaki Sumoto Sapporo		4·7 5·1 5·4 5·5 6·3	236 248 233 245 3	1 2 1	25 19 a 19 a 26	$^{+15}_{+3}$ $^{-2}_{-6}$	2 23 2 25 (2 1) 2 37 2 41	$^{+19}_{+11}_{-21}_{+13}_{-3}$		
Koti Kumamoto Andijan Tashkent Sverdlovsk		6·8 9·3 52·3 54·3 55·1	244 248 296 298 319	e 9	46 17 21 25	$\begin{array}{c} + & 7 \\ + & 3 \\ - & 1 \\ - & 3 \end{array}$	$\begin{array}{c} 3 & 8 \\ - & 35 \\ e & 17 & 1 \\ e & 17 & 3 \end{array}$	$+\frac{12}{9} \\ +\frac{8}{1}$		
Tinemaha Pasadena Mount Wilson Riverside La Jolla	Z. Z. Z.	76·3 78·0 78·1 78·7 79·4	54 56 56 56	i 11 i 11 e 12	43 52 51 8	- 1 - 1 - 3 pP			i 11 57 i 12 6 i 12 5 e 15 5	pP pP PP
Palomar Tucson St. Louis	z.	79·4 84·1 91·4	56 54 38	e 12 i 12 e 13	0 24 0	- 1 - 1 0	e 23 47	_ 	i 12 14 i 12 39	pP pP

Additional readings :-Palomar iZ = 15m.11s.

Tucson i = 12m.53s., e = 15m.50s.

Long waves were recorded at Kew and De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

320

August 22d. 11h. 3m. 20s. Epicentre 51°-6N. 177°-8W. (as on 1940 June 2d.).

$$A = -.6232$$
,  $B = -.0239$ ,  $C = +.7817$ ;  $\delta = 0$ ;  $h = -6$ ;  $D = -.038$ ,  $E = +.999$ ;  $G = -.781$ ,  $H = -.030$ ,  $K = -.624$ .

		Δ	Az.	P.	O-C.	s.	O-C.	Su	pp.	L.
etten avor takonko-min			0	m. s.	s.	m. s.	s.	m. s.		m.
College		20.4	38	e 4 43	+ 2	e 8 31	+ 6	-	-	e 9.9
Sitka		25.0	59	e 5 28	+ 1	e 9 50	+ 1	i 10 15	3	e 13·3
Victoria		34 4	73	N 53 20 27 50	1 175	e 12 19	0			18.7
Bozeman		43.1	70		-	e 14 19	-11	e 18 18	SSS	e 26.4
Tinemaha		43.8	85	e 8 9	0			i 10 0	$\mathbf{PP}$	
Haiwee		44.6	85	18 25	+ 9	2000		10 100	-	-
Mount Wilson	Z.	45.7	88	e 8 24	ě		-		20	
Pasadena		45.7	88	18 24	Ŏ			e 10 16	PP	e 19·5
Riverside	Z.	46.3	88	e 8 27	- 2		Carrier 1			To The Carlot
La Jolla		47.1	88	e 8 49	+14				_	
Palomar	z.	47.1	88	i 8 34	- 1	_		_	<u>.                                    </u>	_
Tucson	2477741	51.5	84	i 9 10	$+$ $\tilde{1}$			-		e 25·4
St. Louis		59.5	65	i 10 7	ô	e 18 7	- 9	e 18 25	PS	<u> </u>
Cape Girardeau	N.	60.9	67	e 10 36	$+1\tilde{9}$	e 18 28	- 6		~~~	
	N.W.	63.9	57	e 11 47	+70	e 19 10	$-\tilde{2}$	-	_	e 38-9

Additional readings:— Tinemaha iZ=8m.19s.

Mount Wilson iZ = 8m.39s, and 8m,42s.

Pasadena iZ = 8m.38s.

Riverside eZ = 8m.41s., iZ = 8m.46s.

Palomar iZ = 8m.48s. and 8m.57s. Tucson e = 9m.18s. and 15m.17s.

Long waves were also recorded at Honolulu, Scoresby Sund, and De Bilt.

August 22d. Readings also at 0h. (Florence), 9h. (near Fort de France), 10h. (Helwan), 12h. (Tashkent), 14h. (Calcutta, New Delhi, Bombay, near Tashkent, and Andijan), 22h. (Wellington, Auckland, and Suva), 23h. (Florence, near Andijan, and Tashkent).

August 23d. 7h. New Zealand shock.

Intensity VII in the region of Christchurch.

R. C. Hayes.

Earthquakes in New Zealand during the year 1943, Wellington, 1944, New Zealand Journal of Science and Technology, Vol. XXV, No. 5B, p. 228. Map of epicentres,

Suva i = 8m.31s. and 9m.39s., e = 19m.7s. and 21m.21s.

p. 226, isoseismic chart. Epicentre 42° 8S. 171° 8E.

Riverview iP = 11m.2s., iSNZ = 14m.34s., iSSE = 14m.47s.,  $iP_cP?N = 15m 16s.$ ,

eRE = 16m.30s.

Brisbane iPZ = 11m.21s., iPPN = 11m.36s., ePPZ = 11m.40s., iSN = 15m.41s.

Sydney e = 14m.30s.?.

Santa Barbara iPZ = 17m.1s. Mount Wilson iPNZ = 17m.5s. a.

Pasadena iP = 17m.6s.a, eLNZ = 55m.

La Jolla ePNZ=17m.6s.

Palomar iPZ =17m.8s.a.

Haiwee iPZ = 17m.14s.

Tinemaha iP=17m.14s.a.Tucson iP=17m.31s., i=17m.46s., e=22m.50s., eL=55m.35s.

Helwan PZ = 26m.21s., eZ = 26m.51s.

Stuttgart eZ = 27m.50s.

Long waves were also recorded at Huancayo, Sitka, Kew, and De Bilt.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

321

- August 23d. Readings also at 1h. (La Paz, near Tchimkent, Tashkent, and Andijan), 3h. (near Strasbourg, Chur, Basle, Zürich, Ravensburg, Stuttgart, and Ebingen), 4h. (Florence), 11h. (near Marseilles), 16h. (La Paz), 19h. (near Branner), 22h. (near Tashkent), 23h. (Florence).
- August 24d. Readings at 7h. (near Mizusawa and near Fort de France), 13h. (Riverview), 14h. (Fort de France), 15h. (near Tashkent), 17h. (Tucson, Paśadena, Riverside, Tinemaha, Palomar, Fort de France, Stuttgart, Kew, Uccle, De Bilt, Triest, near Bucharest, Sofia, and near Suva), 18h. (Tucson, Riverside, Tinemaha, and Suva (2)).
- August 25d. Readings at 0h. (Tucson, Tinemaha, Bogota, and La Paz (2)), 5h. (Tucson, Mount Wilson, Riverside, Tinemaha, Palomar, near Suva, near Mizusawa and near Fort de France), 6h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Zurich, and Triest), 10h. (Tucson, Mount Wilson, Riverside, Tinemaha, Palomar, La Paz, and near Mizusawa), 17h. (near Andijan and Tashkent).
- August 26d. Readings at 1h. (Pittsburgh), 6h. (near Mizusawa), 7h. (Stuttgart, Tinemaha, Tucson, Palomar, and near Mizusawa), 8h. (near Mizusawa), 10h. (Tucson, Pasadena, Mount Wilson, and Tinemaha), 11h. (Tinemaha and Tucson), 12h. (Riverview), 15h. (Tucson, Tinemaha, Auckland, and Suva), 22h. (near Andijan).

## August 27d. 0h. Pacific.

```
Suva i = 43m.55s., i = 44m.20s., i = 44m.51s., i = 46m.42s., i = 47m.30s.
Auckland PP? = 44m.55s., i = 45m.40s., S = 46m.5s., L = 47m.0s.
Wellington PP? = 45m.4s., S = <math>47m.28s., R = <math>49m.
Christchurch P = 46m.51s., Q = 49m.3s., R = 50m.27s.
Arapuni S = 47 \text{m.0s.}, L? = 47.7 \text{m.}
Apia eS? = 47m.24s.?, eEZ = 49m.50s., eE = 60m.30s.?.
Brisbane eN = 47m.41s., and 53m.9s.
Riverview iZ = 47m.48s., iSE = 52m.1s., iN = 53m.56s.
Sydney e = 53m.6s.?.
Riverside ePZ = 53m.35s.
Berkeley iPZ = 53m.38s., iPE = 54m.9s., iSEN = 64m.0s., eE = 76m.2s., eN = 76m.32s.,
     eZ = 81m.13s.
Pasadena ePZ = 53m.39s., eLN = 86m.
Mount Wilson ePZ = 53m.40s.
Palomar ePZ = 53m.41s.
Tinemaha ePZ = 53m.47s.
Tucson iP = 53m.57s., e = 61m.50s., eL = 79m.56s.
Santa Clara ePZ = 54m.9s., ePSE = 64m.4s., eLE = 76m.46s.
Honolulu \cdot eS = 57m.48s., e = 60m.0s., eL = 63m.11s.
Copenhagen P = 61m.9s., 78m.14s., 82m.2s., 84m.15s.
Stuttgart eZ = 61m.13s., and 65m.24s.?, eR? = 126m.
Ksara e = 61 \text{m.} 28 \text{s.} and 70 \text{m.} 34 \text{s.}
Helwan eZ = 61m.39s.
De Bilt eZ = 61m.42s., eL = 126m.
Kew eZ = 62m.8s.?, eEZ = 65m.34s., eL = 124m.
San Fernando ePKPE = 62m.37s., ePPE = 67m.19s., cSSE = 87m.41s., LE = 127.5m.
Granada ePKP = 63m.31s., PP = 67m.16s., PPP = 71m.13s., SKKS = 74m.4s., SS =
    87m.13s., L = 128.6m.
Florence ePKPE = 63m.42s., ePKP<sub>1</sub>E = 67m.20s., eSKS?E = 70m.24s., ePPPE =
    72m.16s.
Almeria e = 64 \text{m.7s.}, L = 128.5 \text{m.}
Ukiah eS = 64m.7s., eL = 75m.22s.
St. Louis eSKSE = 65m.29s., eSKKSE = 66m.42s., eSE = 67m.26s., eSSS = 79m.20s.,
     eLN = 87m.258.
Uccle eZ = 65m.36s.?
San Juan eSKS? = 66m.47s., eL = 99m.25s.
Huancayo e = 67 \text{m.} 2s., eL = 88 \text{m.} 38 \text{s.}
Victoria e = 67 \text{m.} 43 \text{s., L} = 87 \text{m.}
Triest e = 68m.8s., eL = 133m.
Tortosa eE = 71m.56s., 87m.2s. and 90m.53s., eLE = 131m.
Long waves were also recorded at La Paz, Scoresby Sund, and other American and
    European stations.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

322

August 27d. Readings also at 0h. (near Andijan and Tashkent), 4h. (Arapuni, Auckland, Christchurch, Wellington, Suva, Riverview, Riverside, Tinemaha, and Tucson), 5h. (Auckland, Wellington, Suva, and Kew), 6h. (Suva, Tinemaha, and Tucson), 7h. (Calcutta, Tashkent, and Stuttgart), 8h. (De Bilt and Kew), 9h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, Tinemaha, and Logan), 10h. (Haiwee, Mount Wilson, Pasadena, La Jolla, Palomar, Riverside, Tinemaha, Tucson, College, Sitka, Bozeman, Salt Lake City, Ukiah, St. Louis, Chicago, and La Paz), 11h. (Tucson, Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Kew, and Colombo), 13h. (Auckland, Christchurch, Wellington, and Riverview), 15h. (De Bilt and Fort de France), 17h. (La Paz and near Balboa Heights), 20h. (Fort de France).

August 28d. Readings at 2h. (Tacubaya and near Mizusawa (2)), 3h. (Granada), 7h. (near Tashkent and Tchimkent), 10h. (Haiwee, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Suva, Wellington, and near Apia), 11h. (Tucson, Tinemaha, and near Lick), 12h. (near Fort de France), 19h. (La Paz).

August 29d. 2h. 46m. 14s. Epicentre 18°·2N. 100°·3W. (as on 1939 May 23d.). Mexico stations suggest epicentre 18° 38'N. 101° 58·W.

$$A = -.1700$$
,  $B = -.9353$ ,  $C = +.3104$ ;  $\delta = +3$ ;  $h = +7$ ;  $D = -.984$ ,  $E = +.179$ ;  $G = -.056$ ,  $H = -.305$ ,  $K = -.951$ .

						90.9000 110 HOUSE	NODESTAY	
		Δ	Az.	P.	0-C.	s.	O - C.	L.
O		0	0	m. s.	8.	m. s.	8.	m.
Tacubaya	E.	1.6	41	0 46	+16		-	
Guadalajara	N.	3.8	312	0 42	-19	-		_
Vera Cruz	E.	4.1	75	1 26	$\mathbf{P}_{\mathbf{g}}$	_		-
Tucson		16.9	328	i 4 2	+ 3	i9 8	+121	e 10·8
La Jolla		21.1	318	e 4 46	$^{+}_{-}^{3}$		' ==-	
Palomar	z.	21.2	320	e 4 46	- 3		_	-
Riverside	Z.	21.9	320	i 4 54	- š		-	
St. Louis		22.2	21	e 5 6	+ 6	e 9 19	+19	
Mount Wilson		22.5	320	i 5 1	– ĭ		,	
Pasadena	1.1	22.5	320	e 5 1	- ī			e 11·8
Tinemaha		24.6	324	i 5 22	- î	-		~
Rapid City		25.9	355		_	e 9 237	-41	e 13·4

Additional readings :-

Tucson e = 4m.33s. and 8m.1s.

St. Louis eZ =5m.10s.

Long waves were also recorded at other American stations.

August 29d. 3h. 45m. 9s. Epicentre 34°.4N. 116°.9W. (as on 1942, Feb. 1d.).

Scale VI at Lake Arrow-head, and Seven Oaks; V at Banning, Colton, and Los Angeles.

Macroseismic area 16,000 sq. m. Epicentre 34° 16'N. 116° 58'W.

R. R. Bodle:

United States Earthquakes, Washington 1945, p. 14, isoseismic chart p. 13.

$$A = -.3741$$
,  $B = -.7374$ ,  $C = +.5624$ ;  $\delta = 0$ ;  $h = 0$ ;  $D = -.892$ ,  $E = +.452$ ;  $G = -.254$ ,  $H = -.502$ ,  $K = -.827$ .

		Δ	Az.	P.	O-C.	S.	0-C.	Su	pp.	L.
		•	0	m. s.	8.	m. s.	s.	m. s.		m.
Riverside		0.6	224	i 0 13a	- 2					
Mount Wilson		1.1	259	i 0 22a		i 0 34	- 5	-		
Pasadena		1.1	257	i 0 24 a	+ 2	i 0 36	- 3		_	
Palomar	Z.	1.1	178	i 0 22k	0			-	-	-
La Jolla		1.6	191	10 30k	0	10 47	- 4			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		Δ.	Az.	P. m. s.	O – C.	S. m. s.	O – C. s.	m. s.	p.	$_{ m m.}^{ m L.}$
Santa Barbara		$2 \cdot 3$	271	i 0 43 a	+ 3		<u>-</u>			
Tinemaha	z.	$\frac{2 \cdot 9}{3 \cdot 3}$	338 316	i 0 54 k i 0 59	+ b	i 1 42 i 1 52	Sg Sg	i 1 7	$P_g$	-
Fresno Lick Branner	2.	4·8 5·2	309 307	i 1 19 i 1 30	+ 4 P*	i 2 33 i 2 58	Sa Sa	i 1 52	$\overline{\mathbf{P}_{\mathbf{g}}}$	
Berkeley		5·4 5·5 6·9	311 111 315	i 1 29 i 1 26	$^{+}_{+}^{5}_{1}$	i 2 45 e 3 15	* +10	i 1 37 i 1 36	P* P*	i 3·0 e 4·1
Ukiah Salt Lake City		7·5 8·4	31 27	e 2 34 e 2 16	$^{\mathbf{P_g}}_{+10}$	e 4 1	s-			i 4·1 4·5
Logan Rapid City St. Louis		$\frac{14.3}{21.8}$	$\frac{73}{71}$	e 2 537 i 5 2	+ 6	e 7 37 e 9 13	+21	=	=(	e 8·5 e 11·5)

Additional readings:—
Berkeley iPN =1m.32s., iZ =2m.54s., iN =3m.1s., iE =3m.7s.

Logan i = 2m.40s. and 3m.5s.

St. Louis eZ =5m.17s. Long waves were also recorded at Bozeman, Chicago, Pittsburgh, and Philadelphia.

August 29d. Readings also at 3h. (Tucson (2), Santa Clara, and near Fresno), 4h. (Mizusawa, Mount Wilson, Tucson, Tinemaha, and near Fort de France), 7h. (near Andijan and Tashkent), 19h. (Basle near Stuttgart, and Zurich), 23h. (Stuttgart and Zürich).

August 30d. 23h. 37m. 41s. Epicentre 7°.6N. 127°.5E. (as on 1943 May 25d.).

$$A = -.6035$$
,  $B = +.7865$ ,  $C = +.1314$ ;  $\delta = +6$ ;  $h = +7$ ;  $D = +.793$ ,  $E = +.609$ ;  $G = -.080$ ,  $H = +.104$ ,  $K = -.991$ .

		Δ	Az.	F		O-C.	s.	O-C.		pp.	L.
		0	0	m.	s.	s.	m. s.	8.	m. s.		m.
Missalsonina		17.2	353	e 4	8	+ 5		-	-	-	-
Miyakozima		20.7	5	e 4	47	$^{+}_{+}$ $^{5}_{3}$		-			
Nake		24.0	6	e 5	îi	- 6	76=(1			-	
Kagosima			20	e 6	$\overline{28}$	+22	<u> </u>	-	-	-	
Misima	1	29.3			Cont. (C. 1) (C. 1)	PP	i 13 48	- 4		-	
Calcutta	N.	40.5	296	e 9	5	II	1 10 40				
Riverview		46.9	153	i 8	33 a	- 1	e 15 20	- 5	i 18 48	SS	
Colombo	E.	47.2	272	e 8	193	-17	-				_
Irkutsk	440	48.4	341	e 8	45	- 1	15 46	0	100 TO 10		-
Dombor	E.	$54 \cdot 2$	288	e 9	30	+ 1	19 13	3	i 13 25	\$	-
Bombay	Est	56.4	118	11	193	PP			_	-	-
Suva		30 ±	110	•	10.	•	10000 10000	50 90			
Tashkent		61.3	313	10	19	- 1	18 40	+ 1	-	-	
Wellington		65.1	142	10	197	-26	e 25 191	1	_	-	38.3
Ksara		87.2	303	e 12	56	+ 7	e 23 30	+ 2	-		-
Helwan		91.6	300	e 13	11	+ 1	i 24 9	0	-		<del></del>
		103.1	317	e 30	8	8	e 37 9	SSS			e 53·6
Florence		100 1	01.	0.00	×.	- 5	MARK R				
Tinemaha	Z.	104.3	49	e 18	26	$\mathbf{PP}$		-		-	
Paris		106.1	325	e 22	13	PKS		***		_	e 67·3
1. <u>2. 20.00</u> (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (1		111.8	50	e 18	39	[+2]		-	1000 Town		e 32·8
Tucson		116.2	317	25	24	SKS	(25 49)	[+12]	40 0	SSS	67.3
Granada		122.2	34	e 18	57	[ 0]	e 30 17	PS	e 20 29	$\mathbf{PP}$	
St. Louis			(E) (C)	e 19	49	io i	0.00 11		e 22 48	PKS	e 79·1
San Juan		150.9	26	6 19							79.8
La Paz		162.3	121	20	8	[+5]	115-17	-	35.24	27=72	

Additional readings :--

Riverview iE = 18m.51s.

Helwan eZ = 13m.32s., eE = 23m.39s.

Granada PP = 27m.36s.

Long waves were also recorded at Huancayo, Pasadena, and other European stations.

August 30d. Readings also at 6h. (Zurich), 9h. (Suva and Wellington), 10h. (Stuttgart), 13h. (near Andijan and Tashkent), 19h. (Stuttgart), 21h. (Tashkent), 23h. (near Branner).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

324

August 31d. 15h. 33m. 57s. Epicentre 30°-6N. 42°-4W.

$$A = +.6367$$
,  $B = -.5814$ ,  $C = +.5065$ ;  $\delta = -4$ ;  $h = +2$ ;  $D = -.674$ ,  $E = -.738$ ;  $G = +.374$ ,  $H = -.342$ ,  $K = -.862$ .

		٥	Az.	m. s.	0 – C. s.	s. m. s.	O -C. s.	m. s.	pp.	L. m.
Toledo		32.5	63	6 31	- 3	7 <del>10 1</del> 1 1 1	-		-	16.0
Almeria		33.6	68	(6 38)	- 6	6 38	P	e 7 23	PP	16.0
Clermont-Ferra	na	38.3	54	e 7 25	+ 1	_				
Paris		38.4	49	i 7 33	+ 1 + 8				_	19.0
St. Louis		39.8	295	e 7 37	+ 1	e 13 51	+ 9		****	e 20·0
Stuttgart		42.8	49	e 7 57	- 4	e 14 21	- 5	-		e 20·0
Cheb		44.9	47	1.	-	e 16 3?		e 18 3?	SS	e 23.0
Copenhagen		45.7	40		-	15 12	A	U 10 0.	~~	0 20 0
La Paz		53.0	210	9 20	- 1			-		28.0
Tucson		57.5	291	e 9 53	ō		_			20 0
Palomar	z.	61.3	293	e 10 23	+ 3	91-15	( <u>.e=</u>	5454		
Tinemaha	Z.	61.8	298	e 10 23	' ŏ				r raymina	
Mount Wilson	z.	62.6	295	e 10 29	+ 1		7.E.E.	200	200	-
Helwan	Z.	62.6	69	10 25	- 3					13.7%
Tchimkent	5750	84.3	43	12 20	-15	72			-	-
Tashkent		84.7	44	12 36	-11	e 23 13	+ 9			=

Additional readings :-

Granada ( $\triangle = 32^{\circ} \cdot 7$ ), P = 15h.34m.17s., S = 15h.41m.35s., L = 15h.47 · 8m. Helwan iZ = 10m.30s.

Long waves were also recorded at Fordham, Pittsburgh, Pasadena, and other European stations.

August 31d. 16h. 10m. 36s. Epicentre 14°-3N. 91°-2W. (as on 1942 August 8d.).

Epicentre 14°·2N. 91°·5W. (Pasadena). Depth 80 km. 13°·5N. 91°·5W. (U.S.C.G.S.).

$$A = -.0203$$
,  $B = -.9692$ ,  $C = +.2454$ ;  $\delta = -2$ ;  $h = +5$ ;  $D = -1.000$ ,  $E = +.021$ ;  $G = -.005$ ,  $H = -.245$ ,  $K = -.969$ .

		٨	A	ъ	0 0	C			90 (C) 26 (1600)	-
		Δ	Az.	P.	0 – C.	s.	0 - C.	7 - 2 111	pp.	L.
Oaxaca		6.0	907	m. s.	8.	m. s.	8.	m. s.		m.
Vera Cruz	Z.	6.8	$\frac{297}{317}$	i 1 34	$^{+}_{+}$ $^{2}_{3}$	1	=	-	_	
Puebla	N.	8.2	306	i 1 47	+ 3	_	-		(s==0)	
Tacubaya	N.	9.2	305	e 1 4 2 17	-59	-		_	_	_
Balboa Heights	***	12.6	114	e 3 11	$^{+}_{+}$ $^{1}_{8}$			=		
Dainou Hoighto		120	117	6 9 11	T 0		-	-		
Guadalajara	N.	13.2	299	e 2 15	-56	455		====		
Mobile		16.5	8	4 4	+10	7 19	SS	_		
Port au Prince		18.6	74	$i\hat{4} 3\hat{4}$	PP	e 7 58	+12	4 44	PP	0.0.4
Bogota		19.4	118	e 4 35	+ 5	e 8 31	SS	e 4 52	$\overrightarrow{PP}$	e 9·4
Columbia		21.7	24	e 4 48	- 7	i 8 55	+ 4	C 2 02	LI	e 9·7
		522500				10.00				6 5 1
St. Louis		$24 \cdot 3$	2	i 5 20	0	i 9 33	- 4	i6 4	PPP	7/
San Juan		24.4	77	e 5 20	- 1	e 9 34	- 5	e 5 51	$\overline{PP}$	e 11.0
Tucson		25.3	319	i 5 29	- 1	i 9 45	- 9	i 6 32	PPP	e 12.7
Chicago		27.6	6	e 5 53	+ 2	_		e 11 21	ŝŝ	e 17 0
Pittsburgh		27.8	18	e 5 55	$^{+}_{+}$ $^{2}_{2}$	i 10 41	+ 6			
Now Zonainaton		00 0	10		1966	2201020	. dan	43355		
New Kensington Fort de France		28.0	18	e 6 61	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e 10 527	+14	e 6 57?		e 12.6
Philadelphia		29.1	86	e 6 7	+ 3			e 12 51	SSS	3 <del>1 1 1</del>
Palomar		29.2	27	i 6 7	+ 2	i 10 43	-15		-	e 12·1
La Jolla	z.	$30.0 \\ 30.1$	315	16 12	0			i 6 38	$\mathbf{pP}$	1.
La Jona		30.1	313	i 6 11	- 2	e 16 48	$s_cs$	i 9 15	$P_{c}P$	-
Fordham		30.5	27	i 6 18	+ 1	i 11 13	K	4 0 95	10	
Huancayo		30.5	148	e 6 21	+ 4	i 11 20	$^{-}_{+}$ $^{5}_{2}$	i 6 35	$_{\mathbf{p}}^{\mathbf{p}}$	- 10.0
Riverside		30.8	314	1 6 17k		e 16 50	$^+\mathrm{s_cs}$	i 6 51	pP	e 13·3
Mount Wilson		31.4	314	i 6 221	177	6 10 50	7.4.5.4.5.4.5	i 6 44 i 6 41	pP	_
Pasadena		$31 \cdot 4$	314	i 6 241		i 11 32	0	i 6 41 i 6 42	pP	2 14.4
		12.00	7.77		*	1 11 02	0	10 42	$\mathbf{pP}$	e 14·4
Rapid City		31.4	344	e 6 0?	-25	e 11 54?	+22		-	
Salt Lake City		31.9	329	e 6 29	-0	e 11 37	- 3			e 14·7
Santa Barbara		32.6	313	i 6 35	Ŏ	e 13 35	SS	i 9 19	$P_{e}P$	e 17.6
Logan		32.7	331	i 6 37	CONTROL OF	i 11 50	- 2	e 7 29	PP	e 13.7
Harvard		$32 \cdot 8$	28	i 6 38	‡ 1	i 11 53	ī	e 13 59	SS	e 17.4

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

325

		Δ	Az.	Р.	O-C.	s.	0-c.	Su	pp.	L.
Weston Tinemaha Ottawa Fresno Bozeman	N.	$32.8 \\ 33.1 \\ 33.7 \\ 33.9 \\ 35.5$	$28 \\ 318 \\ 20 \\ 317 \\ 337$	m. s. e 6 35 i 6 39k e 6 45 e 6 46 e 7 15	8. - 2 - 1 - 0 - 1 + 15	m. s. i 11 54 i 17 5 12 4 e 12 31	s. ScS - 4 - 5	m. s. e 7 34 i 9 23 7 56	PP PeP PP	m. 16·4 e 17·0
Santa Clara Shawinigan Falls Branner Berkeley Seven Falls	E.	$35.7 \\ 35.9 \\ 36.2 \\ 36.9$	$317 \\ 22 \\ 316 \\ 317 \\ 23$	i 7 3 3 7 3 5 6 7 12	+ 1 + 1 + 0 0	$\begin{array}{c} \mathbf{i} \ 12 \ 41 \\ - \\ \mathbf{e} \ 12 \ 47 \\ 12 \ 59 \end{array}$	$+\frac{2}{-\frac{0}{1}}$	= 8 44	- - PP	e 17·7 16·4 ————————————————————————————————————
Ukiah La Paz Halifax Saskatoon Victoria	z.	$37.5 \\ 38.2 \\ 38.3 \\ 39.7 \\ 43.2$	$318 \\ 142 \\ 33 \\ 345 \\ 330$	e 7 14 a 7 24 a 7 24 ? 8 5	$\frac{-3}{+100}$	$\begin{array}{c} e & 13 & 5 \\ 1 & 13 & 15 \\ 13 & 14 \\ \hline 14 & 33 \end{array}$	$     \begin{array}{r}                                     $	e 13 45 i 9 24 9 1 e 9 42 17 57	$\begin{array}{c} P_cS \\ PPP \\ PP \\ PPP \\ SS \end{array}$	e 18·7 16·8 16·4 17·4 23·4
Sitka Ivigtut College Scoresby Sund Aberdeen		54·4 56·1 63·3 69·7 77·6	$333 \\ 24 \\ 337 \\ 20 \\ 33$	e 10 48	+15	i 17 6 e 17 18 e 18 53 e 20 17 i 21 37	$     \begin{array}{r}       -3 \\       -14 \\       -11 \\       -5 \\       -14     \end{array} $	e 23 23	<u>-</u>	e 29·5 e 22·8 e 26·1 e 28·3 37·5
San Fernando Kew Granada Almeria Uccle	Е.	77·7 79·5 79·6 80·6 82·5	55 40 55 55 40	e 12 30 12 8 e 12 14 e 12 27	P _c P - 2 - 2 + 1	e 22 6 21 59 22 29 22 33	$+14 \\ -13 \\ +6 \\ -9$	$\begin{array}{r} - \\ 12 & 17 \\ 15 & 3 \\ 28 & 0 \end{array}$	P _c P PP SS	e 36·9 e 36·2 36·9 e 39·4
De Bilt Clermont-Ferranc Basle Copenhagen Stuttgart	1	$82.7 \\ 82.9 \\ 85.4 \\ 85.8 \\ 86.1$	39 45 42 33 41	i 12 29 k 12 26 e 12 26 e 12 42 e 12 41	$^{+}_{-}{}^{2}_{14} \\ ^{0}_{-}{}^{3}$	e 22 34 = 23 5 e 23 6	$\begin{bmatrix} -10 \\ -10 \\ -1 \\ [-2] \end{bmatrix}$	e 27 54 16 2	SS PP	e 38·4 — 41·4 e 41·2
Potsdam Florence Triest Suva Helwan Ksara	E.	87·3 89·0 90·0 94·7 109·4 110·5	38 45 43 252 51 46	19 24 ?		i 23 21 e 24 6 e 23 41 e 24 24? e 25 6	$\{-1\}$ $\{-1\}$ $\{-1\}$ $\{+8\}$ $[-4]$	e 28 48 e 29 12	PS PS	e 42·4

```
Additional readings :-
  Port au Prince SS = 8m.30s.
  Bogota iP = 4m.40s., eP<sub>c</sub>P? = 12m.15s., eS<sub>c</sub>S? = 16m.11s.
  St. Louis iPZ = 15m.23s., iZ = 5m.31s., ipPZ = 5m.37s., iN = 9m.42s., isSN = 10m.9s.
  Tucson i = 5m.39s.
  Philadelphia i = 6m.24s., ePP = 6m.52s., e = 9m.43s., i = 11m.29s.
  Palomar iP_cPZ = 9m.14s., ipP_cPZ = 9m.33s., iZ = 11m.13s., eZ = 11m.42s., eS_cPZ = 11m.42s.
      12m.52s., iP_cSZ = 13m.27s.
  La Jolla esS_cSE = 17m.22s.
  Riverside iP_cPZ = 9m.15s., ipP_cPZ = 9m.34s., iS_cPZ = 12m.53s., eP_cSZ = 13m.28s.,
       esS_cSE = 17m.25s.
  Mount Wilson iZ = 6m.50s., iP_cPZ = 9m.14s., ipP_cPZ = 9m.35s.
  Pasadena iP_cP = 9m.16s., ipP_cPZ = 9m.36s., esP_cPZ = 9m.50s.,
                                                                          iS_{c}PZ = 12m.55s...
       iP_cSZ = 13m.30s., iS_cSEN = 16m.53s., isS_cSEN = 17m.24s.?
  Logan e = 6m.52s., eS = 11m.35s.
  Harvard ipP = 6m.56s., esS = 12m.25s., eSSS = 14m.45s.
  Weston iP = 6m.39s., eS = 11m.47s.
  Tinemaha iZ = 6m.48s, and 7m.3s., iS_cPZ = 13m.3s., iP_cSZ = 13m.38s., esS_cSE =
      17m.42s.
  Ottawa i = 7m.2s., e = 14m.36s.
  Seven Falls SS = 15m.20s.
  Granada SS = 27 \text{m.} 20 \text{s.}
  Almeria S = 22 \text{m.} 13 \text{s.}, SSS = 30 \text{m.} 59 \text{s.}
  Uccle SSSE = 31m.17s.
 Copenhagen 16m.20s.
 Long waves were also recorded at Christchurch, Wellington, Bermuda, Paris, Toledo,
```

August 31d. Readings also at 0h. (near Mizusawa), 6h. (Auckland, New Plymouth, Tuai, Wellington, Suva, Mount Wilson, Pasadena, Tucson, Palomar, Riverside, and Tinemaha), 7h. (Mount Wilson (2), Tucson, Palomar (2), Riverside (2), and Tinemaha (2)), 11h. (Kew and near La Paz), 17h. (Tananarive), 18h. (De Bilt and Stuttgart), 21h. (near Mizusawa).

and Tortosa.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

Sept. 1d. Readings at 0h. (Tinemaha, Riverside, Palomar, Tucson, Mount Wilson, Pasadena and Suva), 6h. (near Tananarive), 10h. (New Delhi, near Tchimkent, Tashkent, and Stalinabad), 12h. (Pasadena, Mount Wilson, Tucson, Palomar, Tinemaha, and St. Louis), 15h. (Tashkent and near Mizusawa), 16h. (Mount Wilson, Palomar, Tucson, and St. Louis).

Sept. 2d. 13h. 40m. 32s. Epicentre 34°·2N. 136°·8E. Depth of focus 0·050. (as on 1940 December 30d.).

Intensity II-III at Tukubasan. Epicentre 34°·7N. 136°·9E. Radius of macroseismic area 300 km. Depth 340 km.
Seismological Bulletin of the Central Meteorological Observatory, Japan, for the year 1943, Tokyo 1950, p. 38, 1 macroseismic chart p. 38.

A = -.6042, B = +.5674, C = +.5595;  $\delta = +4$ ; h = 0; D = +.685, E = +.729; G = -.408, H = +.383, K = -.829.

		Δ	Az.	1	٠.	$\mathbf{O} - \mathbf{C}$ .	s.	
		0	0	m.	s.	s.	m. s.	8.
Kameyama		0.7	337	0	47	+ 2	1 20	0
Nagoya		1.0	8	0	47	+1	1 19	- 3
Hikone		1.1	337	O.	48	$^{+}_{+}$ $^{1}_{2}$	1 22	- 1
Osaka		1.1	292	Õ	53	+ 7		_
Wakayama		1.4	271	ő	52	+ 4	1 32	+ 7
Sumoto		1.6	275	0	51 a	+ 2	1 30	+ 3
Misima		2.0	63	Õ	50	- 2	1 28	- 4
Toyooka		2.1	309	õ	54	$+ \bar{2}$		
Toyama		2.5	7	ŏ	56	$+$ $\bar{1}$	1 36	- 3
Nagano		2.7	25	Ŏ	55	. 2	1 37	- 5
Maebasi		2.9	40	0	57	- 2	1 37	- 8
Tukubasan		3.4	52	0	59	- 4	1 42	-11
Utunomiya		3.4	47	ĩ	1	- 2	1 43	-10
Kakioka		3.5	52	1	1	- 3	1 42	-13
Mito		3.7	53	ī	4	- ž	1 49	- 9
Hukusima		4.6	39	1	13	- 3	2 4	-11
Mizusawa		6.0	33	e 1	58	+27	2 32	-11
Tinemaha	z.	80.5	52	i 11	37		_	
Mount Wilson	z.	82.3	54	e 11	46	$+$ $\bar{2}$	-	
Palomar	z.	83.6	$5\hat{4}$	i 11	53	$^{+}_{+}  ^{2}_{2} \\ ^{+}_{2}$	-	-

Sept. 2d. 23h. Mexican shock. Pasadena suggests deep focus.

Guadalajara eN = 11m.24s. Puebla PE = 13m.40s. Tacubaya PN = 13m.40s. Oaxaca PN = 13m.45s. Vera Cruz PN = 14m.4s. Tucson iP = 16m.59s., i = 17m.18s., e = 21m.33s., eL = 22m.5s. Palomar iPZ = 17m.45s., iZ = 18m.0s. Riverside iP = 17m.52s., iZ = 18m.8s. Cape Girardeau ePN = 17m.55s., epPN = 18m.6s., ePPN = 18m.35s. Mount Wilson ePNZ = 17m.59s., iZ = 18m.14s. Pasadena iP = 17m.59s., iZ = 18m.13s. St. Louis ePZ = 18m.1s., epPZ = 18m.19s., eSN = 22m.12s., eN = 22m.42s. Santa Barbara ePZ = 18m.10s. Tinemaha eP = 18m.19s., iZ = 18m.39s.

Sept. 2d. Readings also at 0h. (near Harvard), 1h. (near Lick, Berkeley, and Branner), 6h. (Cheb and Almeria), 9h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, St. Louis, Bogota, and La Paz), 13h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, St. Louis, La Paz, and near Toledo), 14h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, Palomar, and near Mizusawa), 15h. (near Reykjavik), 20h. (near Andijan and near Mizusawa), 23h. (Almeria).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943 327

Stuttgart

Sept. 3d. 2h. 25m. 42s. Epicentre 44°-2N. 21°-8E.

Intensity VI at Zugubica, Loznica, Vukovac, Osanica, Milatovac, Ribure, and Bliznak. Epicentre as adopted, radius of macroseismic area 45 km. J. Mihailovic.

Annuaire microséismique et macroséismique 1943, Belgrade 1950, p. 42.

A = +.6679, B = +.2671, C = +.6947;  $\delta = +4$ ; h = -3;

Florence also gives cS?E = (3m.7s.), readings have been reduced by 2 mins.

Sept. 3d. Readings also at 3h. (Tucson, Palomar, San Juan, La Paz, and Huancayo), 4h. (Pasadena, St. Louis, and near Bogota), 5h. (near La Paz), 6h. (Sofia), 9h. (near Stalinabad), 15h. (Palomar, Tinemaha, Tucson, near Tashkent and Andijan), 19h. (Pasadena, Tucson, Tinemaha, Bucharest, and near Sofia), 23h. (near Branner. Lick, and Fresno).

Sept. 4d. Readings at 6h. (near San Juan), 7h. (St. Louis, Ukiah, Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Tucson, and near San Juan), 12h. (Tinemaha, Palomar, Tucson, St. Louis, De Bilt, Bucharest, and near Sofia), 19h. (near La Paz). 21h. (Fort de France and near San Juan).

Sept. 5d. 8h. 34m. 33s. Epicentre 1°-2N. 121°-8E. (as on 1937 July 10d.).

Epicentre 0° 125°E. (U.S.C.G.S.); 4°N. 123°E. (Pasadena).

$$A = -.5268$$
,  $B = +.8497$ ,  $C = +.0208$ ;  $\delta = -6$ ;  $h = +7$ ;  $D = +.850$ ,  $E = +.527$ ;  $G = -.011$ ,  $H = +.018$ ,  $K = -1.000$ .

Miyakozima 23.7 9 5 13 - 1 9 32 + 5  Kumamoto 32.0 15 e 6 35 + 5 11 45 + 3  Perth 33.5 189 6 42 - 1 12 32 +27 7 57 PP 17.7  Koti 34.0 18 e 6 44 - 4 12 9 - 4  Husan 34.4 11 6 46 - 5 12 23 + 4  Kobe 35.6 19 3 32 ? 9 16 ?		△ Az.	Р.	O-C.	s. o	-C. Su	pp. L.
Kumamoto       32·0       15       e 6 35       + 5       11 45       + 3       —       —       —       —         Perth       33·5       189       6 42       — 1       12 32       +27       7 57       PP       17·7         Koti       34·0       18       e 6 44       — 4       12 9       — 4       —       —       —         Husan       34·4       11       6 46       — 5       12 23       + 4       —       —       —		The second secon	m. s.	s.	m. s.		
Perth       33.5       189       6 42       - 1       12 32       +27       7 57       PP       17.7         Koti       34.0       18       e 6 44       - 4       12 9       - 4             Husan       34.4       11       6 46       - 5       12 23       + 4							_
Koti Husan 34.0 18 e 6 44 - 4 12 9 - 4				+ 5			
Husan 34·4 11 6 46 - 5 12 23 + 4				- 1		+27 7 57	PP 17·7
					The first of the second of the	A	
Kobe 35.6 19 3 32 ? 9 16 ? — —	Husan	34.4 11	6 46	- 5	12 23 -	+ 4 —	
	Kobe	35.6 19	3 32	3	9 16	? —	
Kameyama 36.2 22 e 5 9 ? — — — — —	Kameyama		e 5 9	?	-	<del></del>	
Mera 37.5 26 2 41 3 8 55 ? — — —	Mera			9		3 —	
Yokohama 37.9 25 e 4 27 ? 8 55 ? — — —				3		, —	**************************************
Wazima 38.6 20 e 7 24 - 2 12 17 -66	Wazima	38.6 20	e 7 24	- 2	12 17 -	-66 —	
Calcutta 38.8 306 e 7 44 +16 i 13 32 + 6 9 9 PP	Calcutta	38.8 306	e 7 44	+16	i 13 32 -	+ 6 9 9	PP
Brisbane N. 41.4 136 i 7 45 - 5 i 13 57 - 8 e 9 21 PP i 19.3	Brisbane N.	41.4 136	i 7 45	5			PP i 19.3
Mizusawa N. 41·7 23 e 7 51 - 1 14 1 - 9	Mizusawa N.		e 7 51				
Colombo 42.2 279 8 27? +31 14 27? +10 — 21.4		$42 \cdot 2  279$	8 27?		14 277 -		- 21.4
Vladivostok 42.7 11 e 8 0 - 1 - 10 19 17 PP -	Vladivostok	42.7   11	e 8 0	0		— i 9 17	PP —
Mori 44·1 21 e 8 15 + 3 — — — — —	Mori	44.1 21	e 8 15	+ 3	· .		
Riverview 44.5 145 i 8 15a 0 i 14 52 + 1 i 10 2 PP e 20.5					i 14 52 -	+ 1 i 10 2	PP e 20.5
Sydney 44.5 145 e 8 9 - 6 e 14 30 - 21 e 10 33 PP e 23.4	Sydney	44.5 145	e 8 9	- 6			
Kodaikanal 45.0 286 18 27 + 8 115 7 + 9 18 273 SS 22.3	Kodaikanal	45.0 286	i 8 27	+ 8	The state of the s		
Hyderabad E. 45.6 294 8 39 +15 15 13 +7 — —	Hyderabad E.	45.6 294	8 39	+15	15 13 -		
New Delhi N. 50.5 308 e 9 12 +10 116 18 + 2 11 19 PP 27.0	New Delhi N.	50.5 308	e 9 12	+10	i 16 18 -	+ 2 11 19	PP 27·0
Dehra Dun 50.6 311 e 9 21 +19 — i 18 37 ScS e 29.9			- THE SECURE SECTION 1			— i 18 37	
Bombay 51.1 294 e 9 8 + 2 i 16 25 + 1 10 59 PP i 22.5	Bombay		e 9 8	+ 2	i 16 25 -		PP i 22.5
Irkutsk 53.0 347 e 9 25 + 4 — i 12 0 PPP —	Irkutsk			+ 4		— i 12 0	PPP —
Suva 58.9 112 e 9 47 -16 i 18 7 PPS i 12 47 PPP	Suva	58.9 112	e 9 47	-16	i 18 7 F	PPS i 12 47	PPP —

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

	Δ	Az. P. m. s.	O – C.	S. m. s.	O – C.	m. s.	pp.	L. m.
Stalinabad Tashkent Auckland Tchimkent Arapuni	$61.0 \\ 61.8 \\ 62.0 \\ 62.7 \\ 63.1$	315 e 10 9 318 10 23 134 — 320 i 10 26 135 10 513	$-\   \begin{array}{r} 9 \\ 0 \\ -\   3 \\ +19 \end{array}$	e 18 41 i 18 50 i 18 55 i 18 51	+ 6 + 4 + 7 - 6	i 10 38 i 20 32	s	25·5 28·5
Christchurch Wellington Apia E. Sverdlovsk Tananarive	63·6 63·9 67·5 73·6 75·5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+\ 3}_{+\ 5} \ ^{+\ 5}_{+\ 1}$	$\begin{array}{c} 19 & 19 \\ 19 & 35 \\ \hline i & 21 & 2 \\ e & 21 & 29 \end{array}$	$^{+11}_{+23}$ $^{-5}_{+1}$	$\begin{array}{c} 23 & 20 \\ 10 & 38 \\ e & 20 & 14 \\ i & 11 & 53 \\ 22 & 4 \end{array}$	PS PS	$31.7 \\ 27.5 \\ - \\ 36.1$
Honolulu Moscow Ksara College Helwan	80 ·6 85 ·7 85 ·9 89 ·1 89 ·8	69 e 12 17 326 (12 40) 303 e 12 46 26 e 12 35 299 13 3	$^{+}_{-}^{1}_{2}^{2}_{+}^{3}_{-23}$	e 22 17 (23 0) 23 21 e 23 21 23 51	$\begin{bmatrix} - & 6 \\ - & 6 \\ + & 5 \\ - & 6 \end{bmatrix}$	e 27 11 e 18 55 23 30		39.9
Bucharest Sofia Sitka Upsala Belgrade	$93 \cdot 2$ $95 \cdot 4$ $95 \cdot 9$ $96 \cdot 1$ $97 \cdot 2$	314 e 16 273 313 e 13 513 33 e 13 42 331 e 13 35 315 e 14 39		i 23 51 e 24 2 i 24 46 e 24 0 i 24 8	$\begin{bmatrix} & 0 \\ - & 1 \end{bmatrix}$ $\begin{bmatrix} - & 7 \\ - & 7 \end{bmatrix}$ $\begin{bmatrix} - & 7 \end{bmatrix}$	e 17 21 i 24 5 e 26 32 e 26 26	SKS e	31·5 38·9 44·5 65·8
Copenhagen Prague Potsdam Cheb Bergen	99·8 100·2 100·4 101·4 101·7	327 i 18 10 322   16 273 324 e 18 16 322 e 18 10 333	PP PP	e 25 27 e 25 21 e 24 36 e 24 32	$ \begin{array}{c} -10 \\ + 5 \\ - 3 \\ [+ 2] \\ [- 3] \end{array} $	e 24 27? e 24 27? e 24 27? e 32 43 e 27 2	SKS e	41·5 45·5 57·4 34·6
Triest Stuttgart Florence Scoresby Sund Milan E.	101.7 $103.8$ $103.9$ $104.6$ $104.8$	317 — 321 e 14 7 316 i 18 38 349 18 31 318 i 24 50	+ 2 PP PP SKS	i 25 34 e 25 47 i 24 47 25 58 (i 24 50)	- 1 - 5 [+ 1] - 1 [+ 1]	i 32 51 e 24 40 i 33 19 i 27 32		51·0 9 49·9
Strasbourg De Bilt Victoria Uccle Aberdeen	104.8 $105.1$ $105.3$ $106.0$ $106.6$	321 e 18 29 326 e 14 17 39 19 13 325 18 57 332 i 24 26	PP + 6 PP SKS	i 26 13	PS + 9 [- 1] + 3 [-31]	e 20 53 i 24 47 27 45 i 24 55 i 28 50	PS e	43.5 48.5 47.5 50.5 52.4
Paris Kew Ukiah Stonyhurst Clermont-Ferrand	107.9 $108.4$ $108.4$ $108.5$ $108.7$	322 e 14 33 326 i 14 38 48 e 18 57 329 — 320 i 19 13a	P P PP PP	e 28 10 i 25 7 e 25 3 e 25 4 i 26 5	$\begin{array}{c} \mathbf{PS} \\ [+2] \\ [-2] \\ [-2] \\ \{+9\} \end{array}$		PS e	44·5 50·5 44·6 54·5 65·5
Berkeley Santa Clara Barcelona Tortosa Tinemaha Z.	$109.5 \\ 109.9 \\ 111.0 \\ 112.4 \\ 112.7$	49 i 19 12 49 e 19 32 316 e 19 31 315 i 20 41 49 e 18 41	PP PP PP [ + 2]	i 25 9 e 28 24 i 29 53	[ - 1] PS PPS	i 28 21 e 34 41 (e 38 35) e 29 36	SSP SSS e	38·6 51·5
Pasadena Mount Wilson z. Bozeman Riverside z. Palomar z.	113.8 113.9 114.1 114.5 115.1	52 e 15 0 52 i 18 41 37 e 19 42 52 e 18 42 52 e 18 41	$[ \begin{array}{c} {f P} \\ {f PP} \\ [-0.1em] [-2.1em] \end{array}$	e 25 29 e 26 35	[+2] {+1}	e 28 59 e 29 23	PKP e PKKP PS e PKKP PKKP	45.0
Logan Salt Lake City Toledo Almeria Granada	115·5 115·9 115·9 116·0 116·7	41 e 19 52 43 e 19 35 316 e 19 6 313 19 57 314 e 18 12k	PP PP [+21] PP [-34]	26 57	$\begin{bmatrix} & 0 \\ - & 1 \end{bmatrix} \\ PS \\ \{+10\} \\ [-4]$	e 29 18 e 29 30 29 22 22 54 29 48	PS PS PKKP PPP PS	47·2 62·0 55·5
Ivigtut San Fernando E. Rapid City Lisbon Tucson	117.3 $118.9$ $119.7$ $120.0$ $120.2$	355 e 17 42 314 e 20 33 35 e 18 217 317 20 7 51 e 18 53	[-65] $PP$ $[-31]$ $PP$ $[0]$	e 25 34 e 25 55 e 25 49 e 25 53	$\begin{bmatrix} - & 6 \\ + & 9 \end{bmatrix}$ $\begin{bmatrix} - & 1 \\ + & 2 \end{bmatrix}$	e 29 34 	PS — SKKS e	62·0 53·8 56·7 47·8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
O - C.
                                                                        Supp.
                                                                                     L.
                                          O-C.
                            Az.
                                                                                    m.
                                                                    m,
                                          PKS
                                                                            SSS
                    129.6
Chicago
                                                                            PP
                    130-4
                                  19
                                                           +13)
Florissant
                                          [ +- ]
                                                           +14
St. Louis
                    130.6
                                                                          SKKS
                                           PKS
                                                                                    54.5
Seven Falls
                    130.6
                            11
                                                                           SKP
                                                                                   63.5
                            16
                                  19
                    131-1
Ottawa
                                          SKP
                                                                           SKP
Cape Girardeau
                    131.9
                                e 19 14
                                                                           SKP
                                                  i 28 40
                    134.0
Pittsburgh
             N.W.
                                          [+ 2] e 26 49 [+18] e 40 15
                                                                            SSP
                            13 e 19 23
Harvard
                    134.9
                                          [+ 2] i 22 53 SKP
                                                                  e 34 15
                            16 e 19 25
                                                                           PPS
Fordham
                    135.8
                                                 e 28 50 {- 8} i 22 59
                                                                           SKP
                    136.2
                            18 e 21 57
                                          PP
Philadelphia
                                                                                  e 54.2
                                          [+16] e 29 53 {- 3} e 41 36
                    146.0
Bermuda
                          10 e 19 57
                                 19 39?
                                         [-3]
                                                                    22 57? SKP
                                                   29 \ 51?\{-8\}
                    146.5
                          181
                                                                                    59.5
La Plata
                                          [+34] e 30 49 {+ 9} (e 44 27)
                           214 e 20 27
                                                                            SSP
Rio de Janeiro
                 N. 154.0
                                                                                  e 44·4
                          21 e 20 2
                                          [ + 2]
                                                                  e 44 15
                    159.0
                                                                            SS
                                                                                  e 72·1
San Juan
                                19 44
                                          [-17] e 44 34
                                                                  e 24 35
                    159.9 123
                                                                            PP
                                                                                  e 66.2
Huancayo
                                                   27 16 [+10] 31 31 SKKS
                                                                                   81.5
                    161.9 148 i 20 7
La Paz
                          70 e 20
                                                                 e 21 29
                    163.1
Bogota
                           11 e 20
                    163.8
Fort de France
  Additional readings :-
    Perth PPP = 8m.27s., SS = 15m.2s.
    Calcutta iSSN = 16m.10s.
    Brisbane eN = 12m.43s., iQN = 16m.54s.
    Riverview iP_cPEZ = 9m.55s., PPP = 10m.40s., iPPSEN = 15m.10s., iE = 15m.21s.
        and 15\text{m}.54\text{s}., iSSN = 18\text{m}.6\text{s}., iE = 18\text{m}.16\text{s}., iN = 18\text{m}.26\text{s}.
    Sydney eSS = 18m.24s.
    New Delhi i = 9m.19s., PPP = 12m.9s., PS = 16m.50s., S_cS = 18m.39s., SS = 19m.59s.
        SSS = 21m.54s.
    Bombay E = 9m.21s., eN = 9m.47s., PP?E = 10m.53s., iE = 11m.23s. and 17m.4s.,
         iN = 17m.8s., S_cSN = 18m.54s., S_cSE = 18m.59s., SSEN = 20m.12s., iE = 20m.52s.
        SSSN = 21m.30s.
    Irkutsk SSS = 21m.17s.
    Suva eP_cP = 10m.11s., eS_cS = 20m.17s., ? = 21m.57s.
    Christchurch SSS = 26m.19s., Q = 27m.6s.
    Moscow readings increased by 30 seconds.
    Helwan pPZ = 13m.30s., PPEZ = 16m.48s., sPPZ = 17m.20s., sSN = 24m.33s., sPSN =
        25m.37s., SSN = 29m.57s.
    Sitka ePP = 16m.51s., i = 26m.5s., iSS = 30m.42s.
    Upsala PPE = 17m.32s., eSKSE = 23m.56s.,
                                                     eN = 29m.27s.?
                                                                       eSSE = 31m.13s...
         ePKP,PKP?N = 38m.27s.?.
    Belgrade e = 17m.55s., 36m.54s., and 56m.5s.
    Copenhagen 26m.46s. and 32m.15s.?.
    Prague e = 20 \text{m.} 20 \text{s.}, 32 \text{m.} 9 \text{s.}?, 36 \text{m.} 3 \text{s.}?, and 40 \text{m.} 27 \text{s.}?.
    Bergen eE = 28m.2s., eEN = 32m.36s.
    Stuttgart ePPZ = 18m.7s. and 18m.41s., eZ = 18m.59s., ePPPZ = 20m.52s., eSP =
        27m.27s., eSS = 33m.14s., eSSS = 37m.22s., eSSSS = 41m.7s.
    Florence iSKSN = 29m.1s., ePSN = 31m.33s., ePPSE = 32m.13s., eSSE = 37m.1s.,
         eSSSE = 41m.19s.
    Scoresby Sund 24m.42s., 28m.31s., 32m.2s., SS = 33m.45s.?.
    Strasbourg eSS = 33m.27s., eSSS = 37m.17s.
    De Bilt iPP = 18m.47s., iPS = 27m.42s., iPPS = 28m.42s., eSS = 33m.27s.%, eSSS =
        37m.27s.?.
    Victoria SS = 33m.21s.?, SSS = 37m.27s.?, eN = 43m.33s.?.
    Uccle iPPSE = 29m.0s., iSSEN = 33m.49s., iSSSN = 37m.50s., iSSSE = 37m.54s.
    Aberdeen iSE =34m.1s., eE =37m.51s.
    Kew iPP = 19m.13s., eS?EN = 26m.38s., ePS = 27m.56s.?, ePPSZ = 28m.50s., iSS =
        34m.22s.
    Ukiah PS = 28m.9s., e = 34m.5s.
    Stonyhurst SKKS = 29m.11s., eSS = 37m.47s., eSSS = 41m.47s.
    Clermont-Ferrand eSKP = 21m.36s.
    Berkeley iPNZ = 19m.15s., iN = 28m.35s., eE = 34m.39s., eN = 44m.59s.
    Tortosa eE = 32m.44s, and 34m.11s.
    Pasadena ePPZ = 19m.43s., ePS = 28m.56s., ePKKPZ = 29m.25s., iSSN = 35m.21s.
    Bozeman eSS = 35m.7s.
    Logan e = 22m.58s., 26m.51s., and 33m.28s.
    Salt Lake City eS = 26m.50s.
    Almeria pPKP = 20m.15s., sPKP = 20m.26s., pPP = 23m.2s., PKS = 23m.26s., PS =
        33m.40s., PPS = 35m.9s.
    Granada iPP = 19m.56s., iPPP = 22m.51s., PS = 30m.48s., SS = 36m.15s. SSS =
        40m.54s.
    Ivigtut ePP? = 19m.39s., e = 39m.39s.
    Rapid City e = 24m.9s.?, 28m.19s.?, and 35m.12s.?.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

Lisbon PPE = 20m.35s., PPZ = 20m.40s., SKSE = 25m.55s., PS?E = 29m.22s., PS?N = 29m.30s., PS?Z = 30m.3s., SS?N = 36m.25s.?, SS?E = 36m.54s.Tucson ePP? = 19m.53s., i = 20m.10s. and 20m.29s., e = 24m.2s. and 29m.3s., eSS = 35m.40s., e = 41m.42s. and 45m.32s.Seven Falls PPS = 34m.7s., SS = 39m.15s., SSS = 43m.29s.Chicago e = 33m.54s., eSS = 38m.1s.Florissant i = 22m.26s., iSKP? = 22m.31s., iSKP = 22m.41s.St. Louis eZ = 21m.20s., ePPE = 21m.39s., eZ = 22m.34s., eSKPZ = 22m.47s., eSKP₂Z = 23m.3s., eS?E = 30m.51s., eE = 31m.27s.Ottawa PPS = 34m.27s., SSS = 43m.27s.?. Cape Girardeau eN =24m.12s. and 25m.2s. Harvard iPP = 22m.7s., iPKS = 22m.51s., e = 30m.48s., eSKSP = 32m.7s., eScS.PKP = 34m.50s., e = 37m.55s., eSSS = 45m.2s., e = 45m.44s.Fordham eSS? = 40m.39s.?. Philadelphia e = 34m.18s., eSS = 39m.43s., e = 45m.5s., and 50m.4s.Bermuda e = 25m.10s., 37m.31s., and 47m.46s. La Plata PKPZ=19m.44s., PPPN ( $\triangle > 180^{\circ}$ )=32m.57s.?, SS=41m.27s.?, SSS= 47m.27s.7. San Juan e = 39m.42s, and 52m.53s. Huancayo e = 29m.54s, and 42m.54s., eSSS? = 51m.57s. La Paz PP = 24m.17s., PPS = 38m.20s.

Sept. 5d. Readings also at 2h. (near Bogota (2)), 4h. (Tashkent and Tchimkent), 10h. (near Stalinabad), 16h. (Stuttgart and Scoresby Sund).

Sept. 6d. 3h. 41m. 15s. Epicentre 55°·1S. 158°·5E.

Epicentre  $\begin{cases} 53^{\circ} \cdot 2S. \ 159^{\circ} \cdot 4E. \ (U.S.C.G.S.). \\ 53^{\circ} \cdot S. \ 159^{\circ}E. \quad Magnitude \ 7 \cdot 75 \ (Pasadena). \end{cases}$ 

A = -.5348, B = +.2107, C = -.8183;  $\delta = +2$ ; h = -7; D = +.367, E = +.930; G = +.761, H = -.300, K = -.575.

			WATER TO		20 20						25241
		Δ	AZ.	F	5 Table 1	0 - C.	s.	0 – C.	Sur	p.	L
36		110	0.0	m.	0.754.85.01	8.	m. s.	8.	m. s.	~~	m.
Monowai Christchurch		$11.0 \\ 14.8$	36	3	45 26 k	+ 3	4 37	-10	(4 57?)	SS	5.0
Kaimata		15.2	44 39	3	34	- b	i 6 31	+ 3	i 6 37	ss	8-6
Wellington		17.5	45	4	5	- 2	7 15	- S		PP	8.3
Bunnythorp		18.7	45	4	24	$+$ $\tilde{2}$	7 389	-10	- 20 1	-	-
New Plymouth		19.1	42	4	25	- 2	7 46	-11	4 36	PP	10.4
Arapuni		20.6	42	4	27	-16	8 3	-26	2000		
Tuai		20.6	45	4	42	1 - L	8 22	- 7	i 5 19	PP	10.7
Auckland		21.4	38	. 4	52	+ 1	10.40		-	-	
Sydney		21.8	346	14	48	- 8	i 8 48	- 4	-	2000	-
Riverview		21.9	346	i 4	56 a	- 1	i 8 56	+ 2	(i 9 393) S	SSS	i 9.7
Brisbane		27.9	350	i 5	55	+ 1	30 <del>1 - 1</del> 10 - 1	-			
Perth		37.8	290	. 7	35	+15	13 10	- 1	8 50	$\mathbf{PP}$	
Suva		39.9	31	17	38	+ 1	: : : : : : : : : : : : : : : : : : : :	-			No.
Apia		47.2	43	i 8	39	+ 3	i 15 33	+ 4	i 10 26	$\mathbf{PP}$	
Miyakozima		84.5	330	e 12	45	+ 9		_			200
Honolulu		$84 \cdot 7$	41	e 12	30	7	e 23 0	4	e 12 48 ]	$P_{c}P$	e 35·3
La Plata	E.	85.1	151	12	53	$P_{c}P$	23 27?	+19		KS	34.8
	N.	85.1	151	12	53	$P_{c}P$	23 15	+ 7	16 157	$\mathbf{PP}$	$33 \cdot 1$
	z.	85.1	151	12	54	$P_cP$	23 9	+ 1			40.5
Tananarive		86.0	243	13	2	$P_cP$	23 34	+17	16 13	PP	40.0
Johannesburg		88.6	224	e 13	15?	$P_{c}P$	e 23 45?			PP	i 42-2
Colombo		89.1	283	13	12	$P_cP$	23 42	- 4			36.3
Hatidyozima		89.3	345	13	6	+ 7	23 33	[+4]		_	_
Matuyama	(4)	91.3	339	e 13	4	- 5	23 35	[-5]		-	-
Misima.		91.4	345	13	18	+ 9	23 47	[ + 6]			
Hukuoka		91.6	337	13	19	+ 9	23 52	$\{-1\}$		_	42.4
Yokohama		91.6	345		19	+ 9	e 24 20	+11			e 44·1
Nagoya	~	91.8	344	i 13	22	+11	23 55	{ 0}			
Tokyo Cen. Met.	Ob.	91.8	345	13	24	+13	25 2	1	25 27	PS	42.7

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943	331
TRACES ASSESSED.	

		Δ	Az.	P. m. s.	O – C. s.	S. m. s.	O – C. s.	m. s.	pp.	L. m.
Ituhara Hamada Montezuma Nagano Sendai		$\begin{array}{r} 92.4 \\ 92.5 \\ 92.7 \\ 93.0 \\ 94.2 \end{array}$	337 339	12 25 e 13 23 e 16 51 12 41 13 25	$^{-49}_{+\ 9} \ ^{-86}_{-36} \ +\ 3$	$   \begin{array}{r}     22 & 58 \\     23 & 50 \\                                   $	$\begin{bmatrix} -49 \\ +3 \end{bmatrix}$ $\begin{bmatrix} +6 \end{bmatrix}$	e 25 53	- PS	e 43·0
Aikawa Mizusawa Calcutta Mori La Paz	N.	94·4 95·0 97·6 98·0 98·5	345 347 299 347 136	e 13 35 e 13 51 e 14 1 14 2	$^{+\ 9}_{+\ 13}_{+\ 22}_{+\ 20}$	24 6 24 6 24 26 e 24 37 24 39	$[+8]$ $[+5]$ $[+11]$ $\{-3\}$ $\{-5\}$	24 23 25 18 e 17 30 25 29	SKKS ScS PP S	54·7 46·0
Hyderabad Sapporo Huancayo Rio de Janeiro	E. N.	98.6 98.9 99.3 100.1 100.1	288 348 127 159 159	13 51 e 14 6 i 14 18 i 14 5	$^{+8}_{+21}_{+29}_{+16}$	24 45 20 46 e 25 42 i 24 45 i 24 53	$\{+\ 1\}$ $+28$ $\{-10\}$ $\{-\ 2\}$	26 57 i 24 28 i 18 49 i 18 47	PS SKS	48.8 e 34.9 i 42.0 i 42.5
Bombay New Delhi Dehra Dun Guadalajara Tacubaya	N. N. N.	102.9 $108.2$ $109.2$ $111.3$ $112.7$	285 294 296 84 89	e 18 3 e 14 41 e 18 25 e 19 41	PP [-6] PP	i 24 51 25 14 e 25 17	[+11]  [+9]  [+8]  =	i 25 23 26 7 e 28 24 e 28 56 e 29 21	SKKS SKKS PS PS PS	i 43·0 50·8 e 45·0
Santa Barbara La Jolla Pasadena Mount Wilson Palomar	z. z.	$113.1 \\ 113.2 \\ 113.7 \\ 113.8 \\ 113.8$	63 66 64 66	e 18 50 e 18 51 e 14 59 e 18 51 e 14 51	[+11] [+12] P [+10] P	e 29 53 e 29 15 e 25 33	PPS PS [+ 7]	e 19 39 i 19 36 e 18 51 i 19 40 i 18 49	PP PP PKP PP PKP	i 50·9
Riverside Branner Santa Clara Vera Cruz Bogota	N.	114.0 $114.2$ $114.3$ $114.3$ $114.4$	64 59 59 91 119	e 18 51 e 19 46 i 19 46 e 20 16 i 18 56	[+10] PP PP PP PP [+14]	i 29 26 e 35 40 i 35 59 e 29 33	PS SSP SSP PS	i 19 43 e 29 20 i 29 25 i 19 56	PP PKKP PKKP	e 51·4 e 46·9 59·7
Lick Berkeley Fresno Ukiah Balboa Heights	N.	114·4 114·5 114·9 115·1 115·3	59 59 61 57 112	e 19 49 e 15 6 e 19 53 e 15 9 e 19 53	PP PP PP	i 29 37	- PS	e 29 33 e 18 52 e 19 10 e 29 45	PS PKP PKP PS	e 53·1 e 53·0 e 46·6 e 47·2
Ferndale Tinemaha Chihuahua Tucson	E. N.	115·7 115·7 115·9 116·0 116·1	55 55 62 76 70	e 20 3 e 19 53 e 18 56 e 15 12	PP PP [+11]	e 36 5 e 36 5 e 29 43 e 27 13	SSP SSP PS 	e 28 57 e 29 45 i 20 1 e 40 58 e 18 56	PS PS PP SSS PKP	e 50·8 e 51·0 — e 48·6
Merida Andijan Stalinabad Salt Lake City Seattle	N.	$\begin{array}{c} 119 \cdot 4 \\ 120 \cdot 2 \\ 120 \cdot 4 \\ 122 \cdot 0 \\ 122 \cdot 0 \end{array}$	95 299 295 63 51	e 20 6 e 19 3 19 22 e 19 7 e 19 57	PP [+10] [+29] [+10] [+60]	i 30 42 e 30 54	PS PS	e 21 47 e 20 38 e 37 35	PP SSP	e 49·2 e 51·2
Tashkent Victoria Logan Sitka Bozeman		$\substack{122 \cdot 2 \\ 122 \cdot 2 \\ 122 \cdot 7 \\ 124 \cdot 3 \\ 125 \cdot 9}$	297 50 62 36 59	i 19 10 19 91 e 19 11 e 19 12 e 19 20	[+13] $[+13]$ $[+13]$ $[+11]$ $[+16]$	i 25 0 26 27 i 25 57 e 26 14 e 26 6	[-2] $[+10]$	e 26 45 20 43 i 20 51 e 20 50 e 21 8	PP PP PP	54·8 i 50·6 e 48·7 e 51·5
College Port au Prince Mobile Rapid City Fort de France		$\substack{126.5\\127.1\\127.7\\128.8\\129.4}$	$^{25}_{113}_{88}_{65}_{127}$	e 19 15 e 20 57 21 24 e 17 463 e 19 21	[+10] PP PP [+10]		=	e 21 3 e 21 18 e 21 25		e 49·4 e 52·2
San Juan Cape Girardeau St. Louis Florissant Saskatoon	N.	$130 \cdot 2$ $131 \cdot 7$ $132 \cdot 2$ $132 \cdot 3$ $132 \cdot 4$	119 82 80 80 56		[+6] $[+9]$ $[+4]$ $[-11]$ $[+12]$	i 33 3 e 22 47 i 28 26 e 22 50 26 33	SKP {- 7}	i 44 0 e 21 43 i 21 48 e 21 52 21 49	SSS PP PP PP	e 54·3

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943	332

Columbia Helwan	∆ 134.2 135.0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Supp. m. s. e 22 0 PP 22 12 PP	L. m. e 55·1
Ksara Chicago Sverdlovsk	135.8	78 e 19 :	$egin{array}{cccc} 39 & [+17] \ 38 & [+15] \ 35 & [+11] \ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 22 24 PP e 22 8 PP i 22 21 PP	e 48·1
Pittsburgh New Kensington Philadelphia Bermuda Fordham	$139.3 \\ 139.5 \\ 141.5 \\ 142.3 \\ 143.1$	85 e 19 3 90 i 19 3 108 i 19 3	$egin{array}{cccc} 27 & [-2] \ 59 & [+29] \ 38 & [+5] \ 51 & [+16] \ 42 & [+6] \end{array}$	e 29 22 {+ 5} e 29 12 {- 6} e 30 0 {+30} e 33 4 PS i 30 0 {+20}	i 22 31 PP e 22 52 PP i 22 50 PP e 23 17 PP i 23 0 PP	e 65·3 e 57·1 i 60·4
Ottawa Harvard Shawinigan Falls Moscow Bucharest		90 i 19 4 82 e 19 5 296 18 5	16 [+ 7] 18 [+ 8] 52 [+ 9] 54 s [+10]	1 30 15 { + 22} 	23 5 PP i 23 15 PP e 47 39? SSS i 21 50 ? i 23 3 PP	e 60·8 e 73·7 63·8 64·8
Focsani Seven Falls Sofia Bacau Campulung	148.6 148.6 148.8	274 e 20 83 19 5 266 e 20 275 e 20 271 e 20	1 [+16] 59 [+14] 0 [+15] 5 [+19] 5 [+19]	35 333 PPS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64·8 61·8 60·8 64·8
Halifax Belgrade Kalossa Ogyalla Triest	153·4 154·5	266 e 19 5 270 21 1	39 [-10] 58 [+ 8] 14 3 27 7 7 [+11]	e 36 21? PPS i 26 56 [- 1] e 30 45? {+ 8} e 28 41 ?	e 23 21? PP e 43 17 SS 20 17 PKP	6 49·2 e 44·8 e 48·8
Florence N. Almeria Prague Granada Milan E.	157.6 157.8 158.3	223 i 20 273 19 3 221 i 20 1	[	i 27 5 [+ 4] 27 8 [+ 6] e 27 58 PPP 31 30 {+27}	i 23 55 SKP 20 20 PKP ₂ e 20 56 PKP ₂ 21 0 PKP ₂	74·8 63·8 i 64·6 60·6
San Fernando E. Upsala Cheb Chur Barcelona	158·7 158·9 158·9	299 e 20 1 271 e 20 1	5 [+16] 7 [+17] 5 [+15] 0 [+10] 8 [+ 8]	e 31 31 {+25} e 28 11 PPP	i 24 44 PP e 24 23 PP e 20 55 PKP ₂ i 45 49 SSP	78.8 e 63.8 e 93.8
Potsdam Tortosa Zürich Jena Stuttgart	159.6 159.8 159.8	278 e 20 235 i 20 1 260 e 20 272 i 20 265 i 20	9 [+ 9] 8 [+18] 8 [+ 7] 7 [+ 6] 8a [+ 7]	31 8 {-2} e 31 5 {-6} i 35 48 PSKS	e 44 39? SS 20 59 PKP ₂ e 20 54 PKP ₂ i 20 53 PKP ₂ i 20 57 PKP ₂	e 58·8 73·8 e 57·8 e 77·3
Basle Neuchatel Copenhagen Toledo Strasbourg	160·5 160·8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} 0 & [-1] \\ 1 & [+10] \\ 2 & [+10] \\ 2 & [+10] \\ 6 & [+14] \end{array}$		e 20 56 PKP ₂ 20 50 PKP ₂ 21 7 PKP ₃ i 21 4 PKP ₂	67·9 64·8
Lisbon Clermont-Ferrand De Bilt Uccle Paris	161·8 163·9	249 i 20 1		31 52 {+31} = = = = = = = = = = = = = = = = = = =	21 5 PKP ₂ e 21 2 PKP ₃ i 45 35 SS i 21 14 PKP ₂ i 25 1 PP	e 78·7 e 78·9 e 59·8
Scoresby Sund Ivigtut Bergen Kew Stonyhurst	166.8	56 e 18 5		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 20 PKP ₂ e 20 22 PKP e 21 4 PKP ₂ i 21 40 PKP ₂ 23 47 PKS	e 65·6 e 66·4 e 86·8 80·1
Aberdeen Edinburgh Reykjavik	22 (12 (12 (12 (12 (12 (12 (12 (12 (12 (	282 e 21 1	$[ +25] \\ 2 [+63] \\ PP$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 25 39 PP 21 33 PKP ₂ 46 14 SS	72·5 e 71·3

Additional readings:—
Kaimata S = 6m.20s., Q? = 7m.38s.Bunnythorp e = 5m.21s.?, i = 5m.55s.New Plymouth i = 5m.40s., Q? = 9m.12s.Tuai i = 6m.16s. and 9m.20s.Perth PPP = 9m.20s., SS = 15m.40s., SSS = 15m.55s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

333

```
Apia eSS?E = 19m.28s.
Honolulu e = 16m.52s., 19m.13s. and 21m.25s., eSS = 28m.34s.
La Plata E PP? =15m.15s.?, 26m.57s.?, SS =28m.33s.?.
La Plata N 15m.39s.?, PPP=17m.57s.?, PPS=24m.15s.?, SS=24m.39s.?.
Tananarive PPP=17m.55s., iSEN=23m.47s., PS=24m.34s., SS=28m.55s., SSS=
    32m.43s.
Johannesburg eEN = 14m.45s.?, eE = 24m.3s.?, iEN = 25m.21s.?, eSSN = 29m.33s.?.
Tokyo PP = 17m.15s., PPP = 18m.21s., SSS = 33m.28s.
Calcutta iN =17m.41s. and 30m.21s.
La Paz PPN = 17m.57s., eN = 20m.27s., PPSN = 27m.3s., eSSN = 31m.45s., eSSSN =
    35m.45s.
Hyderabad SE =25m.41s., SSE =32m.21s.
Huancayo iPP = 18m.9s., i = 23m.48s., iPS? = 26m.44s., e = 31m.37s., eSS = 32m.30s.,
    i = 36 \text{m}.10 \text{s}.
Bombay iN = 18m.51s., PPPN = 21m.1s., iN = 25m.55s. and 27m.48s., SPPN = 28m.12s.,
    SSN = 33m.6s.
New Delhi N PP=19m.10s., i=22m.8s., S=26m.48s., PS=28m.26s., SS=34m.23s..
    SSS = 38m.23s.
Dehra Dun eSS = 34m.13s.
Pasadena eZ = 18m.8s., iPP = 19m.42s., iZ = 21m.19s., eSZ = 27m.53s., iPS = 29m.28s.,
     ePKKPZ = 29m.47s., iSS = 35m.3s., iZ = 35m.53s., i = 39m.28s., iQEN = 46m.15s.?
Mount Wilson iZ = 20m.30s., iPKKPZ = 29m.46s.
Palomar eZ = 18m.2s., iPPZ = 19m.41s.
Riverside ePKKPZ = 29m.44s.
Branner eSSE = 35m.52s.
Bogota e = 30 \text{m.} 36 \text{s.}
Berkeley ePKPE = 19m.7s., iPPZ = 19m.51s., iPKKPEZ = 29m.32s.
Ukiah ePP? = 19m.53s., eSS = 35m.55s.
Tinemaha ePKKP = 29m.22s.
Tucson iPP? = 19m.58s., e = 28m.9s. and 28m.20s., iPS? = 29m.37s., i = 31m.2s.
     eSS = 36m.14s., e = 39m.48s., eSSS = 40m.5s., e = 43m.57s.
Salt Lake City i = 37m.25s., e = 41m.41s.
Victoria PS = 30 \text{m.} 40 \text{s.}, i = 33 \text{m.} 1 \text{s.}, SS = 37 \text{m.} 27 \text{s.}, SSS = 41 \text{m.} 39 \text{s.}?
Logan iPS = 30\text{m.}51\text{s.}, eSS = 37\text{m.}22\text{s.}, e = 41\text{m.}5\text{s.}, eSSS = 41\text{m.}31\text{s.}, i = 44\text{m.}23\text{s.}
Sitka e = 23m.56s, and 29m.5s., ePS = 30m.51s., i = 37m.17s., iSS = 37m.40s., i = 37m.17s.
    41m.49s.
Bozeman e = 28m.13s., iPS = 31m.16s., eSS = 38m.40s., e = 45m.53s.
College e = 29m.30s, and 46m.2s.
Rapid City ePP = 19m.52s.?, ePS = 30m.1s.?, eSS = 37m.42s.?.
Fort de France iSKP = 22m.47s.
San Juan iPP =22m.16s.
Cape Girardeau eN = 25m.17s, and 27m.45s.
St. Louis iZ=19m.23s., iPKPZ=19m.26s., iSKPE=22m.50s., iPS?E=31m.52s.,
     iPKP, PKP = 35m.46s., iSSN = 38m.51s.
Florissant ePKP = 19m.29s., iSKP = 22m.54s.
Saskatoon SKP = 22m.52s., e = 32m.7s., PPS = 33m.45s., SS = 39m.45s., SSS = 43m.45s.
Columbia ePS = 32m.28s., eSS = 40m.2s., e = 43m.48s.
Helwan eZ = 19m.54s., PPPZ = 25m.11s., PSKSE = 32m.15s., PPSN = 34m.27s.
Ksara SS = 41m.7s.
Chicago i = 23 \text{m.5s.}, e = 26 \text{m.6s.}, 31 \text{m.58s.}, 34 \text{m.7s.} and 38 \text{m.33s.}, eSS = 40 \text{m.11s.},
     eSSS? = 44m.38s.
New Kensington e = 27m.4s, and 32m.54s.
Philadelphia i = 23m.18s., e = 32m.56s., iSS = 40m.57s., eSSS = 46m.18s., e = 50m.42s.
Bermuda i = 41m.47s, and 47m.0s.
Fordham iSS = 41m.44s.
Ottawa PPN = 21m.11s., PPS = 33m.25s., SSS = 42m.45s., e = 46m.57s.?
Harvard i = 20m.25s., 21m.20s., 22m.13s., 25m.24s., 25m.59s., and 27m.41s., ePPPP =
    28m.29s., e = 29m.19s., eSKSP = 33m.23s., ePS = 33m.53s., i = 34m.23s., e =
    35m.21s., 36m.11s., 36m.59s., 37m.29s., 41m.17s., 42m.30s., 44m.33s., 45m.49s.,
    and 48m.1s., i = 48m.13s., e = 49m.45s., and 51m.17s.
Shawinigan Falls e = 33m.9s.? and 41m.39s.
Bucharest eP?E = 19m.57s., iP? = 20m.1s., iPP?E = 24m.38s., SKSP?EN = 34m.53s.,
    SSTE = 37m.1s., SSSE = 42m.45s.
Seven Falls SS = 42m.3s.7, SSS = 46m.45s.7.
Sofia iPEN = 20m.4s.
Halifax e = 33m.41s. and 43m.21s.?.
Belgrade i = 20m.9s., 21m.27s., 24m.51s., and 26m.23s., e = 35m.56s.
Kalossa i = 21m.33s.
Ogyalla PPE = 22m.43s., PPN = 23m.1s., SSE = 32m.57s., SSSE = 35m.7s.
Florence iPKP<sub>2</sub>N = 21m.9s., iPPN = 25m.1s., iPPPE = 29m.15s., iSKKSN = 31m.19s.
Almeria PKP<sub>2</sub>=20m.53s., iPP=24m.29s., PPP=28m.20s., SKKS=31m.25s., SKSP=
    34m.54s., PPS = 37m.53s., SS = 44m.35s., SSP = 44m.39s., SSS = 50m.40s., Q =
    64 · 8m.
Prague eSKP = 24m.20s., ePP = 25m.8s., ePPP = 29m.3s.?, eSKKS = 32m.9s., ePPP
    (\triangle > 180^{\circ}) = 32 \text{m.} 15 \text{s.}, eSKSP = 35 m.9s.?, eSS = 44 m.33 s.?, eSSS = 50 m.45 s.
Granada PP = 24m.36s., PPP = 28m.15s., SKSP = 34m.37s., iSS = 44m.41s.
Milan iPPE = 25m.12s., iPPPE = 29m.34s., PSE = 34m.59s.
San Fernando iSSE =44m.41s., iSSSE =51m.15s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

> 1943 334

```
Upsala iE = 20m.44s., eE = 23m.3s., eN = 24m.55s., PPP?N = 28m.30s., eE = 30m.45s.,
    eN = 36m.31s., and 39m.48s., SSN = 44m.27s., eE = 45m.45s.?, eN = 49m.48s.,
    SSSE = 50m.54s., eN = 52m.31s., 54m.50s., and 58m.31s.
Cheb eSKP = 24m.31s., eSKKS = 32m.33s., eSKSP = 34m.54s., eSS = 44m.39s.
Potsdam iPP = 25m.5s., iN = 28m.33s., iE = 28m.41s.?, iPPPN = 28m.58s.
Zürich ePP? = 24m.35s.
Tortosa SKPE? = 23m.53s., PPE = 24m.25s., PPPE = 27m.40s., SKSP? = 35m.15s.,
    SSE = 43m.52s., SSPN = 44m.41s., QN? = 62m.57s.
Jena iPZ = 20m.11s., iZ = 20m.56s., iE = 21m.15s., iNZ = 24m.31s., i = 25m.5s., eZ =
    28m.25s., eEN = 28m.45s., eN = 31m.45s.?, 35m.37s., and 44m.39s.?, eE =
    44m.55s., eZ = 45m.9s.,?, eN = 45m.37s.
Stuttgart iPPZ = 24m.50s., iZ = 29m.30s., iPPPZ = 33m.0s., ePPSZ = 38m.21s., \( \epsilon \) SS =
    44m.57s., eSSS = 51m.43s., eQ? = 70m.45s.?.
Basle e = 25 \text{m.42s.} and 30 \text{m.4s.}
Copenhagen 24m.44s., 28m.17s., 30m.39s.?, 32m.54s., 35m.17s.
Toledo SS = 45m.21s.
Strasbourg iPP = 25m.1s., e = 29m.45s. and 40m.45s., SS = 44m.45s.
Lisbon iZ = 20m.20s., Z = 21m.59s., E = 23m.55s., PPE = 24m.44s., iPPN = 24m.54s.,
    Z = 25 \text{m}.29 \text{s}., N = 25 \text{m}.37 \text{s}., E = 25 \text{m}.40 \text{s}., PPPN = 28 \text{m}.59 \text{s}., N = 40 \text{m}.20 \text{s}., and
    44m.53s., SSEN = 44m.57s.?, E = 45m.40s. and 57m.57s., N = 59m.15s.?,
    E = 65 \text{m}.21 \text{s}.
De Bilt iPP = 24m.5s.
Uccle eEZ = 21m.54s., iZ = 24m.25s., iPPZ = 25m.1s., iPSKSE = 35m.27s., iE = 36m.1s.,
     eE = 38m.37s., iSS = 45m.37s.
Scoresby Sund 20m.46s., PP=24m.50s., 30m.12s., 31m.15s., 35m.34s., 36m.13s.,
    39m.45s., 41m.20s., 45m.30s., 46m.33s.?, and 51m.27s.?.
Ivigtut ePPP = 28m.2s., eSS = 45m.22s., eSSS = 51m.27s.
Bergen iZ = 20m.20s., ePKSE = 23m.38s., PP = 25m.7s., ePPP = 29m.9s., eSKKS =
    32m.0s., eZ = 38m.7s., ePPS = 38m.25s., SS = 45m.35s., eZ = 49m.40s. and 51m.35s.,
    eEN = 52m.2s.
Kew ePPEN = 25m.9s., eEN = 26m.8s., ePPPN = 28m.57s., iSKKSEN = 32m.5s.,
    iPSS?N = 35m.41s., ePPSN = 39m.13s., eSSN = 46m.3s., eSSSEN = 52m.15s.?
    eQEN = 58.8m.
Stonyhurst iPKP = 22m.17s., e = 25m.25s., iPP = 27m.9s., P<sub>c</sub>P,PKP = 29m.37s.,
    30m.13s., iPPP = 31m.27s., PPS = 41m.30s., SS = 49m.57s., Q = 73m.5s.
Aberdeen iPPPN = 27m.34s., iEN = 36m.21s., iSSSEN = 45m.32s., iE = 51m.16s.,
    QN = 69m.19s.
Edinburgh PKS = 23m.45s., PP = 25m.25s., PPP = 29m.31s., SKKS = 33m.37s., PPS =
    39m.22s., SS = 46m.22s., SSP = 47m.32s., SSS = 53m.8s.
Reykjavik SSS = 53m.5s.
Long waves were also recorded at Pennyslvania.
```

### Sept. 6d. 13h. European shock.

Sofia

Ksara

Belgrade

Intensity V at Roanda and Rajkinac; IV in many parts of the Carpathians and Balkans. Epicentre 44° 11'N., 21° 22'E. Radius of macroseismic area 30 km. J. Mihailovic.

Annuaire microseisimique et macroseismique, 1943, Beograd, 1950, p. 43.

```
Bucharest eEZ = 35m.12s.?, S_g?E = 37m.0s.?, S_gN = 37m.15s.
Helwan eZ = 33m.4s., eN = 38m.30s.
Sofia eP?EN = 35m.33s., iSE = 36m.31s., iEN = 36m.46s.
Belgrade e = 38m.19s., i = 38m.36s.
Zürich e = 38m.4s.
Neuchatel eP = 37m.8s.
Focsani eEN = 37m.30s.?, LE = 38m.14s.
Stuttgart eZ = 38m.3s. and 38m.13s., eQ = 42m.48s.?.
Prague eS? = 40m.38s., eL = 41m.30s.
Cheb e = 41m.0s.?, eL = 42m.52s.
Bergen e = 42 \text{m.0s.}?.
Long waves were also recorded at Potsdam, De Bilt, Kew, and Upsala.
```

e 1 48

Sept. 6d. 16h. 32m. 44s. Epicentre 39°.7N. 30°.8E.

 $7 \cdot 1$ 

9.2

144

307

```
A = +.6627, B = +.3950, C = +.6362; \delta = -5; h = -2;
           D = +.512, E = -.859; G = +.546, H = +.326, K = -.772.
                                    O-C.
                       AZ.
                                                  0 - C.
                                                              Supp.
                             m. s.
                                     s.
                                            m. s.
                                                    8.
                                                          m. s.
Bucharest
                   5.9 325
                            i 1 26
                                            i 2 41
                                                   + 1
                                     P*
                            e 1 52
                                           e 3 16? S*
                   6.4
                       301
                                                                        i 3.9
                   6.6
                       337
                            e 1 40?
                                             2 56
Focsani
```

e 3 57

+ 3

15 4

 $S_{g}$ 

L.

m.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

	Δ	Az.	Р.	0-C.	s.	0 - C.	Sur	op.	L.
	0	e	m. s.	s.	m. s.	s.	m. s.		m.
Helwan	9.8	178	e 2 32	+ 8	e 5 7	Sg	-	_	_
Prague	15.5	317	e 3 37	- 5	e 6 4?	-31	_	_	e 8.3
Moscow	16.6	12	2 34	3		-	-	_	_
Chur	17.0	302	e 4 8	+ 7	****	-			
Potsdam	17.6	322	e 5 7	+59	<del>CERTE</del> S	_	-	<del>(5. 35)</del>	e 10·3
Zürich	17.8	303	e 4 8	- 3		_	_	-	-
Stuttgart	17.9	308	e 4 13		e 7 36	+ 6			e 9·6
Basle	18.5	304	e 4 21	$^{+}_{+}$ $^{1}_{2}$		* _ 3		_	~ ~ ~
Copenhagen	20.1	329	4 28	-10	8 20	+ 1		_	12.3
Clermont-Ferrand	$21 \cdot 2$	295	e 4 46	- 3		· —		_	
Uccle	21.6	310	e 5 4?	+10	e 9 4?	+15	820.028	1200	e 11·3
Upsala	21.8	342	e 4 29	-27	8 39	-13			0 11 0
Sverdlovsk	25.9	39	e 5 21	-14	e 9 36	-28		700	
Granada	27.0	276	30 <u>30</u> 70	2.2	i 10 46	+24	-	-	i 15.7
Tashkent	29.1	74	e 6 5	+ 1	10 59	$+\tilde{3}$			1.0.1
Andijan	31.5	74	e 6 18	- 8		· <u> </u>			

Additional readings :-

Bucharest P*Z = 1m.46s., iSE = 2m.49s.,  $iS_gEN = 3m.38s.$ 

Beigrade i = 5m.26s., 6m.13s. and 6m.58s.

Upsala eE = 6m.21s.

Long waves were also recorded at other European stations.

Sept. 6d. Readings also at 7h. (Bogota), 8h. (near Ferndale and near Fort de France), 9h. (Helwan and Ksara), 10h. (Suva), 11h. (Auckland, Apia, Suva, and Riverview), 12h. (Suva), 14h. (Mount Wilson, Pasadena, Tucson, Riverside, and Tinemaha), 17h. (Sofia, Bucharest, and Stuttgart), 18h. (near Mizusawa), 23h. (near Andijan and Tashkent).

Sept. 7d. 19h. 26m. 12s. Epicentre 70°-0N. 138°-0W. Rough.

A = -.2557, B = -.2302, C = +.9389;  $\delta = -9$ ; h = -12; D = -.669, E = +.743; G = -.698, H = -.628, K = -.344.

	Δ	Az.	P.	O-C.	s.	0 - C.	Su	pp.	L.
	٥	0	m. s.	s.	m. s.	8.	m. s.		m.
College	6.4	221	e 1 36	- 2	e 2 51	<b>- 2</b>	_	2834	i 3.2
Sitka	12.6	173	e 2 53	-10	e 5 36	+10	e 3 30	PPP	i 6.2
Victoria	22.7	153	e 8 37	$P_{c}P$	1000 00 (100 (100 000)		-	-	10.9
Saskatoon	23.0	125	e 8 30	$_{\mathrm{PeP}}^{\mathrm{PeP}}$	-	_	·	-	e 11.1
Bozeman	27.8	137		_	e 10 25	-10			e 14·1
Rapid City	31.3	127	e 5 56?	-28	e 11 16?	-15			e 15·3
Logan	31.4	140			e 12 57	SS			e 16.0
Tinemaha	34 6	151	e 6 54	+ 1			e 7 22	8	
Mount Wilson	37.5	152	e 7 18	+ 1				_	
Pasadena	37.5	152	e 7 18	+ 1	1	•	-	100	e 18·1
Riverside z.	37.8	152	e 7 19	- 1	-	-	· <del></del> -	(America)	
Chicago	38.1	111	_	-	e 14 55	8	-		e 19·2
Ottawa	38.8	96	_	-		-	e 16 22	SSS	e 18-8
Shawinigan Falls	38.8	91	e 7 46	+18					19.8
Seven Falls	39.0	89		-	-	-	e 16 42?	SSS	e 20·2
St. Louis	40.1	115	e 7 46	+ 7	: <del></del> :	-			i 20·7
Tucson	40.7	144	i 7 46	+_2	_		e 10 32	8	e 17·2
Philadelphia	43.8	98		-	e 17 17	ss			e 21.8

Sitka also gives eS = 5m.8s.

Long waves were also recorded at other American and European stations.

Sept. 7d. Readings also at 5h. (Sofia, Ksara, Bucharest, Riverside, Mount Wilson, Tucson, and Tinemaha), 9h. (Tinemaha), 11h. (Oaxaca and Triest), 13h. (Arapuni, Wellington, Christchurch, Brisbane, and Riverview), 17h. (Pasadena, Mount Wilson, Tucson, Riverside, and Mizusawa), 18h. (near Balboa Heights), 21h. and 23h. (near Fort de France).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

Sept. 8d. 17h. 3m. 17s. Epicentre 19°.5N. 68°.0W. (as on Aug. 15d.).

Doubtful identification.

		Δ	Az.	P.	O-C.	s.	o -c.	Sup	p.	L.
		0	0	m. s.	В.	m. s.	s.	m. s.		m.
San Juan Port au Prince		$\frac{2 \cdot 1}{4 \cdot 2}$	$\frac{122}{258}$	i 0 34 e 0 44	$^{-3}_{-23}$	i 0 53 i 1 44	$-11 \\ -13$	i 1 33	$\overline{\mathbf{P}_{\mathbf{g}}}$	i 1·7 i 2·2
Bogota		15.9	203	i 3 31	-16	e 6 35	- 9	i 3 35	P	
Harvard		23.1	355	e 5 27	+19	e 9 33	+17		-	_
Tucson		40.3	298	e 7 39	- 1			7	—	_
Palomar	z.	45.5	299	i 8 25	+ 2	_	72 <del>-113</del>		===	-
Mount Wilson	Z.	46.6	300	i 8 33	+ 1	-	-	+		_
Tinemaha	Z.	47.0	303	i 8 35	0	-		<del></del>		

#### Sept. 8d. 17h. Undetermined shock.

Miyakozima P = 19m.21s. Naha eP = 20m.6s. Nagano iP = 21m.30s. Nagova P = 22m.3s. Mizusawa ePE = 22m.17s., SEN = 23m.21s.Yokohama eP = 22m.45s. Irkutsk eP = 24m.38s., eS = 29m.45s. Ksara 30m., e = 39m.18s.Calcutta eN = 30m.7s, and 31m.32s. Helwan PZ = 30m.13s., eEN = 40m.3s., eN = 40m.48s. Copenhagen P = 30 m. 25 s.Stuttgart ePZ = 30m.51s., eS = 41m.18s., e = 42m.5s., eL = 65m. Uccle ePZ = 30m.58s., eSE = 41m.24s.?, eL = 64m.Zürich e = 30m.58s.Istanbul e = 31m. Bogota iP = 37m.40s., i = 37m.44s.Florence eE = 40m.19s. Clermont-Ferrand e = 41m.15s. De Bilt e = 60m., eL = 66m. Long waves were also recorded at Kew.

Sept. 8d. Readings also at 1h. (near Bogota and near La Paz), 7h. (Stuttgart and Triest), 13h. (near Istanbul), 14h. (Brisbane, Riverview, Sydney, Auckland, Arapuni, Christchurch, Wellington, and near Bogota), 15h. (Kew, Tucson, and near Ottawa 16h. (near Istanbul), 18h. (Huancayo, Pasadena, Tucson, Mount Wilson, Palomar, and Riverside), 19h. (Tucson, Seven Falls, and near Mizusawa).

Sept. 9d. 4h. 6m. 9s. Epicentre 36°·3N. 71°·0E., depth of focus 0·015 (as on 1943 April 20d.).

$$A = +.2630$$
,  $B = +.7638$ ,  $C = +.5894$ ;  $\delta = -5$ ;  $h = 0$ ;  $D = +.946$ ,  $E = -.326$ ;  $G = +.192$ ,  $H = +.557$ ,  $K = -.808$ .

		Δ	Az.	P. m. s.	O – C.	S. m. s.	O – C.	m. s.	p.	L. m.
Dehra Dun	N.	8.4	133	i 2 9k	+ 9	i 3 27	- 7	-	-	
Bombay	N.	17.4	174	i 4 3	+ 7	i 7 16	+13	4 19	$\mathbf{PP}$	
Calcutta	N.	20.4	127	i 4 34	+ 5	i 8 15	+ 10	i 5 34	sP	-
Sverdlovsk		21.7	345	i 5 44	+62	i 9 32	+64			
Kodaikanal	E.	26.6	166	e 6 36	$\mathbf{PP}$	e 10 33	+42	-	-	13.0
Irkutsk		28.4	44	5 46	+ 2	10 18	- 2	i 6 26	$\mathbf{pP}$	****
Ksara		28.8	275	e 5 52	$^{+}_{+}$ $^{2}_{4}$	e 10 30	+ 3	e 6 32	$\mathbf{p}\mathbf{P}$	****
Moscow		29.8	321	6 56	+59		-	7 34	pP	
Colombo	E.	30.4	163	(2)/(2)/(2)	-	-		12 8	sS	-
Helwan	=:	33.7	270	e 6 31	0	11 39	- 4	i.7 12	$\mathbf{pP}$	-
Bucharest		34.8	297	6 51 ?	+11		-		_	23.8
Sofia		36.9	295	e 7 16	+18	e 12 33	0	<del>)</del> (c	_	
Belgrade		38.8	298	e 7 15	+ 1	e 13 2	0	e 7 56	$\mathbf{p}\mathbf{P}$	
Kalossa		39.7	302	e 8 23	$\mathbf{PP}$			(e 9 21?)	9	e 9·4
Ogyalla		40.1	304	e 7 19	- 5		1		-	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
L.
                                                                           Supp.
                                            O - C.
                             Az.
                                                                                        m.
                                              s.
                                                      m.
                                                                       m.
                                   m.
                                                              -34
                                                                                pP
                             322
Upsala
                                                                                PP
                                                   e 13 37)
                                                                     (e9
                                                                          24)
                                             pP
                      42.5
                             308
Prague
                                                                       i 8 34
                                                                                pP
                                       51?
                      43.2
                             311
Potsdam
                             301
                      43.3
Triest
                                                                                pP
                             315
                                       53k
                      43.6
Copenhagen
                                                    e 14 16
                                             pP
                             308
Cheb
                             308
                                       58
                      44 \cdot 2
Jena
                                                    i 14 36
                                   i 8 13
                                             + 5
                      45.5
                             299
Florence
                                                                                4 4
                                                                       18 53
                                                                                pP
                                                    i 14 45
                                             +
                                   i 8 13
                      46.0
                             306
Stuttgart
                                                                       19
                                                                                pP
                                                      14 49
                             302
                                   e 8 16
                      46.6
Milan
                                                                                pP
                                                                      e 9
                             306
                      47.0
Strasbourg
                                                                                pP
                                     8 23
                             323
                      47.4
Bergen
                                                                                      e 18.8
                                                                                pP
                                                    i 15 15
                                                                       19
                                   i 8 29k
                      48.1
                             312
De Bilt
                                                                       i 9
                                                                                pP
                                                    e 15 21
                                   i 8 34
                             310
                      48.8
Uccle
                                                                       i 9
                                                                                \mathbf{p}\mathbf{P}
                                                    e 15 45
                                   e 8 45
                             307
                      50.4
Paris
                                                                                      e 26.8
                                                                                pP
                                                    e 15 51
                                                                       e 9
                                                                          31
                                   e 8
                                       48
                             303
                      50.7
Clermont-Ferrand
                                   i 9 36
                                             pP
                                                    i 15 59
                                                              - 6
                             312
                      51.6
Kew
                                                                                 SS
                                                                                        20.5
                                                    e 16 8
                                                              -29
                                                                      i 19 13
                                             -10
                             298
                                   e 9
                       54.0
Tortosa
                                                          21
                                                               4
                                                                        13
                                              pP
                                                      17
                                    10 18
                      57.2
                             337
Scoresby Sund
                                                                        10 20
                                                                                pP
                                                    e 17 16
                                   i 9 36
                       57.5
                             298
Toledo
                                                                                pP
                                                      17 16
                                                                       10 19
                                   i 9 37
                       57.6
                             294
Almeria
                                                                                        24 \cdot 7
                                                                        10 26
                                                                                \mathbf{p}\mathbf{P}
                                                    i 17
                                                          28
                                             -13
                             295
                                   e 9 31
                       58.3
Granada
                                                    e 17 53
                                              pP
                             295
                                  e 10 36
                      60.5
San Fernando
                  E.
                                                                                 PS
                                                                 9]
                                              _{\rm PP}
                                                    e 24
                             345
                                  e 18 43
                                                             [ -
                      103.4
St. Louis
                                                    i 18 28
                                                                      i 29 31 PKKP
                                                               \mathbf{PP}
                                              \mathbf{P}
                                  e 14
                                        3
                     106.5
Tinemaha
                                  e 18
                                                5]
                      108.9
Santa Barbara
                                                                               pPP
                                                               PP
                                                                      e 19 29
                                  e 18
                                                     i 18 45
                      109.3
Mount Wilson
                                                                      i 19 29
                                                    i 18 46
                                                               PP
                                                                                pPP
                                  e 18
                                                81
                     109.4
Pasadena
                                                    e 18 47
                                                               PP
                                                                      i 19 30
                                                                                pPP
                     109-6
Riverside
                                       5
                                                    e 29 23 PKKP
                                                                      e 19 41
                                                                                pPP
                                  c 19
                                              PP
                     110.5
Palomar
                                                                               PKP
                                                                      e 18 21
                                                    e 19 36
                                  e 15 27
                                                               PP
                                               P
                      111.8
Tucson
                                                                      e 19 43 pPKP
                                  e 18 52
                                            [+2]
                             314
                      127.8
Bogota
  Additional readings :-
     Bombay iN =4m.49s. and 7m.26s.
     Helwan PPPZ = 7m.51s.
```

```
Helwah PPZ=7m.31s.
Belgrade e=8m.21s., 8m.49s., 9m.49s., 16m.26s., and 21m.3s.
Ogyalla ePN=6m.41s., eN=8m.29s., eE=8m.51s.?, and 16m.21s.?, eN=17m.21s.?.
Upsala PPE=8m.59s., iPPPN=9m.29s., iP<sub>c</sub>S=13m.25s., eE=13m.47s., eSSN=16m.5s.
Prague readings have been increased by 10 minutes.
Copenhagen 8m.54s., PP=9m.36s., sS=15m.23s., SS=17m.28s., sSS=18m.26s.
Jena i=9m.43s., iZ=10m.45s.?, iEN=10m.51s.
Florence iPPPE=10m.13s., eSSSE=18m.21s.
Stuttgart isPZ=9m.13s., ePPZ=10m.3s., esS=15m.57s.
Strasbourg e=10m.43s., i=12m.22s.
Bergen PP=10m.16s., eSS=18m.27s.
De Bilt iZ=9m.31s., isS=16m.39s.
Uccle isPEZ=9m.36s., iPPZ=10m.0s., epPPZ=11m.2s., eSSEN=19m.27s.?.
Clermont-Ferrand i=10m.30s.
Kew iEZ=9m.57s. and 17m.23s., e=19m.51s.?.
Almoria PaP=10m.28s. sP=10m.39s., PP=11m.51s., pPP=12m.32s., sPP=12m.53s.,
```

Kew 1EZ = 9m.57s. and 17m.23s., e = 19m.51s.1. Almeria  $P_cP = 10m.28s.$ , sP = 10m.39s., PP = 11m.51s., PPP = 12m.32s., sPP = 12m.53s., PPP = 13m.10s.,  $S_cP = 13m.37s.$ ,  $S_cS = 18m.57s.$ ,  $S_cS = 21m.17s.$ ,  $S_cS = 22m.28s.$ 

Granada PP = 11m.50s., PPP = 12m.58s., PS = 17m.57s., sS = 18m.10s., SS = 20m.35s. St. Louis eZ = 22m.30s., eN = 28m.38s. and 33m.4s.

Tinemaha eZ = 17m.18s.

Mount Wilson iPKKPZ = 29m.23s.

Pasadena eSPZ = 27m.49s., iPKKPZ = 29m.20s.

Tucson e = 28m.18s. and 33m.24s.

Long waves were also recorded at Auckland, Christchurch, Wellington, and Riverview.

Sept. 9d. Readings also at 2h. (Tortosa), 5h. (near Istanbul), 9h. (near Bogota), 11h. (Christchurch and Wellington), 12h. (Auckland), 15h. (near Lick), 17h. (near Calcutta), 18h. (Helwan), 19h. (Stuttgart and Wellington).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

388

Sept. 10d. 2h. 31m. 34s. Epicentre 19°-1N. 67°-1W. (as on 1943 Aug. 12d.). Epicentre 18°.9N. 67°.0W. (U.S.C.G.S.).

> A = +.3680, B = -.8711, C = +.3252;  $\delta = -1$ ; h = +5; D = -.921, E = -.389; G = +.127, H = -.300, K = -.946.

		Δ	Az.	P. m. s.	O – C. s.	$_{ m m. \ s.}^{ m S.}$	0 - C.		pp.	L.
San Juan Port au Prince Fort de France Bermuda Balboa Heights		1·2 5·0 7·2 13·4 15·7	$128 \\ 265 \\ 127 \\ 9 \\ 232$	i 0 19 e 1 7 e 1 41 e 3 16	P* -11 - 8 + 2 + 6	i 1 53 3 1 (e 5 32) e 6 47	-25 -12 -13 + 8	m. s. i 0 26 i 1 17 2 0	P. P.	e 6·7 e 5·5
Bogota Columbia Philadelphia Fordham Harvard		$\begin{array}{c} 15.9 \\ 19.4 \\ 21.9 \\ 22.4 \\ 23.6 \end{array}$	206 324 344 348 353	e 3 51 e 4 33 e 5 1 e 5 4 i 5 15	+ 4 + 3 + 4 + 2 + 2	e 6 56 e 8 14 8 58 i 9 7 i 9 25	$^{+12}_{+10}_{+3}$	i 3 57 c 5 22 i 5 25 i 5 35	PP PP PP	e 17·3 e 9·6 10·8 e 12·4
Ottawa St. Louis Seven Falls Chicago Huancayo		$\begin{array}{r} 27.2 \\ 28.0 \\ 28.1 \\ 28.6 \\ 32.0 \end{array}$	$347 \\ 319 \\ 355 \\ 326 \\ 196$	e 5 50 e 6 50? e 6 33	$^{+}_{\stackrel{1}{-}}^{3}_{1} \\ ^{+}_{\stackrel{3}{-}}$	e 10 26? e 10 40 e 10 48	$+\frac{1}{2}$ $-\frac{1}{0}$	e 6 23 i 6 31 e 7 32	PP PP — PP	13·4 e 13·7 18·1
La Paz Rapid City Tucson Salt Lake City Palomar	z.	35·4 39·1 41·3 43·8 46·4	181 318 298 311 299	i 6 58 e 6 387 e 7 51 e 8 37	$-{2\atop -53\atop +}{2\atop 7}$	i 12 28 — e 14 38	- 6 - 2	e = 3	PP —	e 15·6 e 17·4 e 18·2
La Jolla Riverside Mount Wilson Pasadena Tinemaha	z.	46.7 46.9 47.5 47.6 48.0	298 300 300 300 303	e 8 32 e 8 37 e 8 40 i 8 43 e 8 44	$\begin{array}{c} & 0 \\ + & 3 \\ + & 2 \\ + & 4 \\ + & 1 \end{array}$	e 15 41	+ _6	e 8 51 = i 9 18	- - 3	e 16·4
Santa Barbara San Fernando Toledo Granada Almeria	z.	48.9 55.7 57.5 57.8 58.7	300 59 55 57 58	e 8 43 e 9 37 i 9 47 9 47 9 59	- 7 - 3 - 6 - 8 - 3	e 17 44 i 17 41 18 2	$-\frac{6}{13}$	$\begin{array}{r} \mathbf{e} \ 8 \ \ 59 \\ 21 \ \ 48 \\ 19 \ \ 40 \\ 18 \ \ 22 \end{array}$	SS SeS PS	24·8 i 26·9 29·9
Tortosa Sitka Uccle Stuttgart Florence	E. E.	61.0 62.4 63.8 66.9 68.8	53 326 42 44 50	9 30 e 19 45 e 10 32 e 10 52	-48 PPS - 4 - 4	17 32 e 19 1 e 19 40 e 20 3	$     \begin{array}{r}       -63 \\       -10 \\       -9 \\       -8    \end{array} $	e 20 51	PPS	e 28·4 e 31·0 e 29·4 e 31·7
Helwan Ksara Tashkent	z.	87·7 89·8 107·6	60 55 34	e 12 53 e 13 22 e 15 17	$^{+}_{+20}^{1}$	<u>-</u> 3	[+ 1]	e 19 23 e 16 56 e 21 52	$\mathbf{PP}_{\mathbf{i}}^{\mathbf{i}}$	

```
Additional readings :-
  Fort de France S_g = 2m.37s.
  Philadelphia e = 9m.37s.
  Fordham e = 9m.0s., i = 9m.12s.
  Harvard i = 9m.40s.
```

St. Louis ePPPZ =6m.46s., eN =9m.20s. and 11m.8s.

Huancayo e = 12m.52s. Tucson ePPP = 10m.18s., e = 16m.3s. Almeria P_cP = 10m.53s., PP = 12m.26s., PPP = 13m.20s., S_cS = 19m.59s., SS = 22m.15s., SSS = 24 m. 26 s.Long waves were also recorded at Logan and at other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

Sept. 10d. 8h. 36m. 54s. Epicentre 35° 6N. 134° 2E. (as on 1943 March 12d.).

Scale IX at Tottori; VII-VIII at Okayama; VI at Sakai, Saigo, Matsue, Hukui, Sumoto, Osaka and Hikone; V at Hamada, Kameyama, Nagoya, Simidu, and Saga; II-III at Shizuoka, Kumamoto, Maebasi, and Niigata. 1190 killed, 6158 severely injured, nearly 14,000 houses destroyed. Fissures were formed causing a new system of faults, one of which extended for about 7.5 km. in the direction of Shikano.

Epicentre: 35°·5 N. 134°·2E., depth 10 km. (Tokyo Met. Obs.). 35°·1N. 133°·3E. (U.S.C.G.S.).

35°N. 134°E. (Pasadena), magnitude 7.5.

H. Kawasumi. Seismology in Japan 1939-1947. Bull. Seismo Soc. Amer. vol. 39, 1949, p. 161. Epicentre in the mid stream of Saka-gawa, Ketaka-Gori. Tottori prefecture. Felt in wide area extending from Maebasi and Niigata in the east to Kumamoto in the west. The city of Tottori and its suburbs were badly shaken, with many collapsed houses and casualties. Conspicuous faults appeared near Yosioka and Sikano, also many ground fissures.

F. Kishinouye.

"General Report of the damage caused by the Tottori Earthquake," of Sept. 10, 1943.

"Zisin," the Journal of the Seismo Soc. of Japan, vol. 15, 1943.

"Damage from the Tottori Earthquake on Sept. 10, 1943,"
Bull, of Earthquake Research Insittute, vol. XXIII, parts 1-4, 1945. (In Japanese).

S. Miyamura.

Die Zwei Verwerfungen beim Tottori-Beben vom 10 Sept. 1943, und ihre Bewegungen nach dem Beben, Bull. of Earthquake Research Institute, vol. XXII, part 1, 1944. (In Japanese).

Syun'itiro Omote.

"Provisional report on the observations of aftershocks of the Tottori Earthquake of Sept. 10, 1943."

"Zisin," the Journal of the Seismological Society of Japan, vol. 15, 1943.

H. Tsuya.

Geological Observations of the Earthquake faults (Sikano and Ysiosaka) of 1943 in Tottori
Prefecture (in Japanese) Bull. of Earthquake Research Institute, vol. XXII, part 1,
1944.

Anonymous.

Reports of the Precise Levelling in the Tottori districts carried out after the Earthquake of 1943 Sept. 10. Bulletin of the Earthquake Research Institute, vol. XXII, part 1, 1944 (in Japanese).

A = -.5682, B = +.5843, C = +.5795;  $\delta = +8$ ; h = 0; D = +.717, E = +.697; G = -.404, H = +.415, K = -.815.

Toyooka Kyoto Osaka Sumoto Hikone	∆ 0.5 1.4 1.4 1.4	Az. 98 115 131 156 101	P. m. s. 0 9 0 25k 0 26k 0 24 0 30k	O-C. s. P ₅ - 2 - 1 - 3 - 1	m. s. 0 14 0 47 0 49	S ₈ + 1 + 3 - 2 + 8	m. Supp	P. 	L. m.
Hamada Hirosima Kameyama Koti Matuyama	$1.9 \\ 1.9 \\ 2.0 \\ 2.1 \\ 2.1$	$\begin{array}{c} 248 \\ 230 \\ 112 \\ 195 \\ 214 \end{array}$	0 29 k 0 34 a 0 34 a 0 32 a	- 5 - 1 - 3 - 5	0 51 0 59 1 2	- 8 - 2			
Nagoya Owase Siomisaki Toyama Wazima	2·3 2·3 2·5 2·7 2·8	101 133 149 66 51	0 39 k 0 40 k 0 37 0 59 0 46 a	- 1 - 6 - 1	1 14 1 3 1 11 1 28 1 44	+ 5 - 6 - 3 + 9			
Simidu Nagano Omaesaki Kohu Shizuoka	3·4 3·4 3·5 3·5	$200 \\ 71 \\ 107 \\ 88 \\ 101$	0 47 a 1 8 a 1 6 1 2 0 57	$-3 \\ +11 \\ +5 \\ 0$	$\begin{array}{cccc} 1 & 24 \\ 2 & 10 \\ 2 & 50 \\ 2 & 6 \\ 1 & 55 \end{array}$	- 3 Sg Sg			(2·8) =
Misima Kumamoto Maebasi Osima Yokohama	3·9 4·0 4·3 4·4	$   \begin{array}{r}     96 \\     227 \\     77 \\     100 \\     91   \end{array} $	1 1 3 a 1 6 1 8 1 17	- 1 - 1 + 2 + 7	1 59 2 3 2 15 2 20 2 34	+ S S S S S S S S S S S S S S S S S S S			

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		Δ	Αz.	P. m. s.	0 – C.	S. m. s.	o – c.	m. s.		L. m.
Tokyo Utunomiya Kakioka Mito Hatidyozima		4·5 4·7 4·9 5·1 5·3	87 77 81 79 116	1 15 1 9 1 16 1 26k	$   \begin{array}{r}     + & 4 \\     - & 5 \\     - & 1 \\     + & 6 \\     - & 1   \end{array} $	$\begin{array}{c} 2 & 12 \\ 2 & 26 \\ 2 & 37 \\ 2 & 47 \\ 2 & 36 \end{array}$	+ SS SS S S S S S S S S S S S S S S S S			= = =
Hukusima Sendai Mizusawa Aomori Miyako	N.	5·5 6·5 7·3 7·4	65 62 55 43 55	1 31 1 32a 1 43 1 52k 2 1 a	$^{+}_{0}^{6}$ $^{+}_{+}^{2}$ $^{+}_{9}$	$\begin{array}{c} 2 & 47 \\ 2 & 47 \\ 3 & 14 \\ 2 & 38 \\ 4 & 38 \end{array}$	S* + 4 P*			_ _ _ (6)
Hatinohe Sapporo Naha Miyakozima Irkutsk		7.6 9.3 10.9 13.2 27.0	$   \begin{array}{r}     48 \\     34 \\     213 \\     218 \\     318   \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{+}_{+}$ $^{5}_{+}$ $^{+}_{2}$ $^{2}_{+}$	3 43 4 26 5 46 7 54 i 10 28	$^{\mathrm{S*}}_{+21}^{+21}_{+62}^{+62}$			_ - 7.9)
Calcutta Dehra Dun Andiian Tashkent Stalinabad		41.8 $46.9$ $48.0$ $50.1$ $51.3$	$\begin{array}{c} 265 \\ 280 \\ 296 \\ 297 \\ 294 \end{array}$	e 7 51 8 34 e 8 41 e 8 58 e 9 8	$   \begin{array}{ccc}     & 2 \\     & 0 \\     & 2 \\     & 1 \\     & 0   \end{array} $	i 14 28 e 15 8 i 16 20	+17 -17 PS	$\begin{array}{c} {\rm i} \; 9 \;\; 38 \\ {\rm e} \;\; 10 \;\; 58 \\ {\rm 9} \;\; 45 \\ {\rm e} \;\; 11 \;\;\; 4 \\ {\rm e} \;\; 17 \;\;\; 2 \end{array}$	PP e 20 PPP e 24 PcP PP PPS	)·5 [·1 —
Sverdlovsk College Bombay Colombo Kodaikanal	E. E.	52·4 53·4 56·2 57·2 57·2	$319 \\ 32 \\ 270 \\ 254 \\ 259$	$\begin{array}{c} {\bf i} \ 9 \ 19 \\ {\bf e} \ 9 \ 22 \\ 9 \ 44 \\ 17 \ 63 \\ 10 \ 1 \end{array}$	$^{+}_{-}\overset{3}{\overset{2}{\overset{0}{2}}}_{0}$	i 16 44 e 16 56 e 17 29 (17 6?) i 17 51	$^{+}_{$	17 41	PS 28	2·9 3·1
Honolulu Sitka Moscow Brisbane Suva		$60.4 \\ 61.0 \\ 64.9 \\ 65.2 \\ 67.9$	$\begin{array}{r} 84 \\ 39 \\ 322 \\ 162 \\ 135 \end{array}$	e 11 8 e 10 20 10 42 i 10 48 e 12 42	PcP + 2 - 1 + 3	e 18 16 i 18 47 19 20 i 19 32 i 20 11	$^{-12}_{+12} \\ ^{-4}_{+10}$	e 18 38 e 14 14 e 11 38 e 15 48	PS e 24 PPP e 25 PeP e 31 PeS	•5
Perth Apia Riverview Sydney Victoria		69·4 70·9 70·9 70·9 71·5	$197 \\ 123 \\ 165 \\ 165 \\ 43$	e 11 11 e 11 24 e 11 18? 11 6	$-1 \\ + \frac{3}{3} \\ -18$	i 20 21 e 21 30? i 20 41 i 20 36 20 31	$^{+\ 3}_{S_cS} \\ ^{+\ 5}_{-12}$	13 46 e 29 30? i 21 38 e 29 42? 24 36?	PP 32 ? e 33 ScS i 30 ? e 32 ? a 33	·1 ·7 ·1
Upsala Seattle Scoresby Sund Bacau Ferndale		71.6 72.6 72.8 75.4 75.5		e 11 18 e 12 7 11 35 e 13 63	- 7 PcP + 2	e 21 8 21 2 21 36 e 21 38	$^{-9}_{+12} \\ ^{+4}_{+9} \\ ^{+10}$	e 25 6? 11 44 22 13 e 21 42	SS e 32 e 33 PeP 23 PPS 36 PS	·2 ·4
Bergen Focsani Copenhagen Ukiah Bucharest		75.6 75.7 76.4 76.9 77.1	331	i 11 49 e 12 07 i 11 54 e 11 52 11 56	+ 1 + 11 + 1 - 4 - 1	21 20 21 42 21 32 21 49 i 21 46	$^{-}_{+12}^{9}_{-66}$	e 31 28 e 21 57 26 32 i 22 22	PS 36 SS e 31 PS 36	·1 ·7
Ksara Istanbul Saskatoon Berkeley Potsdam		77·1 77·4 77·8 78·3 78·5	$\begin{array}{r} 311 \\ 34 \\ 52 \\ \end{array}$	e 11 56 (11 46) i 12 4 e 12 6?	$-12 \\ -12 \\ + 1 \\ + 2$	e 21 56 (21 55) e 22 3 i 22 2 i 22 5	$^{+10}_{+6}_{+10}_{+3}_{+4}$	i 12 7	( e 35 ( e 35 25 26 26	6
Branner Santa Clara Ogyalla Prague	N. E.	78.6 78.8 79.2 79.2 79.5	52 52 322 322 326	i 12 8 i 12 13 i 12 24 i 11 30 e 12 10	$^{+}_{-44}^{3}_{-38}$	e 22 8 e 22 14 21 22 e 21 32 e 22 10	$^{+}_{+10}^{6}_{-36}^{-36}_{-1}$	e 22 24	SeS e 33 — 39 — 39 — 6 36	·1 ·1
Kalossa Sofia Belgrade Bozeman Jena		79·7 79·8 80·0 80·0 80·2	319 40	e 12 17) e 12 15 e 12 18 e 12 18 i 12 14	+ 6 ( + 3 + 5 + 5	e 22 18) e 22 16 i 22 23 e 22 20 e 22 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 12 34) e 12 20 i 12 34 e 27 38 i 12 183	PeP ( c 38 PeP 33 PeP e 40 SS e 34 PeP e 37	·6) ·4 ·9 ·6
Cheb Aberdeen Tinemaha Auckland De Bilt		80·4 80·5 81·3 81·4 82·0	338 51	e 12 19 e 12 20 12 26 i 12 24	$^{+}_{-6}^{-6}_{+1}$	e 22 28 i 22 27 e 22 37 22 36 i 22 38	+ 7 + 5 + 7 + 5 + 1	i 31 12 i 23 41 i 28 63	SSS e 37	·1 ·0 ·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

341

		Δ	Az.	Ρ.	O – C.	s.	O-C.		pp.	L.
Santa Barbara Logan Helwan Arapuni Salt Lake City		82.0 82.2 82.6 82.8 82.8	53 44 301 148 44	e 12 24 i 12 28 i 12 26 c 12 29	+ 1 4 0	i 22 43 22 51 22 54 c 22 40	+ 4 + 8 + 9 - 5	e 15 57 23 26 35 67 e 32 8	$\Pr_{\mathbf{Q}_{i}}^{\mathbf{PP}}$	34·1 e 35·6
Stuttgart Mount Wilson Pasadena Uccle Stonyhurst	z.	$82.8 \\ 83.2 \\ 83.2 \\ 83.3 \\ 83.4$	$327 \\ 52 \\ 52 \\ 332 \\ 336$	i 12 28 i 12 30 i 12 29 e 12 30	+ 1 0	i 22 47 e 22 52 i 22 47 (i 22 56)	$+ \frac{2}{-3} \\ + \frac{3}{5}$	e 15 22 i 12 42 e 28 8 (23 33)	PP PcP SS PS	$\begin{array}{r} e & 40 \cdot 1 \\ e & 34 \cdot 2 \\ & 39 \cdot 1 \\ & (36 \cdot 5) \end{array}$
Ivigtut Strasbourg Riverside Chur Basle	z.	$83.5 \\ 83.6 \\ 83.8 \\ 84.1 \\ 84.4$	$328 \\ 52 \\ 326 \\ 327$	e 12 54 e 12 32 e 12 32 e 12 34	- ⁰ ₂	$\begin{array}{c} e & 22 & 55 \\ 1 & 23 & 1 \\$	$^{+}_{+} \frac{3}{8}$	e 24 48 e 23 13 e 13 36	s _c s	e 35·4 43·1
Palomar Kew La Jolla Zürich Neuchatel	z.	84·5 84·6 84·6 84·6 85·1	52 333 53 327 327	e 12 40 e 12 38 e 12 36 e 12 32 e 12 40	$\begin{array}{cccc} & + & 2 \\ & & 0 \\ k & - & 4 \end{array}$	e 23 2 e 22 51 e 23 9	$-\frac{1}{12} \\ + \frac{1}{1}$	i 12 52 i 23 52 e 12 35	$\frac{\frac{P_{c}P}{PS}}{\frac{P_{c}P}{P}}$	e 39·1
Rapid City Wellington Milan Florence Paris		85·1 85·3 85·5 85·6	$\begin{array}{r} 38 \\ 150 \\ 324 \\ 322 \\ 330 \\ \end{array}$	i 11 50 12 38 e 12 40 i 12 43 e 12 43	- 1 0	e 22 188 23 6 23 3 i 23 12 e 23 9	$ \begin{array}{cccc}  & -50 \\  & -2 \\  & & 01 \\  & & 0 \\  & & 4 \end{array} $	e 28 8? 24 6 i 12 47	$\frac{\mathbf{SS}}{\mathbf{PcP}}$	e 36·1 40·1 40·2 e 44·8 e 35·1
Christchurch Clermont-Ferrand Tucson Barcelona Tortosa	l	$86.2 \\ 87.8 \\ 89.1 \\ 91.6 \\ 92.9$	$\begin{array}{r} 153 \\ 328 \\ 50 \\ 326 \\ 326 \end{array}$	12 46 1 12 43 e 12 59 12 21	$^{+}_{-}\overset{2}{\overset{9}{\overset{1}{55}}}$	23 15 e 23 37 e 23 56 e 23 40 24 23	$\begin{array}{r} -& 4\\ +& 3\\ +& 10\\ \mathrm{i} -& 2 \mathrm{j}\\ +& 3\end{array}$	$\begin{array}{c} 15 & 43 \\ 25 & 14 \\ 23 & 38 \\ \hline 26 & 0 \end{array}$	PP PPS SKKS	36·9 e 38·4 e 33·5 e 36·2 48·7
Chicago Seven Falls Shawinigan Falls Ottawa St. Louis		94·6 94·7 94·7 95·0 95·5	31 17 18 20 34	e 17 10 e 17 30 e 13 36 13 36 e 13 30	$^{?}$ +12	e 24 32 e 24 35 e 24 6? 24 48 i 24 56	$^{+}_{0}^{2}_{14}^{0}_{+14}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SKS SKS SKS	e 38·2 43·1 46·1 e 45·1
Toledo Almeria Granada New Kensington Tananarive		95·6 97·4 97·7 98·1 98·1	$329 \\ 326 \\ 327 \\ 25 \\ 253$	i 12 29 13 54 13 50 e 17 35	$^{-59}_{+17} \\ ^{+17}_{\mathbf{PP}}$	i 24 40 e 25 8 24 20 e 24 23 e 23 44	$     \begin{array}{r}       -3 \\       +9 \\       [+5] \\       [+5] \\       [-34]     \end{array} $	$   \begin{array}{r}     16 & 44 \\     24 & 21 \\     26 & 17 \\     \hline     26 & 28 \\   \end{array} $	$\frac{\mathbf{sKS}}{\mathbf{PS}}$	44·3 50·6 e 41·4
Lisbon Harvard San Fernando Fordham Philadelphia		$98.7 \\ 98.8 \\ 99.4 \\ 99.7 \\ 100.1$	332 18 329 21 22	17 45 i 13 51 e 17 13 e 14 0 e 18 1	PP + 8 + 13 PP	25 8 i 25 17 e 25 12 i 24 32 e 24 16	$     \begin{array}{r}       - & 2 \\       + & 7 \\       - & 3 \\       [ + & 6] \\       [ -11]     \end{array} $	25 16 i 24 25 i 26 56 e 26 53	ScS SKS PS PS	46·1 e 46·1 50·6 i 37·1 e 43·3
Columbia Bermuda San Juan Huancayo La Paz		103.3 $110.1$ $123.0$ $144.5$ $152.5$	30 17 23 57 51	e 18 17 e 19 4 e 20 5 e 19 57 i 20 0	PP PP [+19] [+ 9]	e 24 42 e 25 2 e 30 27 e 41 5 i 30 43	[-1] [-11] PS SS {+11}	e 32 35 e 28 44 e 41 32 e 47 44 i 23 32	SS PS SSS PP	e 48·9 e 48·3 e 49·7 e 58·5 73·6
La Plata	N. E. N.	170.1	349 90 90	e 23 56 33 18 36 24		39 63	PPS (	e 45 41) 46 0? 46 12?	SS SS	e 45·7 76·0 70·4

Additional readings :-Calcutta iSSN = 17m.8s., iSSSN = 18m.6s.

Dehra Dun eN = 18m.14s. Bombay iE = 10m.15s., PPE = 11m.50s., SE = 17m.24s., PPSE = 17m.48s., iE = 18m.40s.and 19m.15s.,  $S_cSN = 19m.31s.$ , iE = 20m.28s., iN = 20m.39s., iE = 21m.44s.Sitka e = 11m.56s. and 21m.47s., iSS = 23m.6s.

Brisbane iPPN = 13m.4s., iN = 16m.40s., iS_cSE = 20m.30s., iSSE = 23m.42s., iQE = 27m.49s.

Suva e = 17m.16s., ePP = 18m.6s., eSP = 27m.36s.Perth PPP = 15m.11s., SS = 24m.56s., i = 28m.31s.Riverview eE = 28m.39s.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
Upsala \epsilon SSSN = 28\text{m.47s.}, \epsilon SSSE = 28\text{m.50s.}
Focsani SE = 21m.47s.
Ukiah e = 23m.35s. and 27m.37s.
Bucharest PPE = 14m.48s., PPN = 14m.59s., PPPE = 16m.56s., PPPN = 17m.6s., iN =
    21m.56s., iPSN = 22m.25s., SSN = 27m.2s.
Istanbul readings reduced by 12 minutes.
Berkeley eSE = 22m.8s.
Branner eE = 33m.5s.
Kalossa readings reduced by 1 minute.
Sofia ePPN = 15m.54s.?.
Belgrade e = 13m.46s., 16m.57s., and 26m.55s.
Bozeman e = 31m.29s.
Jena eSE = 22m.14s., eSZ = 22m.24s.
Aberdeen eN = 32m.52s.
Auckland i = 13m.23s., PPP = 17m.6s., SS = 27m.34s., SSS = 31m.26s.
De Bilt eSSS = 33m.6s.?.
Logan e = 24 \text{m.} 27 \text{s.}, eSS = 28 \text{m.} 6 \text{s.}, e = 31 \text{m.} 58 \text{s.}
Helwan eN = 12m.58s. and 23m.58s., SSN = 29m.42s.
Arapuni e = 29m.6s.?.
Stuttgart eSS = 28m.6s., c = 33m.42s.?, eQ = 38m.6s.
Stonyhurst S_cS = (23m.18s.), SSS = (30m.49s.), Q = (32m.56s.). Readings reduced by
    3 minutes.
Strasbourg e = 20 \text{m.} 15 \text{s.}
Palomar iZ = 13m.17s.
Kew iPcPNZ=12m.47s., e=14m.30s., ePPEZ=15m.40s., ePPPNZ=17m.26s., e=
    19m.30s., iS = 23m.16s., iPPS = 24m.19s., eSS?EN = 27m.42s.?, eSSSNZ = 31m.11s.
     eSSSE = 31m.46s., eQE = 34.1m.
Wellington iZ = 18m.31s., S_cSPZ = 25m.41s., iZ = 27m.56s., SS = 28m.28s., Q = 36.1m.
Florence ePPE = 16m.2s., ePPPE = 17m.48s., isS = 23m.30s., eSSSE = 32m.30s.
Christchurch PPP = 17m.51s., S = 22m.26s., SS = 27m.51s., SSS = 31m.11s., Q = 33m.27s.
Clermont-Ferrand eP = 12m.49s., iPP = 16m.25s., eSKS = 22m.45s., e = 23m.15s.
Tucson iP = 13m.3s., i = 13m.37s., e = 16m.25s., iPS = 24m.59s., eSS = 29m.49s.
Tortosa PPE? = 16\text{m.}3\text{s.}, SSN = 32\text{m.}5\text{s.}, SSSN = 36\text{m.}33\text{s.}, QE = 42\text{m.}25\text{s.}
Chicago ePS = 25m.49s., eSS = 30m.13s., e = 33m.23s.
Ottawa PP = 17m.12s.?, PS = 25m.56s., SS = 31m.6s.?, SSS = 35m.36s.?.
St. Louis ePPZ = 17m.28s., iS?E = 25m.56s., iSS?E = 31m.22s.
Almeria PP = 17m.51s., PPP = 20m.5s., PS = 26m.34s., SS = 31m.55s., SSS = 36m.7s.
Granada PKP = 17m.50s., S = 25m.51s., iSS = 31m.14s., Q = 44m.6s.?.
Tananarive SS = 31m.58s.
Lisbon SKSEN = 23m.47s., E = 41m.0s.?, N = 41m.6s.?.
Harvard ipP = 14m.1s., iPP = 17m.45s., i = 19m.46s. and 20m.41s., ePS = 26m.52s.,
     ePPS? = 27m.16s., e = 28m.6s., i = 28m.54s., e = 30m.43s., eSS = 32m.15s., e = 28m.15s.
    41m.17s.
Fordham ePP = 18m.2s., iSS = 32m.36s.
Philadelphia eSS = 32m.22s., e = 36m.25s.
Columbia e = 40m.52s.
San Juan ePP? = 20m.36s.
Huancayo e = 24 \text{m.7s.}, 28 \text{m.57s.}, and 30 \text{m.47s.}
L 1 Paz iZ = 22m.46s., iPP?Z = 24m.16s., iPPPZ = 27m.12s., iPSKS = 34m.19s., SS?Z =
    44m.0s., SSSZ = 49m.30s., QN = 65m.6s.
La Plata SSN = 41m.48s.?, SSS?N = 52m.48s.?, N = 56m.48s.?.
```

Sept. 10d. 9h. 4m. 57s. Epicentre 35°·6N. 134°·2E. (as at 8h.).

Intensity VI at Okayama; V at Matsue, Yonago, Saigo; IV at Sumoto, Kyoto, Koti, Hikone, Tokusima; II-III at Hamada, Kashiwara, Uwazima. Epicentre 35°·4N. 130°·8E. radius of macroseismic area 200-300 km. Shallow. Seismological Bulletin of the Central Meteorological Observatory, Japan, year 1943, Tokyo 1950, pp. 40-41, macroseismic chart p. 40.

						558 55W
	Δ	Az.	Р.	O-C.	s.	0-c.
	0	0	m. s.	5.	m. s.	8.
Toyooka	0.5	98	0 12	- 2	0 24	+ 1
Kyoto	1.4	115	0 26	- 1	0 47	+ 1
Sumoto	1.4	156	0 9	-18	0 26	-20
Hikone	1.7	101	0 35	+ 4	0 58	+ 4
Hamada	1.9	248	0 26	- 8	0 47	-12
Hirosima	1.9	230	0 29 a	- 5	0 49	-10
Kameyama	2.0	112	0 40	+ 5	1 27	+25
Owase	2.3	133	0 39 a	- 1	1 9	0
Siomisaki	2.5	149	0 38	- 5	1 11	- 3
Simidu	3.0	200	0 44	- 6	1 21	- 6

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

343

		Δ	Az.	Р.	$\mathbf{O} - \mathbf{C}$ .	s.	o -c.
		0	0	m. s.	8.	m. s.	s.
Nagano		3.4	71	1 3	P*	<del></del> 1	-
Omaesaki		3.4	107	1 3	P*	1 53	SE
Kohu		$3 \cdot 5$	88	0 53	- 4	1 58	Se Se
Shizuoka		3.5	101	0 57	0	1 55	Se
Misima		$3 \cdot 9$	96	1 21	$P_{g}$	2 7	S _K
Maebasi		4.0	77	1 14	P*	2 20	Sg
Aikawa		4.1	52	0 37	3	1 44	-11
Osima		4.3	100	1 5	- 3	2 19	Se
Yokohama		4 · 4	91	1 16		2 27	Š,
Kakioka		4.9	81	1 7	-10		-
Mito		5.1	79	1 48	$P_g$	2 49	$S_{\mathbf{g}}$
Tomie		5.4	238	2 24	S	$(2 \ \hat{2}4)$	-*4
Hukusima		5.5	65	$\bar{1} \ \bar{4}\hat{6}$	$\widetilde{\mathbf{P}}_{\mathbf{g}}$		$-1\hat{6}$
Sendai		6.0	62	1 25	- 7	$\tilde{2}$ $\tilde{4}\tilde{1}$	$-\overset{\circ}{2}$
Mizusawa	E.	6.5	55	e 1 40	+ i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{s}_{\mathbf{s}}^{-}$
Aomori		7.3	43	1 53	+ 3	S-33	7
Sapporo		$\frac{7 \cdot 3}{9 \cdot 3}$	34	2 23	$+$ $\tilde{6}$	4 25	+20
Tinemaha	Z.	81.3	51	e 12 17	+ 6 - 3		
Mount Wilson	Z.	83.2	$\tilde{52}$	e 12 26		-	
Pasadena	Z.	83.2	52	e 12 26	$-3 \\ -3$		1)
Riverside	z.	83.8	52	e 12 27	- 5		7. <u>— 2</u>
Palomar	Z.	84.5	52	i 12 42	+ 6	-	
Tucson		89.1	50	e 13 1	+ 3		

Sept. 10d. 9h. 32m. 9s. Epicentre 35°·6N. 134°·2E. (as at 9h. 4m.).

Intensity IV at Toyooka, Matsue; II-III at Yonago, and Kyoto. Epicentre 35°·4N. 133°·9E. Radius of macroseismic area 200-300 km. Shallow. Seismological Bulletin of the Central Meteorological Observatory, Japan for the year 1943, Tokyo 1950, p. 41, macroseismic chart p. 41.

	Δ	Az.	Ρ.	O-C.	s.	O-C.
	0	0	m. s.	8.	m. s.	S.
Toyooka	0.5	98	0 10k	Pr	0 20	S*
Kyoto	1.4	115	0 25	- 2	_	_
Hikone	1.7	101	0 30	$-\bar{1}$	0 56	+ 2
Hamada	1.9	248	0 25	- 9	0 47	$-1\bar{2}$
Kameyama	2.0	112	1 5	S	$(1 \ 5)$	
Nagoya	2.3	101	0 43	+ 3	1 14	+ 5
Owase	2.3	133	0 35	- 5	1 5	- 4
Siomisaki	2.5	149	0 39	- 4	1 12	- 2
Toyama	2.7	66	0 56	P.	1 44	Se
Simidu	3.0	200	0 47	- 3	1 24	- 3
Nagano	3.4	71	1 8	$\mathbf{P}_{\mathbf{g}}$	2 10	$S_{\mathbf{g}}$
Kohu	3.5	88	$\tilde{1}$ $\tilde{9}$	P	2 0	S.
Shizuoka	3.5	101	1 6	Pe	2 12	Š.
Misima	3.5	96	0 40	-22	1 7	P
Maebasi	4.0	77	1 5	$+\bar{1}$	2 14	S. P. S.
Aikawa	4.1	52	1 7	+ 2	2 5	s*
Yokohama	4.4	91	1 52	's	(1 52)	-10
Tokyo	$\hat{4}\cdot\hat{5}$	87	2 25	S.		
Kakioka	4.9	$\frac{91}{87}$	1 26	S S P*	2 27	S*
Mito	5.1	79	2 3	- 8	-	-
Sendai	6.0	62	2 45	S	(9 45)	T 9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

Sept. 10d. 13h. 36m. 5s. Epicentre 35°·6N. 134°·2E. (as at 9h.).

Intensity V at Toyooka, Tottori; IV at Yonago, Saigo, Okayama, Matsue, Takamatsu, Kyoti; II-III at Sumoto, Tokusima, Hikone, Uwazima.

Epicentre 35°·5N. 134°·0E. Radius of macroseismic area 300 km. Shallow.

Seismological Bulletin of the Central Meteorological Observatory, Japan for the Year 1943, Tokyo 1950, p. 42. Macroseismic chart p. 42.

		Δ	Az.	Р.	$\mathbf{O} - \mathbf{C}$ .	s.	o - c.	L.
		0	0	m. s.	s.	m. s.	s.	m.
Toyooka		0.5	98	0 14	0	0 24	+ 1	
Kyoto		1.4	115	0 27	Ō	0 48	$\begin{array}{c} + & 1 \\ + & 2 \end{array}$	-
Sumoto		1.4	156	0 23k	- 4	0 40	- 6	-
Hikone		$\tilde{1} \cdot \tilde{7}$	101	0 31	Ö	0 59	+ 5	-
Hamada		$\hat{1} \cdot \hat{9}$	248	0 36	+ 2	-	-	-
Kameyama		2.0	112	0 38	+ 3	1 1	- 1	-
Nagoya		2.3	101	0 51	$P_{g}$	1 18	$S_g$	_
Owase		2.3	133	0 39k	- 1	1 7	- 2	-
Siomisaki		2.5	149	0 41	- 2	1 14	0	_
Toyama		2.7	66	0 47	+ 2	1 28	+ 9	-
Simidu		3.0	200	0 51	+ 1	1 30	+ 3	
Nagano		3.4	71	0 58	+ 3	2 0	$S_z$	-
Omaesaki		3.4	107	0 55	0	1 50	S*	_
Kohu		3.5	88	0 57k		1 52	S*	-
Shizuoka		3.5	101	0 57	0	1 54	S*	
Misima		3.9	96	1 5	+ 3	2 6	$S_g$	-
Aikawa		4.1	52	1 5	0	2 7	S*	-
Osima		4.3	100	1 11	+ 3	2 20	$S_z$	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Yokohama		4.4	91	1 30 a		2 31	Sg	-
Tokyo		4.5	87	1 37	$\mathbf{P}_{\mathbf{z}}$	2 30	$S_g$	1
Tukubasan		4.8	81	1 40	$\mathbf{P}_{\mathbf{g}}$	2 40	Sg	3 <del>1 3</del>
Mito		5.1	79	1 44	$\mathbf{P}_{\mathbf{g}}$	2 48	$S_{\mathfrak{g}}$	_
Hatidyozima		5.3	116	1 21	- 1	3 8	$S_{x_{-}}$	-
Sendal		6.0	62	1 34	+ 2	2 50	+ 7	1 <del>- 1</del>
Mizusawa		6.5	55	e 1 41	+ 2	3 19	s*	_
Aomori		7.3	43	1 54	+ 4		_	-
Tinemaha	Z.	81.3	51	e 12 17	- 3		-	
Mount Wilson	Z.	$83 \cdot 2$	52	e 12 28	- 1	_		40.0
Pasadena	Z,	83.2	52	e 12 28	- 1	_		e 40·9
Riverside	Z.	83.8	52	e 12 30	- 2	1000	-	
Tucson		$89 \cdot 1$	50	e 11 57	-61		_	-

Long waves were also recorded at Wellington, Christchurch, Auckland, Riverview, Calcutta, and European stations.

Sept. 10d. Readings also at 0h. (near Tashkent), 2h. (La Paz), 4h. (Chur, Basle, Zürich, and Neuchatel), 6h. (Bogota, Stuttgart, Helwan, and near Ksara), 7h. (San Juan), 8h. (Bogota), 12h. (near Strasbourg), 18h. (Riverside, Tinemaha, Tucson, and Palomar), 22h. (Mount Wilson, Palomar, Tinemaha, Tucson, Auckland, Christchurch, and Apia).

Sept. 11d. 1h. 16m. 37s. Epicentre 35°-6N. 134°-2E. (as on 10d.).

Intensity V at Yonago, Saigo, Matsue, Kobe, Kyoto; IV at Tottori, Sumoto, Tokusima; II-III at Hukui, Uwasima, and Ibukiyama.

Epicentre 35° 4N. 133° 8E.

Seismological Bulletin of the Central Meteorological Observatory, Japan, for the Year 1943, Tokyo 1950, pp. 42-43. Macroseismic chart p. 42.

	Δ	Az.	P.	O-C.	S.	O-C.	Sup	p.	L.
	0	0	m. s.	8.	m. s.	8.	m. s.		m.
Toyooka	0.5	98	0 13k	- 1	0 23	0		2	
Kobe	1.2	139	0 23k	- 1	0 40	- 1	-	3.9 <del>11.000</del>	-
Kyoto	1.4	115	0 25	- 2	0 46	0			
Sumoto	1.4	156	0 23	- 4	0 41	- 5	_	1	-
Hikone	1.7	101	0 32k	+ 1	1 6	+12	-		_

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		Δ	Az.	P.	O-C.	0874-20111111111111111111111111111111111111	0 – C.	m. s.	p.	L. m.
Hamada Hirosima Kameyama Nagoya Owase		$1.9 \\ 1.9 \\ 2.0 \\ 2.3 \\ 2.3$	$248 \\ 230 \\ 112 \\ 101 \\ 133$	m. s. 0 27 k 0 27 0 36 0 40 0 37	- 7 - 7 + 1 - 3	m. s. 0 47 0 48 1 8 1 17 1 6	$   \begin{array}{r}     -12 \\     -11 \\     +6 \\     +8 \\     -3   \end{array} $	m. s.		
Siomisaki Toyama Simidu Omaesaki Kohu		2·5 2·7 3·0 3·4 3·5	149 66 200 107 88	0 37 0 47 0 43 a (1 1) 1 1	$ \begin{array}{rrr}  & 6 \\  + & 2 \\  - & 7 \\  + & 6 \\  + & 4 \end{array} $	1 7 1 32 1 21 (1 55) 1 59	- 7 Se 6 Se 8			
Shizuoka Misima Aikawa Osima Tokyo Cen. Met.	Ob.	3·5 3·9 4·1 4·3 4·5	$^{101}_{\begin{array}{c} 96 \\ 52 \\ 100 \\ 87 \end{array}}$	0 57 1 2 1 6k 1 2 1 25	$^{0}_{0}^{+}_{16}^{0}$	$egin{smallmatrix} 1 & 53 \\ 2 & 7 \\ 2 & 6 \\ 2 & 11 \\ 2 & 32 \\ \end{bmatrix}$	SSSS*			
Tukubasan Kakioka Mito Hatidyozima Hukusima		4·8 4·9 5·1 5·3 5·5	81 79 116 65	$\begin{array}{c} 1 & 17 \\ 1 & 14 \\ 1 & 22 \\ 1 & 20 \\ 1 & 30 \end{array}$	$\begin{array}{c} + & 2 \\ - & 3 \\ + & 2 \\ - & 2 \\ + & 5 \end{array}$	$\begin{array}{cccc} 2 & 39 \\ 2 & 44 \\ 2 & 50 \\ 2 & 22 \\ 2 & 42 \end{array}$	Sg Sg - 3			
Onahama Sendai Mizusawa Aomori Calcutta	N.	5.6 6.0 6.5 7.3 41.8	74 62 55 43 265	$\begin{array}{c} 1 & 30 \\ 1 & 38  \mathbf{k} \\ e & 1 & 45 \\ 1 & 54 \\ e & 13 & 20 \\ \end{array}$	+ 3 + 6 + 6 + 4 PcS	$\begin{array}{c} 2 & 17 \\ 2 & 56 \\ 3 & 14 \\ \end{array}$	-16 S* -	e 17 13	= = ss	
Tashkent Tinemaha Stuttgart Mount Wilson Pasadena	z. z.	50·1 81·3 82·8 83·2 83·2	297 51 327 52 52	e 8 48 e 12 22 e 12 33 e 12 31 i 12 31	$     \begin{array}{r}       -11 \\       + 2 \\       + 6 \\       + 2 \\       + 2    \end{array} $	e 16 3	- <u>7</u> = =	e 12 56 i 12 51		e 40·9 e 36·7
Riverside Florence Tucson St. Louis Almeria Granada	Z. N.	83·8 85·5 89·1 95·5 97·4 97·7	$\begin{array}{r} 52 \\ 322 \\ 50 \\ 34 \\ 326 \\ 327 \\ \end{array}$	e 12 26 e 12 58 i 29 21 i 29 52	- 6 - 6 ?	e 23 27 e 32 15	+15 = SSP	e 12 47 e 31 38 e 36 30	SSP	e 43·4 54·4 50·4

Omaesaki readings decreased by one minute.

Almeria also gives e = 38m.27s. Long waves were also recorded at Bombay and at other European stations.

Sept. 11d. 19h. 34m. 5s. Epicentre 16°·3S. 172°·8W. (as on 1937 April 1d.).

A = -.9528, B = -.1204, C = -.2789;

Epicentre: 16°.5S. 173°.0W. (U.S.C.G.S.) 15°S. 177°W. (Apia)

71.8

72.0

39

Berkeley

Ukiah

D = -.125, E = +.992; G = +.277, H = +.035, K = -.960. Supp. O-C. O-C. Ρ. AZ. m. s. 8. m. s. e 0 55 + 1 21 10 46k Apia -34i 5 50 PPP 4 35? 23.2 208 Auckland 2 55? 203 24.0 Arapuni

Ancenni		24.0	203	2 553	ž	9 31?	- 1			10.9
Arapuni		27.1	202	5 50	$+$ $\hat{4}$	10 25	+ î	6 21	PP	12.5
Wellington Christchurch		29.8	202	6 15	+ 4	11 8	+ î	7 18	PPP	14.9
Brisbane		33.5	245	i 6 28	-15	i 11 45	-20	i 7 47	$\mathbf{PP}$	i 16·2
Riverview		36.8	236	17 52	- 6	i 12 45	-11	i 8 25	PP	e 17·1
Sydney		36.8	236	e 6 55	-16	e 12 19	3	e 8 25	PP	e 17.5
Honolulu		40.1	22	e 7 41	+ 2	e 13 42	- 4	e 9 54	PPP	e 16·1
Perth		$\hat{65} \cdot \hat{9}$	242		-		-	i 27 10	SSS	i 31·1
Santa Barbara		71.4	45	e 11 24	0		-	-	-	
Branner	N.	71.5	41	i 11 26	+ 2	e 20 58	PS		-	e 35.5
Santa Clara	-70.7	71.7	41	e 11 35	+ 9	e 21 21	PPS	_	_	e 32·8
A SERVER NAME OF STREET			1000	The state of the s				Activities and the second of t	Control of the Contro	Control of the Contro

 $\delta = +11; \qquad h = +5;$ 

I4.

m.

1.9

11.7

e 33·1

e 30·1

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

346

		Δ	Az.	m	P.	0 – C. s.	S. m. s	0 – C.	Company of the Compan	Supp.	L.
La Jolla Pasadena Ferndale Mount Wilson Palomar	z. z.	$72 \cdot 1$ $72 \cdot 2$ $72 \cdot 3$ $72 \cdot 4$ $72 \cdot 7$	47 46 37 46 47	e 11 e 11 e 11	27 26 - 27	$-\frac{1}{3}$ $-\frac{3}{2}$	e 21	5 + 14 3 + 11 —	i 11 2 e 21 1	9 P 3 PS 1 PP	e 32·5
Riverside Tinemaha Tucson Victoria Sitka		$\begin{array}{c} 72 \cdot 7 \\ 73 \cdot 9 \\ 76 \cdot 4 \\ 78 \cdot 0 \\ 79 \cdot 9 \end{array}$	46 43 50 32 20	e 11 e 11 i 11	35	- 3 - 4 - 1	e 21 3 e 21 4 e 23 2	7 - 8	i 11 3 i 11 3 e 16		e 33·8 35·9 e 32·8
Salt Lake City Logan Bozeman College Rapid City		$80.0 \\ 80.6 \\ 83.1 \\ 83.1 \\ 87.2$	$\frac{43}{42}$ $\frac{39}{10}$ $\frac{44}{44}$	e 12 e 13 e 12 e 12	16 43 27	$     \begin{array}{r}                                     $	e 22 3 e 22 2 e 23 e 22 3 e 22 5	$6 + 3 \\ 7 + 19$	e 27 3 e 23 e 25 1 e 15 4	6 PS 5 ?	e 37·0 e 34·3 e 35·2 e 34·1 e 40·0
Saskatoon Huancayo St. Louis Chicago La Paz	Z.	88·9 93·7 94·4 97·2 98·9	$   \begin{array}{r}     35 \\     104 \\     51 \\     48 \\     110   \end{array} $	- 3	- 23 - 19	- 3 0 - 3 - 3	e 23 5 6 24 1 1 e 24 1 1 e 24 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 29 5 e 23 2 e 26 e 31 3 18 1	2 SKS 6 PS 1 SS	e 42·4 48·4
Columbia Pittsburgh Calcutta Ottawa Fordham		100.4 102.5 104.1 106.9 107.1	57 51 290 46 51	e 5	_ _22 _	<u>-</u>	e 24 43 e 24 43 e 24 40	5 [+ 6] 73 PS	e 30 3 e 26 3 e 12 3 e 32 5 e 34 14	9 S 7 P 5 ?	e 46·5 e 47·9 e 49·9
Harvard Seven Falls San Juan Kodaikanal Bombay	E. E.	$109.0 \\ 109.9 \\ 110.4 \\ 111.6 \\ 117.7$	$\begin{array}{r} 50 \\ 45 \\ 75 \\ 275 \\ 283 \end{array}$	e 18 e 19 21 19	- 33 55	[ - 6] PP PPP PP	e 26 33	PS 5 ? [ +13] 3 { +25} 3 { +18}	e 29 50 e 28 23 e 35 6	SSP	e 45.9 51.9 e 48.7 62.9
Andijan Tashkent Scoresby Sund Sverdlovsk Moscow		$\begin{array}{c} 119.2 \\ 121.5 \\ 123.0 \\ 123.2 \\ 134.4 \end{array}$	$307 \\ 308 \\ 11 \\ 328 \\ 336$	e 19 19 20 e 20 19	30 30 29	PP PP PP [- 7]	30 5 26 5 31 37	[+ 9]	23 8 30 31 e 36 43		49·9 =
Upsala Copenhagen Potsdam De Bilt Kew		135·8 140·5 143·7 144·2 144·4	353 356 354 2 7	e 22 e 19 e 22 e 19 e 19	38	PP [+ 4] PP [+ 1] [- 1]	e 26 33		22 25 i 41 24 e 35 43	ss	e 66·9 e 75·9 e 65·9 e 65·9
Uccle Prague Cheb Ogyalla Paris		145.5 145.8 146.1 147.2 147.4	351 353 346 6	e 19 e 21 e 23 e 18 e 19	31 ? 10 55 ?	PP [-48] [-3]	e 41 41	ss —	e 46 56 e 25 55 e 33 15	? PPP	e 68·9 e 75·9
Stuttgart Bucharest Strasbourg Kalossa Basle		147.6 147.7 147.8 148.3 148.8	358 334 359 346 358	e 19 e 19 e 19 e 20 e 19	37 55? 43 48 45	$[-6] \\ [+12] \\ [-1] \\ [+64] \\ [-1]$	e 34 7	? PS = =	e 47 19 50	PKP.	e 71·2
Ksara Zürich Neuchatel Belgrade Sofia		148.9 149.0 149.4 149.5 150.3	$309 \\ 358 \\ 0 \\ 340 \\ 335$	e 19 e 19 e 19 e 19 e 19	38 44 45 51 49	$\begin{bmatrix} -8 \\ -2 \end{bmatrix}$ $\begin{bmatrix} -1 \\ +4 \end{bmatrix}$ $\begin{bmatrix} +2 \end{bmatrix}$	e 29 38	= 3	e 23 12 e 23 17	=	e 80·4
Clermont-Ferrand Milan Florence Lisbon Helwan		150.4 $150.9$ $152.4$ $153.5$ $154.1$	$\begin{array}{r} 5 \\ 356 \\ 353 \\ 28 \\ 305 \end{array}$	i 19 e 19 i 19 19	45 50 52k 2 55	$[-2] \\ [+1] \\ [+1] \\ [-51] \\ [+2]$	i 29 41		e 20 19 31 57 i 20 34 23 57 20 3	PKP ₂	69·9 e 67·4 71·5
Toledo San Fernando Granada Almeria		154·6 156·7 157·1 157·8	$\frac{20}{28}$ $\frac{22}{20}$	e 19 e 20 20 20	57 4 2 0	[ + 3] $[ + 7]$ $[ + 5]$ $[ + 2]$	$\begin{array}{c} 31 & 20 \\ 27 & 4 \\ 27 & 17 \\ 26 & 43 \end{array}$	[+15]	e 20 42 e 37 25 20 35 20 14	PPS PKP	77.9 76.4 75.5 75.9

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

347

```
NOTES TO SEPTEMBER 11d. 19h. 34m. 5s.
```

```
Additional readings :-
  Auckland S_{3} = 8m.50s., Q = 10m.30s.
  Wellington i = 5m.59s., iZ = 7m.0s. and 7m.52s., Q? = 11m.19s.?.
  Christchurch Q = 12m.52s.
  Brisbane ipPEZ =6m.31s., iQE =14m.4s.
  Riverview ipPZ = 7m.15s., iPPPEZ = 8m.46s., iSS?N = 15m.25s.
  Tucson e = 13m.21s, and 17m.25s.
  Salt Lake City e = 31m.13s.
  Logan e = 12m.59s, and 26m.36s.
  Huancayo e = 18m.21s., eSS? = 30m.27s.
  St. Louis eZ = 14m.42s., ePPZ = 17m.9s.
  Harvard e = 19m.35s, and 21m.5s., eSS = 34m.35s.
  Seven Falls e = 29 \text{ m.42s.} and 35 \text{ m.1s.}?.
  San Juan eS? = 27m.14s., e = 30m.17s.
  Bombay iE =20m.7s. and 28m.22s.
  Scoresby Sund 37m.7s.?.
  Copenhagen 23m.3s. and 26m.6s.
  Kew eZ = 21m.43s., ePP?Z = 22m.35s., ePKS?Z = 23m.14s., ePPP?Z = 25m.35s.
       eSKKS?Z = 29m.7s., eZ = 31m.7s., ePS?NZ = 34m.23s., eSS? = 41m.31s., eZ =
      52m.55s.7.
  Stuttgart eZ = 20 \text{m.} 35 \text{s.}, e = 22 \text{m.} 10 \text{s.}, eQ = 67.9 \text{m.}
  Belgrade i = 19m.57s., e = 44m.37s.
  Clermont-Ferrand ePKP = 19m.49s., eSS = 41m.55s.?.
  Florence iPKPN = 22m.32s., iPPE = 25m.1s., iSKP = 26m.17s., iPPPZ = 28m.59s.,
       eSN = 33m.23s., ePPSE = 37m.13s., iSSE = 42m.49s., iSSSN = 47m.34s.
  Lisbon Z = 21m.20s., E = 24m.43s. and 49m.7s.?.
  Helwan eZ = 21m.4s., 21m.43s., 23m.47s. and 24m.19s., PPSN = 37m.37s.
  Toledo PP = 24m.35s.
  San Fernando eSS?E =44m.50s.
  Granada SKP = 23m.32s., PP = 24m.31s., SKKS = 30m.26s., SKSP = 34m.16s., SS =
       43m.12s.
  Almeria PKP<sub>2</sub>=21m.7s., PP=24m.37s., PPP=28m.17s., SKKS=30m.29s., SKP=
       34m.22s. PPS = 38m.10s. SSS = 51m.15s.
  Long waves were also recorded at Colombo, Tananarive, and at other European stations.
```

Sept. 11d. Readings also at 0h. (Granada, Tortosa, Stuttgart, and Irkutsk), 5h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Palomar, Ksara, Bombay, Riverview, Auckland, Wellington, New Plymouth, and Apia), 6h. (Pasadena, Mount Wilson, Riverside, Tinemaha, La Jolla, Santa Barbara, Palomar, and Tucson (2)), 7h. (near La Paz), 9h. (Palomar, Tucson, and Riverview), 11h. (Mount Wilson, Riverside, Tinemaha, Tucson, and La Paz), 18h. (Florence and near Mizusawa), 22h. (Pasadena, Mount Wilson, Tinemaha, Tucson, and Palomar).

Sept. 12d. 1h. 31m. 8s. Epicentre 1°.2N. 121°.8E. (as on 5d.). Depth of focus 0.010.

		Δ	Az.	P.	0 - C.	s.	O-C.	Suj	p.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.		m.
Calcutta	N.	38.8	306	-		i 13 24	+17	i 16 13	SS	-
Brisbane	N.	41.4	136	i 7 27	-11	i 13 41	- 5	i 16 51	SS	e 21.5
Colombo	E.	42.2	279	e 6 50	-55		-		19 <u>22</u>	
Riverview		44.5	145	18 9a	+ 6	i 14 38	+ 7	i 8 15	pP	e 21·1
Bombay	N.	51.1	294		-	e 16 16	+12	20 11	SS	
Andijan		59.5	318	e 9 48	- 7	=		· ·		_
Tashkent		61.8	318	e 10 13	+ 2	i 18 37	+12	· <del></del>	_	1000
Auckland		62.0	134	10 223	+10	18 44	+17	-		25.9
Arapuni		63-1	135			15 523	?	·		-
Christchurch		63.6	141	10 20	- 3	18 26	-21	23 3	Q	26.5
Wellington		63.9	138	10 17	- 8	18 29	-22	11 3	$P_cP$	28.9
Tuai		64.5	136	10 27	- 2	12,650 00000		2.22		A 22 (2.2)
Sverdlovsk		73.6	330	11 35	+11	i 20 56	+11	10. <del>100 -</del> 10.00	<del></del>	_
Moscow		85.7	326	12 30	Con. Con. 10 Con. 14 Con.	22 50	- 2	15 54	PP	-
Ksara		85.9	303		$^{+}_{+18}^{1}$	e 23 12	+18		-	_
Helwan	N.	89.8	299	_		i 23 46	+16	e 25 40	PPS	
Bucharest		93.2	314			22 52	[-35]	25 52?	PPS	-
Copenhagen		99.8	327	_		24 12	[+ 9]	25 8	S	-
Potsdam		100-4	324		_	20 <del></del> 2000		e 26 42	$_{\mathrm{PS}}$	e 52·9
Stuttgart		103.8	321	e 18 23	$\mathbf{PP}$	e 24 28	?[+6]	e 27 16?	$_{\rm PS}$	e 50.9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

348

```
Az.
                                            O-C.
                                                                            Supp.
                                                                                          L.
                                    m. s.
                                              s.
                                                                                          m.
                                                                       m.
Florence
                     103 \cdot 9
                                  e 18 25
                             316
                                              PP
                                                                                PPS
                                                                                       e 49.7
Scoresby Sund
                     104-6
                             349
                                                                           26
                                                                                 _{\rm PS}
                                                                                         52 - 9
De Bilt
                     105-1
                                              PP
                                                                                         51.9
Uccle
                     106.0
                             325
                                              PP
                                                                                 SS
                                                                                       e 51.9
Paris
                     107.9
                                              PP
                                                                                 _{\rm PS}
                                                                                         60.9
Kew
                     108-4
                                              PP
                                                    e 28
                                                               _{\mathrm{PS}}
                                                                                PPS
                                                                                       e 53.9
Clermont-Ferrand
                     108.7
                             320
                                              PP
                                                                                 PS
                                                                                       e 43·2
Tinemaha
                  z. 112·7
                              49 e 17 56
                                                                     e 18 30 PKP
Pasadena
                     113.8
                              52
                                                                     e 28 52
                                                                                       e 46.9
                                                                                 _{PS}
Mount Wilson
                 z. 113·9
                              52 e 18 31
                                            [ + 3]
                                                                     e 19 3
                                                                                PP
Palomar
                 z. 115·1
                              52 i 29 18
                                           PKKP
Granada
                             314
                     116.7
                                   20 8
                                                                                SSS
                                             PP
                                                                                         61.6
                     120.2
                                            [ + 2]  [ + 6]
Tucson
                              51 e 18 42
                                                                      i 19 2
La Paz
                            148 i 19 56
                                                                                         82.9
                     161.9
                                                                      i 20 43 PKP.
```

Additional readings :-

Riverview iN = 17m.52s., iEN = 18m.15s.

Wellington PPPZ = 13m.54s.

Copenhagen 26m.32s.

Stuttgart eSS? = 32m.52s.?, eSSS? = 37m.4s.?.

Scoresby Sund 28m.21s. De Bilt eSSS = 37m.22s.

Uccle eN = 26m.4s., eE = 37m.28s.Kew eZ = 22m.52s.? and 34m.22s.?.

Tinemaha iPKKPZ = 29m.26s.

Granada PS = 34m.2s.

La Paz PPZ = 24m.25s.

Long waves were also recorded at Upsala, Prague, Bergen, St. Louis, and Huancayo.

Sept. 12d. Readings also at 0h. (Florence), 1h. (Mount Wilson, Pasadena, Riverside, Tinemaha, Palomar, Tucson, Mizusawa, and Bogota), 3h. (near Mizusawa), 5h. (Florence), 8h. (near Bogota), 18h. (Kew), 19h. (Stalinabad, Tashkent, and Tchimkent), 22h. (Kew).

Sept. 13d. 6h. Undetermined shock. Pasadena suggests deep focus.

Christchurch P = 14m.55s., S = 20m.57s., Q = 23m.7s., R = 26m.17s.

Wellington P?Z = 20m.42s.?, S = 21m.8s., LZ = 23m.

Tuai P = 18m.10s., i = 18m.46s., S = 19m.58s., L = 20m.48s.Auckland P = 18m.15s.?, S = 20m.5s.

Arapuni e = 20m.24s.?.

Brisbane iPZ = 21m.23s.

Pasadena iP = 28m.25s.a. iZ = 28m.42s., eLZ = 60m.

Mount Wilson iPZ = 28m.26s.a, iZ = 28m.43s.

Palomar iPZ = 28m.28s. a, iZ = 28m.45s.

Riverside ePNZ = 28m.28s.

Haiwee eP = 28m.32s.

Tinemaha iPNZ = 28m.36s., iZ = 28m.54s.

Tueson iP -28m.41s., i =28m.59s.

Copenhagen P = 35m.47s. Stuttgart eZ = 36m.29s.

Sept. 13d. 22h. Undetermined shock.

Auckland i = 21m.0s., S? = 22m.5s., L = 23m.42s.?.

Sydney e = 21m.0s.? and 25m.36s.

Wellington P?Z = 21m.5s.?, PPZ = 21m.48s., S = 24m.18s., PeP?Z = 24m.25s., Q? = 25m.27s., R = 26m.30s.

Riverview iPZ = 21m.33s.a, iSEZ = 25m.40s., iEN = 25m.49s., eLZ = 27m.0s.

Tuai S? = 21m.42s., L = 25m.23s.

Arapuni e = 22m.0s.?, L = 25m.36s.?. Brisbane iPZ = 22m.34s., iN = 23m.16s., eN = 27m.14s., iE = 27m.22s. and 28m.14s.eL?N = 29m.34s.

Long waves were also recorded at Christchurch and Tucson.

Sept. 13d. Readings also at 0h. (near Bogota), 1h. (Florence), 5h. (Mount Wilson, Riverside, Tinemaha, Tucson, and Palomar), 6h. (near Lick), 13h. (Riverview, Christchurch, Belgrade, Stuttgart, Basle, Zürich, near Florence and Triest), 16h. (Riverview), 17h. and 20h. (near Mizusawa), 21h. (Brisbane), 22h. (near Berkeley, Lick, Branner, and Santa Clara), 23h. (Tinemaha, Riverside, Tucson, Mount Wilson, Pasadena, Bogota, Tananarive, San Fernando, Paris, Florence, Clermont-Ferrand, Kew, De Bilt, Stuttgart, and near Ksara).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

349

Sept. 14d. 2h. 1m. 10s. Epicentre 22°·0S. 170°·3E. (as on 1943 March 15d.). Epicentre 22°S. 171°E., depth 50 km., magnitude 7 (Pasadena).

A = -.9148, B = +.1564, C = -.3724;  $\delta = 0$ ; h = +4; D = +.168, E = +.986; G = +.367, H = -.063, K = -.928.

	ii (77)								ž.	_
		Δ	Az.	P. m. s.	O -C.	m. s.	O – C.	m. s.	pp.	L. m.
Auckland Brisbane Arapuni		$15.3 \\ 16.6 \\ 16.7$	$166 \\ 247 \\ 165$	3 30 1 3 54 4 8 ?	- 9 - 2 +11	6 15 i 6 58 7 20	$^{-15}_{-2}$	4 15 i 4 3	PP PP	i 10·4
New Plymouth Tuai		$17.3 \\ 17.7$	$\frac{171}{165}$	4 33 7	$^{+29}_{-3}$	7 20	- 6	i 4 49	PP —	8·2 8·4
Bunnythorp Apia Wellington Riverview Sydney		$18.8 \\ 18.9 \\ 19.6 \\ 20.7 \\ 20.7$	$\begin{array}{r} 167 \\ 70 \\ 172 \\ 230 \\ 230 \end{array}$	i 4 27 k 4 23 i 4 42 k i 4 36	+ 3 - 9 - 2 - 8	e 7 50 9 e 7 51 9 f 8 36 i 8 32		- 5 5 6	PP PP	e 9·7
Christchurch Perth Honolulu Naha Miyakozima		21.6 49.1 53.1 63.4 63.8	$177 \\ 247 \\ 38 \\ 317 \\ 315$	e 9 23 e 10 30 e 10 46	$     \begin{array}{r}       -8 \\       +9 \\       +2 \\       -4 \\       +10     \end{array} $	e 17 8 = =	- 4 +14 +17	10 55 =	PP =	11·1 22·5 e 18·9
Nagoya Kobe Koti Nagano Sendai		65.5 65.5 65.8 66.0	$332 \\ 328 \\ 327 \\ 332 \\ 337$	10 40 10 46 10 46 e 10 54 e 10 50	- 5 - 1 - 1 + 5	$18 & 8 \\ 19 & 35 \\ \hline 19 & 50$	$+\frac{\frac{3}{3}}{+\frac{12}{12}}$			
Mizusawa Wazima Hamada Sapporo	E.	66·7 66·9 67·3 70·0	$337 \\ 337 \\ 332 \\ 327 \\ 339$	e 10 59 e 10 59 e 11 7 11 20	$^{+\ 4}_{+\ 3}_{+\ 8}_{+\ 5}$	$\begin{array}{cccc} 20 & 1 & \\ 20 & 4 & \\ & & \\ 20 & 8 & \\ 21 & 34 & \\ \end{array}$	$^{+15}_{+18}$ $^{+14}_{+68}$			
Branner Berkeley Santa Clara Ukiah Santa Barbara	E. Z.	86·9 86·9 86·9 86·9	48 48 48 46 52	e 12 50 i 12 48 e 12 53 e 12 43 e 12 50	+ 3 + 5 + 5 + 2	i 23 23 e 23 21 e 23 17	- 3 - 5 - 9		=	e 40.6 e 46.0 e 40.5 e 36.5
Pasadena Mount Wilson Riverside Palomar Haiwee	z. z. z.	88·0 88·1 88·5 88·6 89·1	52 52 52 54 49	e 12 54 e 12 53 e 12 54 i 12 57 e 13 1	$\begin{array}{cccc} + & 1 \\ - & 1 \\ - & 2 \\ + & 1 \\ + & 3 \end{array}$	i 23 28	- <u>8</u>	e 16 21	PP 	e 36·8
Tinemaha Calcutta Sitka Victoria Seattle	N.	89·3 91·3 91·3 91·7 91·9	$^{49}_{294}$ $^{27}_{38}$ 39	e 13 37 e 13 13 e 13 13 e 21 14	+ 4 + 28 + 4 PP	i 24 27 e 23 40 e 23 47 e 23 40	$     \begin{array}{r}                                     $	i 25 34 e 17 38 30 56?	PS PP SS	e 39·3 42·8 e 42·3
Tucson Colombo Irkutsk Salt Lake City Logan	E.	92·7 92·9 93·5 95·4 95·8	56 276 325 48 47	i 13 18 e 12 44 e 13 26 e 17 5	$^{+\ 3}_{-\ 32} \ ^{+\ 7}_{\mathbf{PP}}$	24 1	[+10] $[+8]$ $[-2]$ $[+7]$	e 18 14 	PP PS PS	e 42·3 44·8 e 38·0 e 41·4
Kodaikanal Bozeman	E.	96.4	279 44	e 17 17	PP	i 24 20 e 24 27	[+11]	26 40 i 26 39	PS PS	e 46·1
Hyderabad Rapid City New Delhi	E. N.	$98.0 \\ 102.6 \\ 102.8$	$\frac{286}{47} \\ 296$	e 17 26 e 17 87	PP PP	e 24 56		e 26 137 i 26 0	PS S	e 50·3
Saskatoon Bombay La Plata Huancayo	E. E.	103.0 $103.6$ $107.2$ $107.2$ $107.3$	$39 \\ 285 \\ 140 \\ 140 \\ 111$	e 14 14 26 14? 26 26? e 19 6	$^{+10}_{\overset{\mathbf{S}}{\mathbf{S}}}$	e 24 50 i 24 57 30 14? 32 32? e 26 41	[+9] [+13]	e 27 34 i 18 45 	PS PP SSS PPS	48.8 59.8 58.8 e 43.9
St. Louis Tananarive La Paz Chicago Columbia		110.6 110.8 111.2 113.1 117.0	55 239 119 53 62	e 14 48 	P P PP	i 25 20 e 25 26 i 25 0 e 25 36 e 25 46	[ + 5] $[ +11]$ $[ -17]$ $[ +11]$ $[ + 7]$	i 28 43 28 35 19 3 e 29 12 e 29 50	PS PS PS PS	e 52·7 53·2 56·2 e 48·1 e 56·2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

	Δ	Az.	P. n. s.	O – C.	S. m. s.	O – C.	m. s.	pp.	L. m.
Pittsburgh New Kensington Sverdlovsk Georgetown Ottawa	118.7 $118.9$ $120.8$ $122.0$	55 e 2 55 e 2 324 2 57 2		PKS PP PP [- 1]	i 25 50 e 26 3 25 50 i 26 15 26 29	[+5] $[+17]$ $[+4]$ $[+22]$	e 29 52 e 30 23 30 18 e 29 58 20 50?	PS PS PS PP	58.8
Phailadelphia Fordham Rio de Janeiro N. Harvard Weston	$\begin{array}{c} 122 \cdot 3 \\ 123 \cdot 3 \\ 124 \cdot 7 \\ 125 \cdot 1 \\ 125 \cdot 2 \end{array}$	54 e l	9 8	PP [+ 8] PP [+ 5]	i 26 7 i 26 7 e 22 20	[ + 9] [ + 6] PKS	e 30 59 i 30 47 e 20 55	PS PP	e 51·4 = 58·8
Seven Falls San Juan Bermuda Halifax Fort de France	$^{125\cdot 3}_{127\cdot 2}_{130\cdot 5}_{130\cdot 6}_{130\cdot 8}$	46 2 83 e 1 66 e 2 49 e 2 90 e 1	$\begin{array}{ccc} 1 & 42 \\ 2 & 27 \end{array}$	PP [+19] PP PP [+ 3]	26 19 e 26 12 i 22 54	[+12] [ 0] PKS	e 37 56? e 37 54 e 33 38 e 22 20	SKKS SS PPS PKS	58·8 e 61·4 58·8
Scoresby Sund Ivigtut Upsala Ksara Bergen	131.0 $132.7$ $137.5$ $138.3$ $140.2$	6 1 25 341 e 2 296 e 1 348 e 2	9 44	[+12] PP [+17] PP	e 22 51 e 28 58	PKS PKS ————————————————————————————————	21 40 e 45 50? e 23 16 e 23 18	SSS PKS PKS	e 62.7 e 61.8 e 67.8
Helwan Copenhagen Bucharest Aberdeen E. Potsdam	$\begin{array}{c} 142.4 \\ 142.5 \\ 143.0 \\ 144.4 \\ 145.0 \end{array}$	291 e 1 340 e 1 316 e 1 353 i 1 337 e 1	9 32 9 36 9 36	[-2] $[-3]$ $[-2]$ $[-2]$ $[+6]$	e 29 5 22 46 =	{ -30} PP	e 23 14 23 22 —	PKS PKS	68·8 e 72·8 e 61·8
Sofia Ogyalla N. Belgrade Kalossa Prague	$^{145.6}_{145.9}_{146.2}_{146.2}$	315 e 1 326   1 320 e 1 324 e 1 332 i 1	8 53 9 44 9 50?	[ + 6] $[ -48]$ $[ + 3]$ $[ + 9]$ $[ + 8]$	e 42 4 e 26 50?	ss ![+ 1]	e 23 19 e 23 32	PP PP	e 84·3 e 66·8
Jena Cheb Stonyhurst De Bilt Uccle	146.7 147.0 147.7 147.8 149.2	335 e 1 335 e 1 352 2 343 i 1 344 e 1	9 55 0 14 9 49 a	[ + 3] $[ + 12]$ $[ + 30]$ $[ + 5]$ $[ - 8]$	e 30 15 23 15 e 20 6	{ +13} PP PKP ₂	(e 36 50) e 23 24 43 58 i 42 46 e 43 2?	PPS PP SS SS	e 36·8 e 72·8 e 68·8 e 69·8
Stuttgart Triest Kew Strasbourg Zürich	$149.3 \\ 149.6 \\ 149.7 \\ 150.0 \\ 150.7$	336 e 1 327 e 1 349 i 1 337 e 2 335 2	9 50 9 47	$\begin{bmatrix} - & 3 \\ + & 3 \\ [ & 0 \\ [ + 13 ] \\ [ + 14 ] \end{bmatrix}$	e 33 38 2 e 23 36	PS PP	e 43 2? e 33 41	PS —	e 75·3 e 66·8 e 70·8
Basle Paris Neuchatel Milan Elorence	151.0 $151.5$ $151.7$ $151.9$ $152.2$	344 e 1	9 51 9 57	[+11] $[+2]$ $[+1]$ $[+7]$ $[+13]$	e 27 41 e 30 38 	[+46] + 12 -460 -460	e 31 4 e 23 46 i 25 6 i 24 18	SKKS PP	74·8 76·0
Clermont-Ferrand Barcelona Tortosa E. Toledo Lisbon	154.1 $158.2$ $159.3$ $161.5$ $163.3$	340 i 1 336 e 2 337 e 2 347 e 2 358 i	24 21 20 56	[ + 2] PP $[ +56]$ $[ + 2]$ $[ -19]$	e 34 31 e 31 24 e 26 42	$\{+\frac{15}{15}\}\ [-24]$	e 23 54 (e 51 2) e 24 42 23 57	PP SSS PP	e 56.8 e 51.0 82.2 83.8 76.9
Almeria Granada San Fernando	$^{163\cdot 9}_{164\cdot 0}_{165\cdot 3}$	342 i 2	0 0 0 8 0 11	[-5] $[+3]$ $[+5]$	26 54 i 45 29 46 25	[-14] SS SS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pPKP PP PP	82·3 84·0 82·3

Additional readings :--

Auckland sS? =7m.25s.

Brisbane iPPN = 4m.6s., iPPN = 4m.18s., iSN = 7m.2s.

Berkeley ePEN = 13m.0s., iSZ = 23m.36s.

Apia eZ = 7m.17s. Wellington i = 4m.28s. and 6m.6s., sS = 9m.17s.,  $P_cP = 10m.7s$ .,  $pS_cS = 15m.50s$ ., i = 19m.0s. and 24m.10s.?

Riverview PPPEN = 5m.16s., iN = 5m.45s., iSN = 8m.40s., iE = 8m.50s.

Perth PPP = 11m.50s., i = 19m.50s., SSS = 20m.20s.

Honolulu e = 14m.21s. Branner ePN = 12m.54s.

Pasadena iPSEN = 24m.53s., eSSSEN = 33m.2s.7.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

351

```
Sitka e = 30m.58s.
 Tucson e = 14m.41s. and 24m.44s., ePS = 25m.29s., eSS = 30m.25s., e = 34m.40s.
 Salt Lake City ePP=17m.13s., e=24m.15s., eSS=31m.42s.
 Logan eSS = 31m.43s.
 Bozeman e = 25m.20s. and 31m.6s., eSSS = 35m.47s.
 New Delhi iN =33m.6s.
 Saskatoon e = 33m.26s.? and 40m.32s.?.
 Bombay PPPE = 20m.59s., SKKSN = 26m.4s., SKKSE = 26m.8s., PSEN = 27m.53s.,
     SSN = 33m.16s, SSSE = 37m.10s., SSSN = 37m.16s.
 La Plata PPP?N = 27m.50s.?.
 Huancayo eSS = 34m.6s., eSSS = 38m.47s.
St. Louis ePPE = 19m.12s., iSKKSE = 26m.23s., eSN = 27m.2s., eE = 27m.38s.
      iPPSE = 31m.2s., eSSSE = 39m.12s., eSSSSE = 42m.32s.
 Tananarive SS = 34m.54s.
La Paz iZ=20m.49s., iSKKS=26m.7s., iPPS=28m.52s., iSS=33m.25s., iZ=
     40m.46s.
 Chicago e = 26m.7s., eSS = 35m.32s.
 Columbia eSS = 36m.16s.
 Georgetown SS = 32m.5s.
 Ottawa SKPN = 21m.50s.?, PSE = 30m.20s.?, SSE = 37m.50s.?.
 Philadelphia eSS = 37m.31s.
 Harvard e = 23m.40s., 25m.47s., and 31m.50s., i = 32m.35s., e = 38m.35s., and 39m.58s.
 Seven Falls PS = 30m.56s., SS = 37m.43s.
 San Juan ePP = 21m.22s., e = 33m.22s.
 Bermuda e = 34m.36s, and 41m.42s.
Scoresby Sund 26m.37s., 31m.57s., 34m.47s., 40m.8s.?, 41m.32s.?, and 44m.20s.?.
Ivigtut e = 35m.4s, and 48m.43s.
Upsala eN = 43m.50s. iN = 57m.50s.
Helwan eEZ = 22m.59s., eZ = 19m.50s.
Copenhagen 19m.45s.
Sofia iN = 20m.3s.
Ogyalla ePE = 18m.58s.
Belgrade e = 20m.9s., and 20m.43s., i = 24m.31s., e = 31m.36s., e = 43m.44s.
Prague ePPP = 27m.26s., eSKKS = 30m.8s., ePPP (\triangle > 180^{\circ}) = 32m.50s., eSKKS (\triangle > 180^{\circ}) = 33m.50s., eSKKS = 37m.26s., eSS = 43m.20s., eSSS = 48m.50s.
Jena i = 19m.50s., iNZ = 20m.19s.
Cheb eSS = 43m.2s.
Stonyhurst PP = 24m.7s., PPP = 27m.53s., PPPP = 33m.40s., PPS = 37m.26s., eSSS? =
     50m.5s.
Uccle eSSSN = 48m.52s., eN = 53m.51s.
Stuttgart ePKP?Z=19m.48s., iZ=19m.58s., ePP?Z=21m.39s., eS=30m.17s.,
     eSS? = 39m.8s.?, eQ = 68m.20s.?.
Strasbourg e = 20 \text{m.} 22 \text{s.}
Paris i = 20m.12s.
Florence iPKP<sub>2</sub>E = 20m.50s., iSKSE = 25m.50s., iPPP = 28m.29s., iPSKSE = 35m.18s.,
     iSSE = 45m.1s.
Clermont-Ferrand ePKP = 20m.0s., ePKP = 20m.32s., e = 38m.41s.
Tortosa SKPE? = 24m.21s., PPE = 25m.36s.
Toledo iPKP_2? = 20m.51s., SS = 45m.13s.
Lisbon PKP<sub>2</sub>Z = 20m.57s., PPN = 25m.20s., PPPN = 27m.56s. and 28m.50s., PPPE =
    29m.12s.?.
Almeria PKP<sub>2</sub> = 21m.43s., sPKP<sub>2</sub> = 21m.55s., PP = 24m.54s., pPP = 25m.20s., pSKS =
    27m.28s., PPP=28m.52s., SPP=38m.26s., PPS=38m.47s., SSS=51m.42s.
Granada PKP<sub>3</sub> = 21m.16s., SKSP = 35m.48s.
Long waves were also recorded at Balboa Heights and Lick.
```

### Sept. 14d. 3h. 47m. 12s. Epicentre 22°.0S. 170°.3E. (as at 2h.).

Epicentre 22°S. 170°E. Depth 50 km. Magnitude 7.2 (Pasadena).

						270 a	
Auckland Brisbane Arapuni New Plymouth Tuai	$\begin{array}{c} \triangle \\ 15.3 \\ 16.6 \\ 16.7 \\ 17.3 \\ 17.7 \end{array}$	AZ. 166 247 165 171 165	P. m. s. 3 33 i 3 56 4 67 4 23 4 5	O-C. s. - 6 pP pP - 5	S. $O-C$ . m. s. s. i 6 33 + 3 i 7 1 + 1 7 24 + 21 7 21 + 5 7 15 -11	Supp. m. s. i 4 0 pP  i 4 18 pP	L. m. (8·0)  7·8 9·6
Bunnythorp Apia Wellington Riverview Sydney	$18.8 \\ 18.9 \\ 19.6 \\ 20.7 \\ 20.7$	$\begin{array}{r} 167 \\ 70 \\ 172 \\ 230 \\ 230 \end{array}$	i 4 23 3 31 i 4 43 i 4 24	$     \begin{array}{r}                                     $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 i 5 3 PP	i 9.8 e 9.5

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943		352	
Christchurch Perth Honolulu Osima Miyakozima	△ Az. P.  21.6 177 4 49 49.1 247 8 18 53.1 38 9 26 63.6 332 e 10 27 63.8 315 e 10 19	O-C. S. O-S. S. S	COLUMN TO A COLUMN TO THE COLU
Yokohama Misima Tukubasan Nagoya Nagano	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Sendai Mizusawa Aikawa Hukuoka Morioka	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38 = = = = = = = = = = = = = = = = = = =
Hamada Mori Sapporo Zinsen Branner	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Berkeley Santa Clara Ukiah Santa Barbara z. Pasadena	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 6 e 23 30 +	18 e 24 40 PS e 40·1 
La Jolla Mount Wilson Riverside Palomar z. Haiwee	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1 = = = = = = = = = = = = = = = = = =	
Tinemaha Z. Calcutta N. Sitka Victoria Seattle	89·3 49 e 13 1 91·3 294 e 13 24 91·3 27 e 16 46 91·7 38 — 91·9 39 e 18 53		1 1 25 18 PS e 40·2 - 5] — — 49·8 PS e 30 49 SS e 43·0
College Tucson Salt Lake City Logan Kodaikanal E.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- e 30 52 SS e 40·5 - 2] e 16 57 PP e 41·2 - 2] e 25 44 PS e 39·8 - 3] i 26 13 PS e 38·6 - 9] 26 40 PS -
Bozeman Rapid City New Delhi Saskatoon Bombay	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PP e 23 22?[- - i 24 47 [- PP 27 24	PS e 32 7 SS e 42·1 -77] e 26 59? PS e 34·6 - 7] i 25 50 SKKS — - 33 24? SS 48·8 - 3] 33 6 SS —
Huancayo St. Louis Tananarive La Paz Tashkent	107·3 111 e 17 57 110·6 55 e 19 2 110·8 239 — 111·2 119 19 151 112·2 307 e 18 40	PP i 25 16 [-	19] e 33 49 SS e 50·0 1] e 26 50 S e 51·8 28 39 PS 47·1 16] i 28 41 PS 65·1 S — —
Chicago Columbia Pittsburgh N.E. New Kensington Georgetown	113·1 53 e 19 10 117·0 62 — 118·7 55 e 20 2 118·9 55 e 20 21 120·8 57 e 18 24	[+31] e 34 4 e 27 11 { PP — [-30] —	SS e 29 2 PS e 47·2 +17} e 29 47 PS e 49·4 = = = 6 59·7 = 57·8
Ottawa Philadelphia Fordham Harvard Weston	122·0 48 18 58 122·3 55 20 33 123·3 54 e 18 59 125·1 53 e 19 4 125·2 53 e 19 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SS 20 30

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

353 1943 L. Supp. O - C. P. O - C. Az. Δ m. m. m. s. m. s. 8. SS 55.8 30  $_{\mathrm{PS}}$ 54 ?  $\mathbf{PP}$ 20 46 54 125.3Seven Falls PKS  $_{PS}$ [+ 8]19 15  $127 \cdot 2$ San Juan e 62·5 9} i 22 PKS130.5 Bermuda 130.6Halifax PKS 130.8 Fort de France SS PKS 39 54  $^{+}_{
m PKS}^{2]}$ e 22 42 131.0Scoresby Sund e 40 24 SS  $132 \cdot 7$ Ivigtut 45 487 PKS 137.5 Upsala PKS + 61e 19 33 296 138.3 Ksara e 65·8 SS e 22 28  $\mathbf{PP}$ [-11]e 19 20 e 41 140.2348 Bergen  $\mathbf{PP}$ 22 51  $_{\rm PS}$ 33 19 33 291 142.4Helwan  $\mathbf{P}\mathbf{P}$ 22 42 23 17 PKS 19 28 340 142.5Copenhagen 83.8 e 19 36 01 143.0316 Bucharest e 61.8 i 19 43 [+ 4] 337 145.0Potsdam  $_{\mathrm{PS}}$ e 33 12 PPP e 25 56 [+ 5] 19 45 315 145-6 Sofia e 73·3 -63]32618 38 145.9Ogyalla i 23 PKS  $_{
m PP}$ e 74.3 i 23 13 i 19 5] 320 46 146.2 + Belgrade e 19 48? 7] 146.2 324 1+ Kalossa  $\mathbf{P}\mathbf{P}$ e 63:8 e 27 07[+11] e 23 i 19 47k 6] 146.2 332 Prague i 19 47 [+ 5] 335 146.7Jena e 67.8 [+3]335 e 19 46 147.0 Cheb e 15 24 147.7 352 Stonyhurst  $\mathbf{P}\mathbf{P}$ e 61.8 e 23 18 e 19 45 + 1] 343 147.8 De Bilt PKS e 23 25 01 344 19 46 149.2Uccle PPi 23 36 01 i 19 46 336 149.3Stuttgart 72.8 1] 327e 19 48 149.6 [+ Triest  $\{-35\}$ 66.8 e 29 43 3] 337 [+ e 19 50 150.0 Strasbourg e 19 53 335 [+ 5] 150.7 Zürich 336 e 19 54 [+ 5] 151.0Basle (e 47 48?) SSS 0] i 19 50 344 151.5 Paris 335 e 19 54 + 4] 151.7 Neuchatel 69-1 PP SS 44 32 2] e 19 52 331 [+ 151.9Milan  $\mathbf{PP}$  $\{+50\}$ i 24 36 i 31 20 i 19 52k [+1] $152 \cdot 2$ 327Florence e 34 23 PSKS e 65.8 + 6]e 19 59 340 154.1 Clermont-Ferrand SSS 51 0) e 51·0 (e  $\mathbf{PP}$ e 24 336  $158 \cdot 2$ Barcelona SSS  $84 \cdot 4$ SS 25 50 19 58 2] 337 159.3Tortosa  $\mathbf{PP}$ 67.8 34 i 24 e 27 6] 51 i 20 347 161.5 Toledo  $_{\rm PP}$ 80.9 303 44 -53] 19 11 358 163.3 Lisbon 81.3 20 26 pPKP 26 54 [-14] 20 3 [- 2] 163.9 338 Almeria 25 23 PP 20 10 [+ 4] 165.3 349 San Fernando Additional readings :-Auckland L is given as S?. Brisbane iPPN =4m.11s., iPPPN =4m.19s., iPPPZ =4m.22s., iSZ =6m.55s., iZ = 7m.29s. New Plymouth i = 4m.33s. Tuai i = 7m. 28s. Apia eEN =4m.34s., eZ =9m.18s., eEN =9m.23s. Wellington i = 4m.9s., sP = 5m.46s.,  $sP_cP = 8m.40s.$ ,  $S_cP = 9m.20s.$ , sS = 10m.15s., i = 11m.40s., and 14m.8s.,  $pS_cS? = 15m.10s.$ ,  $sS_cS = 17m.8s.$ ? Riverview iE =5m.49s. and 6m.6s., iEN =8m.52s., iN =9m.41s. Perth PPP = 11m.18s., PS = 16m.28s., SS = 19m.18s.Honolulu e = 13m.23s, and 20m.50s. Yokohama e = 11m.33s.Mizusawa ePN =11m.6s. Sitka e = 21 m. 34 s., eSS? = 29 m. 35 s., i = 33 m. 18 s.Victoria e = 25m.33s., 30m.0s.?, and 42m.48s.?.

Continued on next page.

Tucson e = 19m.12s., eS = 24m.43s., e = 25m.34s., eSS = 30m.31s., eSSS = 34m.7s.,

Bombay PPPE = 20m.38s., PPPN = 20m.48s., SN = 25m.40s., iN = 25m.58s., iE =

St. Louis eSKKSE = 26m.15s., iPSE = 28m.38s., iPPS?E = 29m.16s., iSSE = 35m.0s.,

Salt Lake City e=16m.48s., and 24m.25s., eSS=31m.35s., eSSS?=34m.46s.

26m.5s., PPSEN = 28m.21s., SSPE = 33m.15s., SSSN = 36m.58s.

iPKP,PKP?N = 37m.25s., iSSSSE = 42m.37s., eQN = 46m.46s.

ePKPPKP = 38m.47s.

Bozeman eSSS = 35m.45s.

New Delhi SSN =32m.57s.

Saskatoon SSS = 36m.57s.

Logan eSS = 31m.25s, and i = 34m.35s.

Huancayo  $\epsilon S = 26 \text{m.} 35 \text{s., e} = 30 \text{m.} 24 \text{s.}$ 

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

354

```
La Paz PPS = 29m.36s., SSS = 39m.12s.
 Chicago e = 30 \text{m.} 25 \text{s.}, eSSS = 39 \text{m.} 15 \text{s.}
 Ottawa PPS = 31m.48s.?, eE = 38m.0s.
 Fordham e = 20m.45s.
 Harvard e=20m.10s., ePKS?=22m.18s., e=24m.36s., and 33m.48s.
 San Juan e = 35m.55s.
 Scoresby Sund 21m.32s., 24m.0s., and 44m.12s.?.
 Upsala eN = 19m.22s.
 Bergen eEN = 37m.13s, and 46m.16s.
 Helwan eZ = 19m.42s., eEZ = 22m.47s.
 Copenhagen 19m.36s.
 Ogyalla PE = 18m.50s.
Belgrade e = 26 \text{m.3s.}, eSKSP = 33 \text{m.25s.}, ePPS = 36 \text{m.40s.}
Prague ePPP = 26m.33s., e = 29m.18s., ePPP (△>180°) = 33m.6s.?, ePPS = 35m.54s.,
      eSS = 41m.12s.
Jena iZ = 19m.54s.?, iEN = 20m.12s.
Stonyhurst e = 15m.56s., iS = 20m.1s., 20m.43s., i = 21m.0s., iSS = 21m.13s., SSS = 21m.13s.
     21\text{m.}28\text{s.}, P_cS? = 22\text{m.}18\text{s.}, L = 22\text{m.}35\text{s.} Trace wrongly interpreted.
De Bilt iZ = 19m.50s, and 20m.49s.
Uccle iZ = 19m.54s., iPKP_2Z = 20m.8s.?, eZ = 49m.6s.?.
Stuttgart eZ = 23m.4s. and 24m.21s.
Strasbourg i = 20 \text{m.1s.} and 20 \text{m.39s.}
Paris e = 19m.58s.
Florence iPKP<sub>2</sub>Z = 20m.48s., iPPPN = 28m.45s., iSSN = 44m.34s.
Tortosa SSPE? = 45m.52s.
Toledo iPKP<sub>2</sub> = 20m.53s., SS = 45m.22s.
Lisbon PKP2NZ = 20m.5s., PPN = 23m.20s., SKSP?E = 34m.7s., N = 35m.14s., E =
     35m.20s., SS?N = 37m.44s., E = 50m.19s., N = 50m.54s.?, E = 68m.54s.? and
     76m.48s.?, N = 77m.24s.?.
Almeria PKP<sub>2</sub> = 21m.9s., pPKP<sub>2</sub> = 21m.37s., PP = 24m.43s., pPP = 25m.12s., pSKS =
    27m.29s., PPP=28m.52s., SPP=38m.25s., PPS=38m.48s., SS=45m.33s., SSS=
    51m.41s., Q = 76m.9s.
Long waves were also recorded at La Plata and Lick.
```

Sept. 14d. 7h. 18m. 4s. Epicentre 30°-1S. 177°-8W.

Epicentre 30°S. 177°W. Depth of focus 60 km. Magnitude 7.5. (Pasadena).

$$A = -.8660$$
,  $B = -.0333$ ,  $C = -.4990$ ;  $\delta = +7$ ;  $h = +2$ ;  $D = -.038$ ,  $E = +.999$ ;  $G = +.499$ ,  $H = +.019$ ,  $K = -.867$ .

		Δ	Az.	_P.	$\mathbf{O} - \mathbf{C}$ .	s.	0-с.	Su	pp.	L.
Auckland Arapuni Tuai New Plymouth Bunnythorp		9·2 9·6 9·6 11·2 11·5	221 213 204 215 207	m. s. 2 17 2 56? 2 23 3 5 2 56?	$^{+}_{\mathrm{PPP}}$	m. s. 5 14? 4 12 5 33 6 20?	*** **********************************	m. s. = 2 48 i 5 9	PPP	m. 5·1 6·9 (6·3)
Wellington Christchurch Apia Brisbane Riverview	z.	12·7 15·4 17·1 25·7 26·5	$207 \\ 207 \\ 22 \\ 268 \\ 254$	2 56 3 39 e 4 0 i 5 34 i 5 45 a	- 9 - 1 - 2 + 1 + 4	5 16 6 21 i 7 11 i 8 40 i 10 16	-12 -11 - 1 PcP + 2	3 13 e 4 10 i 5 39 i 6 6	PP PP PP	e 12·7
Sydney Honolulu Perth Osima Yokohama		26·5 54·6 56·1 76·1 76·5	254 250 325 325	e 5 20 e 9 39 e 11 52 e 12 1	$-\frac{21}{7} + \frac{1}{7}$	e 11 35 e 17 8 24 1	88 - 3 888 	e 6 23 e 9 49 — (e 21 59)	PP PP PS	e 13·9 e 22·5 26·9 e 22·0
Misima Naha Shizuoka Kumagaya Nagoya		76.6 76.8 77.2 77.6	$324 \\ 310 \\ 324 \\ 325 \\ 324$	e 11 52 e 11 58 e 11 53 i 11 59 i 11 58	- 2 + 4 - 2 + 2	$\begin{array}{r} 20 & 34 \\ \hline 21 & 43 \\ 22 & 2 \\ 22 & 13 \\ \end{array}$	$-66 \\ + 1 \\ + 15 \\ + 22$			
Nagano Sendai Kôti Mizusawa	E. N.	78·2 78·3 78·8 78·8	325 328 320 329 329	i 12 4 e 11 58 12 5 12 5 e 12 8	$\begin{array}{c} + & 1 \\ - & 5 \\ + & 2 \\ - & 1 \\ + & 2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+12 \\ -19 \\ +19 \\ +24$		=	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943	355

		Δ	Az.	P. m. s.	O – C.	s. m. s.	o – c.	m. s.	p.	L. m.
Morioka Hukuoka Hamada Mori Sapporo		79·2 80·0 80·1 81·5 81·9	$329 \\ 318 \\ 320 \\ 330 \\ 332$	e 12 11 e 12 13 e 12 15 e 12 28 12 25	+ 3 + 2 + 7 + 2	22 13 e 22 50 22 54	$-5 \\ +18 \\ +18$		=	34.9
Santa Barbara La Jolla Branner Pasadena Santa Clara		$84.4 \\ 84.9 \\ 85.0 \\ 85.1 \\ 85.1$	45 47 41 46 41	i 12 35 e 12 36 i 12 41 i 12 37 a e 12 38	$     \begin{array}{rrr}                                   $	e 23 5 i 23 2 e 23 6	$\begin{bmatrix} -\frac{2}{2} \\ +\frac{1}{2} \end{bmatrix}$	i 12 40 i 12 54 i 15 50	PcP PcP	e 38·1 i 34·6 e 38·6
Berkeley Lick Mount Wilson Palomar Riverside	N. Z.	$\begin{array}{c} 85.2 \\ 85.2 \\ 85.3 \\ 85.4 \\ 85.5 \end{array}$	41 46 47 46	i 12 37 e 12 42 e 12 37 e 12 39 e 12 39	$ \begin{array}{rrr}  & 2 \\  + & 3 \\  - & 3 \\  - & 1 \\  - & 2 \end{array} $	e 23_12 	+ <u>3</u>	i 23 6 i 12 45 i 12 46 i 12 45	PcP PcP	e 38·6 e 37·9 —
Ukiah Fresno Ferndale Haiwee Tinemaha	N. Z.	85.6 85.9 86.0 86.6 87.0	39 43 37 44 44	e 12 41 e 12 42 i 12 44 i 12 45 e 12 47	- 1 + 1 - 1	e 23 21 e 23 24 =	+ 8 + 7 =	e 22 41 e 23 32 i 12 59 i 13 9	ScS PcP PcP	e 38·4 e 39·3 e 39·5
Tucson Seattle Victoria Salt Lake City Logan		88.7 $92.0$ $92.1$ $93.2$ $93.8$	51 34 33 44 43	i 12 55 e 13 13 13 21 e 13 18 13 21	- 2 + 1 + 9 + 1 + 1	e 23 50 e 23 39 e 24 19 e 23 46 e 23 35	$     \begin{array}{r}       + 7 \\       - 51 \\       + 6 \\       [-5] \\       [-19]     \end{array} $	i 13 15 30 56? e 30 31 i 13 31	SSP SS pP	e 42·3 e 42·3 36·9 e 38·4 42·0
La Plata Sitka Huancayo Bozeman	E. N.	The second secon	$134 \\ 134 \\ 21 \\ 107 \\ 40$	15 44? 13 20? e 13 24 e 13 27 e 13 37	- 1 + 1 + 3 + 4	24 21 23 56 e 24 12 i 24 1 e 24 8	[+6] $[-6]$ $[-1]$ $[+2]$ $[-2]$	25 45 25 387 e 13 40 i 25 55 e 25 12	PS PS PS S	29·9 31·0 e 38·9 e 35·0 e 44·4
College La Paz Saskatoon Calcutta Bogota		$97.5 \\ 98.0 \\ 102.7 \\ 104.1 \\ 104.2$	$^{12}_{114} \\ ^{36}_{287} \\ ^{93}$	e 17 32 i 13 44k 18 26 e 14 13	PP + 5 PP + 6	e 24 3 i 24 34 24 32 i 27 54	[-11] {- 6} [-8] PS	e 30 31 25 16 27 32? i 29 1 e 18 28	S PS PPS PP	e 38·4 40·9 47·9 58·9
St. Louis Irkutsk Kodaikanal Chicago Hyderabad	E.	106·3 106·4 107·8 109·5 110·2	$\begin{array}{r} 54 \\ 321 \\ 272 \\ 52 \\ 279 \end{array}$	e 14 17 e 18 6 19 16 e 19 16 19 24	P PP PP PP	i 26 16 e 24 51 i 25 26 e 25 10	$[ + 3 \\ [ - 6] \\ [ + 23] \\ [ 0] \\ -$	i 28 2 e 28 24 e 28 38 29 9	PS PS PS	43·0 — e 42·0
Columbia Rio de Janeiro Pittsburgh New Kensington Tananarive	N.	111.3 111.6 114.4 114.6 114.6	62 135 56 56 228	e 19 22 e 18 56 i 19 9 e 20 1	PP PP PP	e 28 51 e 25 13 e 25 16 e 25 41 29 32	PS [-6] [-14] [+11] PS	e 34 57 e 28 56 i 29 12 e 29 49 35 46	SS PS PS SSP	e 47·4 e 34·1 e 54·0 48·3
Bombay New Delhi San Juan Philadelphia Ottawa	N.	115.7 115.8 117.4 117.7 118.8	277 289 83 58 51	19 47 e 15 13 e 20 1 18 48?	PP PP [- 2]	29 30 i 26 1 e 25 35 e 25 29 25 38?	PS [+26] [- 5] [-13] [- 8]	i 31 10 i 27 11 i 29 47 e 29 41 30 83	PPS SKKS PS PS PS	e 47·8 e 54·9
Fordham Fort de France Harvard Shawinigan Falls Weston		$^{118.9}_{120.1}_{121.0}_{121.1}_{121.1}$	57 90 55 50 55	e 18 53 e 18 56 e 18 54 e 19 14? e 15 30	[+ 2] [+ 3] [- 1] [+19] P	i 25 45 e 25 56 e 25 56	$\begin{bmatrix} - & 1 \\ + & 3 \end{bmatrix}$ $\begin{bmatrix} + & 2 \end{bmatrix}$	i 30 11 e 30 4 e 30 20	PS PS	e 57·9 53·9
Seven Falls Andijan Bermuda Tashkent Halifax		$\substack{122.5 \\ 123.2 \\ 123.6 \\ 125.6 \\ 127.1}$	50 301 69 301 54	20 36 18 59 e 20 53 e 19 6 e 20 44?	PP [ 0] PP [ + 2] PP	26 28 e 26 28 e 26 28 e 37 56	[+4] [+26] [+20] SS	30 20 e 30 48 e 28 44?	PS PS	54·9 e 52·2 53·9

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Az.

1943

356

0 - C.

8.

m. s.

Supp.

m. s.

L.

m.

```
Sverdlovsk
                      131.8
                                             PKS
                                                     i 28
                                                              \{+12\}
                                                                        33 50
                                                                                PPS
 Ivigtut
                      134.8
                                                       22 53
                                              PP
                                                                        39 36
                                                                                 SS
Scoresby Sund
                      137 \cdot 4
                                        18
                                                       23
                                                 81
                                                               PKS
                                                                        22
                                                                                 PP
                                                                                        42.4
                      143.1
Grozny
                      148.5
 Upsala
                                                              \{-15\}
                                                                      e 35 56? PPS
 Bergen
                      149.6
                                                 6]
6]
                                                                                 SSP
                                                                                      e 61.5
Ksara
                             285 e 19 55
                      151.3
                                                                      e 36 57
                                                                                 PPS
 Aberdeen
                      152.8
                                   i 20
                                       22
                                              +301
                                                                                 SS
                                                                                        68.9
Copenhagen
                      153.4
                             347
                                    19
                                       51
                                                 1]
                                                              \{-18\}
                                                                      i 20
                                                                               PKP<sub>2</sub>
                                              -
Helwan
                             275
                     154.8
                                    19
                                        56
                                             (+
                                                                           35 PKP2
Stonyhurst
                      156.0
                                  i 17
                                       56
                                                       44 12
                                                               SSP
                                                                                PKP
                      156 \cdot 3
Bucharest
                             314
                                  e 19
                                       20 7
                                              -361
                                                                                        50.9
Potsdam
                      156 \cdot 3
                             344
                                  e 20
                                       10
                                              +14]
                                                                                      e 63.9
De Bilt
                      157.9
                             355
                                 e 19
                                       56 a
                                              -2]
                                                                SS
                                                    e 44 26
                                                                      e 23 56
                                                                                 \mathbf{PP}
                      158.0
Prague
                                       37k PKP
                                                             \{+18\}
                                                     e 31 20
                                                                      e 37 38
                                                                                PPS
Ogyalla
                      158.4
                                                                                      e 50.9
Cheb
                      158.6
                             343
                                  e 19
                                       56?
                                                 3]
                                                                SS
                                                    e 44 36
                                                                      e 33 56?
                                                                                      e 71.9
Kew
                      158.6
                                       56
                                  i 19
                                                 31
                                                    e 37 38
                                                               PPS
                                                                      e 24 16
                                                                                 _{\rm PP}
                                                                                      e 54.9
Sofia
                     158.9
                                       56?
                                  e 19
                                                    e 30 56? {-11}
                                                                      e 44 56?
                                                                                 SS
                                                                                        51.4
                     159.0
Kalossa
                             328
                                  e 20
Uccle
                     159.3
                                  e 19
                                       58
                                                              PSKS
                                                                                 PP
Belgrade
                             320
                     159.4
                                  e 20
                                                      34
                                             +
                                                         31
                                                              SKSP
                                                                                 PP
                                                    e
                     160.6
                                 i 19 59 a
Stuttgart
                             345
                                                 3]
                                                                      i 20
                                                                               PKP.
                                             -
                                                                                      e 76.9
                     161.0
Strasbourg
                             348
                                  e 20
                                            [+
                                                 2]
                                                     i 30 56
                                                                      i 37
                                                                                _{\mathrm{PPS}}
                                                                                        65.9
                     161.3
Paris
                             359
                                  i 20
                                                1]
                                                                      e 24 16
                                                                                 _{\rm PP}
                                                                                        69.9
Triest
                     162.0
                                  e 20
                             333
                                       15
                                            [+12]
                     162 \cdot 1
Basle
                             347
                                  e 20
                                            [+
                                                                        20 53 PKP<sub>2</sub>
                                                4]
Zürich
                     162 \cdot 1
                             346
                                  e 20
                                                1]
                                            [ -
Neuchatel
                     162 \cdot 7
                             348
                                  e 22
                                       50
                                                                                          Married W.
Milan
                     163.7
                             342
                                 e 20
                                            [+
                                                                                 SS
                                                                        45 14
                                                                                        68.9
Clermont-Ferrand
                     164 4
                             357
                                                             \{+35\}
                                                         10
                                                                                        78.6
Florence
                                  i 20 10k [+
                     164 6
                              25
                                                    i 31 52
                                                4]
                                                                              PKP<sub>2</sub>
                                                              \{+16\}
Lisbon
                     167 \cdot 3
                              44
                                   20
                                       0k [-
                                                71
                                                      32
                                                          0
                                                              \{+10\}
                                                                              PKP<sub>2</sub>
                                                                                        78.0
                     168.7
Barcelona
                                  e21 48
                                                                                      e 51.9
Toledo
                     169.0
                              26
                                 e 20
                                        9
                                                      46 10
                                                0J
                                                               SSP
                                                                      i 21 22 PKP<sub>2</sub>
                                                                                        80.9
                                       8
Tortosa
                 E. 169·2
                                    20
                                            [-1]
                                                      31\ 15\ \{-44\}
                                                                                        79 \cdot 1
San Fernando
                 E. 170.5
                              45 e 20 18
                                            [+ 8]
                                                      27 58 [+46]
                                                                                 SS
                                                                       46 10
                                                                                        80.9
                     171.5
Granada
                             32 i 20 17
                                                      27 40 [+28]
                                            [+7]
                                                                     i 20 43 pPKP
                                                                                        81.8
Almeria
                     172.2
                             28
                                   20 21
                                            [+11]
                                                      39 24 PPS
                                                                       21 27 PKP<sub>2</sub>
                                                                                        82.4
  Additional readings :-
    Wellington P? = 3m.9s.?, sPZ = 3m.31s., iZ = 3m.53s. and 4m.6s., S = 6m.1s.?, sS? =
         6m.56s., P_cP_1 = 8m.11s., P_cS = 11m.11s., S_cS = 12m.20s.
    Apia iE = 7m.18s., iS?EN = 7m.24s., iN = 7m.27s.
    Brisbane iZ = 6m.1s.
    Riverview iE =6m.45s., iEN =10m.41s., and 11m.3s., iN =11m.48s.
    Honolulu e = 12m.48s., isS = 17m.35s., eSS = 20m.51s.
    Santa Barbara i=12m.55s.
    Pasadena ePKP.PKPZ = 38m.54s.
    Berkeley eSE = 23m.15s.
    Mount Wilson ePKKPZ = 30m.45s., iPKP,PKPZ = 39m.0s., ePKP,PKP,PKPZ =
         59m.31s.
    Palomar iZ = 13m.0s., ePKP,PKPZ = 38m.59s., ePKP,PKP,PKPZ = 59m.35s.
    Riverside iNZ=13m.1s., ePKKPZ=30m.46s., ePKP,PKPZ=38m.59s., ePKP,PKP.
         PKPZ = 59m.33s.
    Ukiah e = 28m.14s.
    Haiwee iZ = 13m.7s., ePKKPZ = 30m.48s., ePKP,PKPZ = 39m.56s.
    Tinemaha ePKP,PKPZ = 38m.53s., ePKP,PKP,PKPZ = 59m.39s.
    Tucson i = 15m.37s., e = 18m.3s., eS = 23m.20s., i = 24m.58s., eSS = 29m.12s., eSSS? = 25m.12s.
         30\text{m.}13\text{s.}, eSSS = 32\text{m.}56\text{s.}, e = 36\text{m.}23\text{s.}
    Salt Lake City eSSS = 34m.35s.
    Logan ipP=13m.52s., iPP=16m.37s., ipPP=17m.22s., e=28m.45s. and 31m.12s.,
         esSS = 31m.32s., e = 34m.36s.
    Sitka epP = 13m.40s., eSKS = 23m.34s., i = 24m.53s., eSS = 30m.33s., eSS = 31m.6s.,
         e = 37m.8s.
    Huancayo i = 14m.1s., e = 16m.48s., i = 17m.6s., e = 18m.43s., eS = 23m.57s., iSS = 18m.43s.
        30m.57s.
    Bozeman ePP = 17m.24s., e = 26m.16s. and 30m.20s., esSS = 31m.42s., eSSS = 35m.13s.
                                  Continued on next page.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

357

```
La Paz iPP = 17m.34s., iZ = 17m.51s., iPPP = 19m.44s., iPS = 26m.29s., iPPS = 26m.29s.
     26m.56s., SSN = 30m.56s., SSS = 35m.32s.
Saskatoon SS = 32m.56s.?.
St. Louis ePZ = 14m.27s., epPZ = 14m.56s., ePP?Z = 17m.56s., epPP?Z = 18m.48s.,
      eN = 21m.59s., eE = 22m.59s., eSKSE = 24m.47s., iSKSE = 24m.57s., esSKS?E = 24m.57s.
     25\text{m}.78., eSKKSE = 25\text{m}.278., isSPN = 28\text{m}.148., iSSE = 33\text{m}.268., iSSS = 37\text{m}.588.
     issse = 40m.21s., iE = 41m.13s.
Kodaikanal SS = 33m.44s.
Chicago e = 26 \text{m.} 45 \text{s.}, eSS = 34 \text{m.} 25 \text{s.}, eSSS = 38 \text{m.} 43 \text{s.}
Bombay PPPE = 22m.30s., SSN = 35m.55s., SSPE = 36m.29s., SSPN = 36m.41s.
New Delhi SN = 27m.58s., PSN = 29m.59s., PPSN = 31m.6s., SSN = 36m.49s.
San Juan ePP = 20m.5s., e = 27m.2s. and 40m.30s.
Philadelphia e = 33m.30s., eSS = 35m.45s., e = 38m.58s. and 41m.9s.
Ottawa PP = 19m.56s., SN = 28m.8s.?, SS = 36m.32s., SSS = 40m.56s.
Fordham ePP = 20 \text{m.} 23 \text{s.}, i = 20 \text{m.} 43 \text{s.}, iSKKS = 27 \text{m.} 3 \text{s.}, iSS = 36 \text{m.} 33 \text{s.}
Fort de France e = 25m.2s. and 28m.52s.
Harvard ePP = 20m.32s., e = 21m.8s., eSKKS? = 27m.12s., eSS = 37m.20s.
Weston ePKP = 18m.57s., ePP = 20m.25s., e = 24m.12s., eSKKS = 27m.18s., eSS = 27m.18s.
     36m.41s.
Seven Falls SS = 37m.41s., e = 45m.50s.?.
Bermuda e = 37m.21s.
Scoresby Sund 19m.44s., 24m.20s.?, and 40m.15s.
Upsala eN = 38m.56s.7, eSSE = 42m.31s., eSS?N = 42m.56s.?, eSSS = 47m.56s.?,
     eE = 52m.56s.?.
Bergen iZ = 20m.1s., eZ = 20m.47s., eE = 25m.41s., eN = 33m.31s.
Copenhagen 19m.56s., 20m.2s., 23m.39s., 29m.30s., and 33m.36s.
Helwan PPZ = 24m.14s.
Stonyhurst 7 = 20 \text{m.} 36 \text{s.}, iS = 20 \text{m.} 48 \text{s.}, iSS = 21 \text{m.} 48 \text{s.}, iSSS = 21 \text{m.} 10 \text{s.}, i = 21 \text{m.} 44 \text{s.},
     and 22m.5s., e = 23m.26s., 24m.39s., eSKS = 42m.26s., PKKP = 45m.15s., PS =
     47m.51s., PKKS = 48m.26s., PPP<sub>2</sub> = 51m.22s., SSS = 59m.52s., phases wrongly
     identified.
Prague ePP=24m.34s., eSKS=27m.50s.7, ePPP=28m.2s., ePPP (\triangle > 180^{\circ}) =
     32m.44s., eSKKS (\triangle,>180°) = 34m.38s.?, eSS = 44m.20s.?, eSSS = 50m.44s.?.
Kew iZ = 23m.48s., eEZ = 33m.12s., eN = 33m.56s.?, eE = 44m.26s.?.
Sofia ePPE = 24m.26s., eE = 34m.35s.
Uccle eN = 20m.6s., iSSE = 44m.38s., iSSSE = 50m.52s.
Belgrade i = 20 \text{m.} 58 \text{s.} and 21 \text{m.} 21 \text{s.}, e = 31 \text{m.} 27 \text{s.}
Stuttgart ePPZ = 24m.14s., iPPZ = 24m.47s., ePPP = 32m.18s., e = 34m,26s.?, ePPSZ =
     38m.1s., eSS = 44m.51s., eSSS = 51m.32s.
Strasbourg iPKP_2? = 21m.14s., iPP = 24m.40s., i = 31m.39s.
Basle e = 25 \text{m.6s.} and 29 \text{m.33s.}
Florence iPPE = 24m.50s., iPSKSN = 35m.23s., iSSE = 45m.36s., iSSSN = 51m.55s.
Lisbon PKPE = 20m.31s., PKPN = 20m.49s., iPKP<sub>2</sub>Z = 21m.30s., PPZ = 24m.52s.,
     iPPE = 25m.4s., PPN = 25m.11s., iPPZ = 25m.19s., SKSPE = 35m.39s., SSN =
     45m.57s., N = 55m.14s.?, and 68m.2s.?, Z = 69m.50s.?.
Toledo pPKP = 20m.30s., iPP = 25m.10s.
Tortosa PKP<sub>2</sub>E = 20m.40s., PPE = 24m.20s., PPPE = 28m.5s.
San Fernando PPEN = 25m.38s.
Granada iPKP<sub>2</sub> = 21m.53s., pPKP<sub>2</sub> = 22m.1s., iPP = 25m.32s., pPP = 25m.52s., sPP =
     26m.1s., pPPP = 29m.49s., sSKKS = 33m.36s., SS = 46m.36s., SSS = 53m.40s.
    Q = 73m.50s.?.
Almeria pPKP = 20m.46s., PP = 25m.23s., P? = 29m.17s., P<sub>c</sub>P = 30m.32s., P<sub>c</sub>S =
    34m.41s., S = 37m.16s., SS = 41m.14s., SS = 46m.26s.?
Long waves were also recorded at Montezuma and Cape Girardeau.
```

Sept. 14d. Readings also at 0h. (Stuttgart, Mount Wilson, Tucson, Riverside, Tinemaha, Arapuni, Auckland, Wellington (2), Christchurch, Riverview, Brisbane, and near Tananarive), 2h. (near Tuai and Arapuni), 3h. (Jena, Strasbourg, near Zürich, Basle, Stuttgart, Ravensburg, and Ebingen), 4h. (Tinemaha, Tucson, La Paz, and Stuttgart (4)), 7h. (near Stalinabad and Tashkent), 8h. (Stuttgart), 9h. (Palomar (2), Haiwee, Tinemaha (2), Riverside (2), Mount Wilson (2), Pasadena, Tucson (2), Christchurch, Wellington, and Tuai), 10h. (Stuttgart, Wellington, Auckland, and Arapuni), 11h. (Pasadena, Mount Wilson, Tinemaha, Palomar (2), Tucson (2), and St. Louis), 14h. (Auckland (2), Tuai (3), Wellington, Christchurch, Arapuni, Brisbane, Riverview (2), Sydney, Stuttgart, De Bilt, Paris, Kew, Uccle, Tucson, Santa Clara, Pasadena, and near Fort de France), 15h. (Riverview, Arapuni, Wellington (2), Auckland, Stuttgart, Kew, Clermont-Ferrand, Florence, San Fernando, Almeria, Harvard, St. Louis, Palomar (2), Tinemaha (2), Tucson, Mount Wilson (2), Pasadena, near Branner, Berkeley, Lick, and Fresno), 16h. (San Francisco and Huancayo), 17h. (Palomar and Tucson), 18h. (Auckland and Wellington), 19h. (near Branner), 20h. (Palomar, Tucson, Pasadena, Mount Wilson, Riverview, New Plymouth, Wellington (2)), 21h. (Clermont-Ferrand, Stuttgart, and near Strasbourg).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

358

Sept. 15d. 23h. Undetermined shock.

Suva 23m.0s.?. Arapuni S = 28m.30s., L? = 33m.18s. Auckland S? = 28m.35s., L = 32m. Wellington S = 29m.35s., R = 32m.?. Christchurch S = 29m.41s., Q = 30m.53s., R = 32m.39s. Riverview iN = 30m.43s., eN = 33m.29s., iN = 33m.39s. Mount Wilson ePZ = 37m.50s. Pasadena ePZ = 37m.51s., eLZ = 65m. Palomar ePZ = 37m.52s. Tinemaha ePZ = 37m.53s. Tucson eP = 38m.11s. Stuttgart eZ = 41m.10s.

Sept. 15d. Readings also at 1h. (Santa Clara), 2h. (Riverview, Auckland, Mount Wilson, Tucson, and Palomar), 4h. (near Bogota), 6h. (Stuttgart, Christchurch, Auckland, Wellington, Arapuni, Suva, and Riverview), 7h. (Stuttgart and near Santa Clara), 8h. (Palomar and Tucson), 9h. (Stuttgart, Tucson, Haiwee, Mount Wilson, Riverview, Auckland, near Tuai, near Toledo, Almeria, and Granada), 10h. (Palomar and Tucson), 11h. (Riverview, Auckland, and Suva), 13h. (Santa Clara), 14h. (Riverview, Christchurch, Wellington, Auckland, Suva, and near Tuai), 15h. (Riverview, Arapuni, Auckland, Christchurch, Wellington, Tuai, and Suva), 18h. (Stuttgart (2), Mount Wilson, Tinemaha (3), Palomar (3), Tucson (2), Auckland, Wellington, Christchurch, Riverview, Suva, La Paz, and Bogota), 20h. (Cheb), 21h. (Stuttgart, Riverview, Christchurch, Arapuni, Auckland, Wellington, and Suva), 22h. (Florence), 23h. (Stuttgart).

Sept. 16d. 0h. 7m. 24s. Epicentre 55°·1S. 158°·5E. (as on Sept. 6d.).

A = -.5348, B = +.2107, C = -.8183;  $\delta \neq +2$ ; h = -7; D = +.367, E = +.930; G = +.761, H = -.300, K = -.575.

	$\triangle$ A	z. P.	O-C.	s. o-c.	Supp.	L.
Christchurch Wellington New Plymouth Arapuni Tuai	17·5 19·1 20·6	m. s. 14 3 30 15 4 6 12 (4 31) 12 1 36 15 4 43	8. - 2 - 1 + 4	m. s. s. e 6 15 $-$ 3 7 26 $+$ 5 - $        -$	m. s. 6 55 SS — — —	8·2 10·6 8·6 11·2
Auckland Riverview Calcutta N. Huancayo Bombay	$\begin{array}{cccc} 21.9 & 3 \\ 97.6 & 2 \\ 99.3 & 1 \end{array}$	38 i 4 6 46 i 4 57a 27 e 17 14 35 —	PP	4 51 P i 9 5 +11 e 24 23 [+ 9] e 24 38 [+14] i 24 51 [+10]	e 25 13 S e 25 43 S i 25 59 S	11·1 e 46·7
Pasadena Mount Wilson z. Palomar z. Riverside N. Tinemaha	113.8 113.8 114.0	64 e 19 37 64 e 19 38 66 e 19 37 64 e 19 40 62 i 19 42	PP PP PP	e 29 36? PS		e 51.6
Tucson Tashkent Sitka San Juan Helwan	$122 \cdot 2 2 124 \cdot 3 130 \cdot 2 1$	70 i 29 20 97 e 19 4 36 e 20 48 19 e 22 40 58 19 30	PS [+ 7] PP PKS [+ 9]	$egin{array}{ccccc} \mathbf{e} & 40 & 52 & \mathbf{SSS} \\ & 26 & 9 & [+12] \\ \mathbf{e} & 30 & 52 & \mathbf{PS} \\ \mathbf{e} & 33 & 1 & \mathbf{PPS} \\ \mathbf{i} & 28 & 57 & \{+6\} \end{array}$	e 20 27 PP e 37 23 SS e 48 46 ? 23 3 PKS	e 53·3 e 61·9 e 70·2
Bermuda Fordham Florence San Fernando Chur	$143 \cdot 1 \\ 156 \cdot 1 & 2 \\ 158 \cdot 6 & 2$	08 e 22 14 39 e 23 1 56 i 20 40 5 e 20 12 61 e 20 45	PP PKS [+44] [+13] [+45]	i 30 54 {+ 2}	e 47 6 ? i 23 59 PP e 44 44 SS	e 68·1 e 74·6 e 78·9 86·6
Tortosa E. Zürich Stuttgart Basle Clermont-Ferrand	$159.8 2 \\ 160.2 2 \\ 160.4 2$	35 i 21 47 30 e 20 22k 35 e 20 6 30 e 20 49 19 i 19 59	$[+22] \\ [+5] \\ [+48] \\ [-4]$	i 38 55 PPS e 31 18? {+ 5} =	i 44 40 SS e 24 29 PP	e 92·6 — e 80·6
De Bilt E. Uccle Paris Kew	$ \begin{array}{cccc} 163.9 & 2 \\ 164.0 & 2 \end{array} $	73 — 36 e 21 5 58 e 21 5 35 e 25 4	PP	i 31 43 {+10} e 24 52 PP e 32 1 {+28} e 32 0 {+13}	e 30 24 ? ? e 24 45 PP e 47 46 SS	e 92·6 e 93·6 e 87·6

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

359

NOTES TO SEPTEMBER 16d. 0h. 7m. 24s.

Additional readings and notes:— New Plymouth gives P as SS?. Huancayo e = 18m.26s. and 32m.56s. Bombay iEN = 27m.33s. Tucson e = 33m.7s. and 37m.2s. Tashkent ePS = 30m.33s. Florence iSSE = 45m.46s. Tortosa eE = 65m.25s. Stuttgart ePKP₂Z = 20m.46s. Clermont-Ferrand ePKP₂ = 21m.10s. Kew ePPZ = 28m.15s., eSKKS = 35m.36s., eSSS? = 51m.26s., phases wrongly identified. Long waves were also recorded at Ukiah, Logan, Chicago, La Paz, Toledo, Stonyhurst, and Tananarive.

Sept. 16d. 7h. 52m. 21s. Epicentre 36° ON. 117° W. (as on 1939 Jan. 7d.).

Epicentre 36°01'N. 117°56'W. (Pasadena).

8*

Additional readings :— Palomar iZ = 52s. Berkeley ePN = 1m.13s. Tucson i = 2m.12s.

Sept. 16d. 12h. Pacific.

```
Christchurch S = 50 \text{m.} 58 \text{s.}, Q = 52 \text{m.} 37 \text{s.}, R = 55 \text{m.} 41 \text{s.}
Tuai P=51m.44s., S=55m.46s.
Auckland i = 51m.54s., S? = 52m.17s., i = 53m.27s., L = 56m.
Arapuni S? = 53m.0s.?, e = 55m.0s.?.
Wellington i = 53m.12s.?, S = 54m.35s.?, P_cS = 55m.30s., SS? = 56m.25s., i = 57m.25s.,
    R = 58m.
Brisbane iPZ = 53m.22s., iE = 53m.46s., iZ = 56m.35s.
Riverview iP?EZ = 54m.1s.a, iE = 57m.22s. and 58m.35s., iN = 58m.41s. and 61m.15s.
Sydney e = 54m.48s.?
Apia e = 55m.0s.?, 56m.48s.?, and 59m.54s.?, eE = 75m.?.
Mount Wilson ePZ = 60m.21s., eZ = 63m.34s.
Pasadena ePZ = 60m.21s., eZ = 63m.32s., eLZ = 87m.
Palomar ePZ = 60m.22s., eZ = 63m.36s.
Haiwee ePZ = 60m.27s., eZ = 63m.51s.
Tinemaha ePZ = 60m.29s., eZ = 63m.43s.
Tucson iP = 60m.37s., i = 63m.52s., eL = 91m.12s.
Tashkent eP=68m.33s., ePKP=72m.23s., ePP=73m.20s., eSKS=78m.57s.
Stuttgart eZ = 71m.30s. and 76m.0s., e = 92m.18s., and 95m.42s.?
Victoria eN = 72m.4s., e = 75m.16s., L = 94m.
Bombay eE = 77m.40s., and 78m.5s., iE = 79m.26s., eE = 81m.18s. and 81m.58s.
Long waves were also recorded at New Plymouth, Huancayo, La Paz, Harvard, and
    other European stations.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

Sept. 16d. Readings also at 0h. (Christchurch, Wellington, Sydney, Fresno (2), and Tucson), 3h. (Mount Wilson, Pasadena, Tucson, and Palomar), 5h. (Clermont-Ferrand, Ebingen, Basle, near Stuttgart, and Zürich), 6h. (Ebingen and near Stuttgart (2)), 7h. (Ebingen, Stuttgart, Basle (2), near Zürich (2), and Wellington), 8h. (near Fresno), 10h. (Mount Wilson, Pasadena, Palomar, Tucson, and Tinemaha), 11h. (Stuttgart, near Basle, and Zürich), 17h. (Ebingen, Jena, Ravensburg, Strasbourg, near Stuttgart, and Zürich), 18h. (Stuttgart), 21h. (Wellington and Auckland), 22h. (Christchurch and Riverview), 23h. (Arapuni, Auckland, Christchurch, Wellington, Riverview, and near Bogota).

360

Sept. 17d. 3h. 39m. 15s. Epicentre 39°·0N. 15°·2E. Depth of focus 0·040. (as on 1938 April 13d.).

Epicentre 39°-5N. 15°-5E. (Strasbourg). Depth 270 kms.

$$A = +.7519$$
,  $B = +.2043$ ,  $C = +.6268$ ;  $\delta = -3$ ;  $h = -1$ ;  $D = +.262$ ,  $E = -.965$ ;  $G = +.605$ ,  $H = +.164$ ,  $K = -.779$ .

	Λ	Az.	P.	0 - C.	s.	0-C.	Suj	pp.	L.
	۰	0	m. s.	8.	m. s.	s.	m. s.	CHOCKES	m.
Florence	5.7	328	i 1 27	+ 1	i 2 29	- 4	i 1 38	pP	i 3.2
Triest	6.7	352	e 1 38	0	i 2 48	- 7	-	_	_
Sofia	$7 \cdot 2$	55	e 1 45?	+ 1	e 2 56	-10		-	: <del>-:</del>
Milan	7.8	327	e 1 56	+ 4	e 3 24	+4	-		-
Chur	8.9	334	e 2 7	$^{+}_{+}$ $^{4}_{2}$	e 3 45	+ 1		-	_
Zürich	9.7	332	e 2 16k	+ 1	e 3 56	- 6			_
Bucharest	9.8	53	-		3 45	-19	-		
Neuchatel	10.0	326	e 2 19	0	-			<del></del>	-
Stuttgart z.	10.7	338	e 2 26	- 2			e 3 52	8	3
Strasbourg	11.0	333	e 2 38	+ 7	( <del></del>	-	e 3 23	Ą	_
Prague	11.1	357		-	e 4 257	- 8	<del>2</del>		-
Clermont-Ferrand	11.2	311	i 2 38	+ 4			<del></del>		_
Jena E.	12.2	349	e 2 45	- 1	-		i 2 50	$\mathbf{PP}$	1
Toledo	14.9	280	i 3 27	+ 8	_		i 6 17	SS	
Copenhagen	16.8	354	3 39	- 1			-		-

Florence also gives iS N = 2m.52s.

```
Sept. 17d. 4h. Undetermined shock.
```

```
Suva eP=15m.45s., ePP=17m.47s., ePPP=18m.17s., iSS=25m.52s., eL=27m. Wellington PP=24m.2s., PcPZ=24m.38s., S=28m.20s., SS=30m.28s., i=32m.11s., R=33m.?. Auckland P?=26m.15s.?, S?=29m.30s., L=31m. Brisbane iE=26m.41s., iN=27m.43s., eE=27m.49s., iZ=27m.56s., iN=30m.3s., eN=32m.14s.
```

New Plymouth S? = 27m.?. Riverview iP?EZ = 27m.31s., iZ = 28m.43s., iS?E = 31m.19s., iZ = 31m.25s., iEN = 32m.39s., eLN = 33.7m.

Arapuni e = 30m.0s.

Christchurch i = 32m.45s., R = 35m.3s.

Pasadena iZ = 35m.33s. and 36m.46s., eLZ = 64m.42s. Mount Wilson eZ = 35m.34s., iZ = 36m.47s. and 54m.32s.

Palomar iZ = 35m.35s. and 36m.49s.

Tinemaha eZ = 35m.41s. and 36m.54s.

Tucson eP = 35m.57s., e = 37m.7s. and 67m.15s. Stuttgart eZ = 42m.33s., 42m.40s., and 43m.53s.

De Bilt eZ = 42m.36s. and 43m.50s., eL = 103m.

Long waves were also recorded at St. Louis, Harvard, Huancayo, and at other European stations.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

361

Sept. 17d. 6h. 47m. 21s. Epicentre 48°.2N. 9°.0E. (as on July 22d.).

Sept. 17d. 10h. 9m. 31s. Epicentre 14°·7S. 167°·3E. Depth of focus 0·010. (as on 1942 June 3d.).

Epicentre 14°·5S. 167°E. (U.S.C.G.S.) 16°S. 170°E. (Pasadena) 15°·5S. 168°E. (Wellington)

$$A = -.9440$$
,  $B = +.2127$ ,  $C = -.2522$ ;  $\delta = -2$ ;  $h = +6$ ;  $D = +.220$ ,  $E = +.976$ ;  $G = +.246$ ,  $H = -.055$ ,  $K = -.968$ .

		Δ	Az.	P.	O – C.	S. m. s.	o –c.	m. s.	pp.	L. m.
Suva Brisbane Apia Auckland Riverview		$\begin{array}{c} & & \circ \\ 11 \cdot 2 \\ 18 \cdot 4 \\ 20 \cdot 3 \\ 23 \cdot 1 \\ 24 \cdot 0 \end{array}$	$^{\circ}_{109}_{224}_{90}_{164}_{215}$	m. s. i 3 47 i 4 10 i 4 34 4 57 i 5 8 a	+ 4 - 1 + 2	3 55 i 7 33 i 8 18 i 9 1 i 9 15	+ 5 + 11 + 3 + 1	e 5 51 e 5 42 i 5 36	pP PPP pP	$12.0 \\ 13.8 \\ 12.4$
Sydney Arapuni Tuai Wellington Christchurch		$24.0 \\ 24.4 \\ 25.5 \\ 27.3 \\ 29.1$	215 $164$ $161$ $168$ $173$	e 4 23 e 2 59 5 20 5 34 i 5 51	- 1 - 3 - 3	10 53 i 10 3	sss - 5	e 4 29 - 5 59 9 50	PP Q	14·5 12·0
Honolulu Perth Misima Hikone Kobe		49·5 49·8 56·4 57·8 57·8	$\begin{array}{r} 44 \\ 240 \\ 332 \\ 330 \\ 329 \end{array}$	e 11 16 e 9 37 9 49 9 44	PPP + 3 + 5	e 15 44 i 15 39 17 43 17 32	$     \begin{array}{r}         + 3 \\         - 7 \\         + 10 \\         - 1     \end{array} $	e 16 31 i 18 29		e 20·2
Kôti Sendai Mizusawa Sapporo Ukiah		57·8 58·2 58·9 62·2 84·0	326 336 337 340 49	9 44 9 45 9 48 10 15 e 12 39	$-{1\atop -}{3\atop +}{1\atop { m pP}}$	16 35 17 42 19 56 e 22 30	$-{}^{6}_{S_{c}S}$	e 9 52 e 28 5	P SS	e 35·0
Berkeley Santa Clara Santa Barbara Calcutta Sitka		84·1 84·2 84·7 85·7 85·8	49 49 53 294 27	i 12 22 e 12 37 e 12 25 e 12 54	+ 1 pP + 1 pP	i 22 32 e 22 45 i 22 43 e 22 44	+ 8 [ 0]	i 23 50 e 28 26	PS SS	e 35·0
Pasadena Mount Wilson La Jolla College Riverside	z.	85·8 85·9 86·1 86·3 86·4	53 53 55 17 53	-		e 22 23 e 22 42	$\frac{?[-20]}{-\frac{16}{16}}$	i 12 56 e 15 52 i 30 31	PP PP — PKKP	e 35·4
Palomar Haiwee Tinemaha Victoria Tucson	z. z.	86·5 86·8 86·8 91·0	55 51 51 38 57	i 12 43 a e 12 35 i 12 34 i 12 55	$^{+10}_{+1}$ $^{-1}_{-1}$	e 22 58 e 23 39	The second secon	e 38 37 e 30 29 i 30 30 e 24 56	P'P' PKKP PKKP	
Bombay Saskatoon Rapid City Tashkent Stalinabad	N.	98·8 99·1 99·7 105·4 105·6	287 38 46 309 306	e 17 12	<u>-</u>	23 55 e 23 56 e 23 13 i 24 31 e 24 36	[-3] $[-50]$ $[+1]$	24_48 	<b>s</b>	e 53·2

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

362

```
Az.
                       Δ
                                    Ρ.
                                          O-C.
                                                                        Supp.
                                                                                     L.
                                  m. s.
                                            8.
                                                    m. s.
                                                                    m.
                                                                                     m.
St. Louis
                     108 - 7
                             53
                                e 17 41
                                                              61
                                                                    28
                                                                             SP
 Chicago
                     110.8
                             49
                                                                    29
                                                                       27
                                                                            PPS
Huancayo
                     112.5
                            109
                                                            _{\mathrm{PS}}
                                                                  e 34 46
                                                                             SS
                                                                                   e 45.8
 Pittsburgh
                     116.6
                             51
                                                       18) SKKS
                                                                                   e 26·3
Philadelphia
                     120 \cdot 3
                             52
                                                       25
                                                                             _{\rm PS}
                                                                                   e 47.9
Seven Falls
                     122 \cdot 2
                             42
                                                                             _{\mathrm{SP}}
                                                                                    55.5
San Juan
                     128.8
                             77
                                           \mathbf{PP}
                                                                                  e 39·0
Ksara
                     132 \cdot 3
                           302 e 19
                                          [+ 4] e 35 22
                                                                  e 22 26
                                                                           PKS
                                      .0
                                     9
Copenhagen
                     134.8
                            341
                                  19
                                          [+1]
                                                   28 24 SKKS
                                                                           PKS
Bucharest
                    135.8
                            320
                                  21 29?
                                           PP
                                                                                    55.5
Helwan
                 N. 136.8
                           298
                                                                  e 40 56
                                                                            SSP
Prague
                    138.4
                           334
                                           PP
                                e 21 53
                                                 e 28 48 SKKS
Belgrade
                    138 - 9
                           324
                                e 22 45
                                          PKS
                                                 e 28 53 SKKS
                                                                  e 23 44
Jena
                    138.9
                           336 e 19 11
                                          [ -
                                             5]
De Bilt
                    140.0
                           343 i 19 15
                                          [-3]
                                                                            PP
Uccle
                    141.4
                           344
                                e 19 18
                                                  i 29
                                                          SKKS
                                                                            PP
Stuttgart
                           337 e 19 16
                    141.6
                                                 i 29
                                             4]
                                          -
                                                          SKKS
                                                                  e 22 47
                                                                            PP
                                                                                  e 56.8
Kew
                               i 19 16
                    142.0
                           347
                                             5]
                                          772
                                                                            PP
                                                                                  e 55.5
Triest
                    142.0
                           330
                                e 19 31
                                          [+10]
                                                       8 SKKS
Strasbourg
                    142 \cdot 2
                           338
                                e 19 32
                                          [+11]
                                                                  e 20 48
Zürich
                    142.9
                           336
                               e 19 20k
Chur
                    143.0
                           335 e 19 21a
Basle
                    143.2
                           337
                                e 19 21
                                                                        2 pPKP
Neuchatel
                    143.9
                           337 e 19 23
                                          [ —
                                             1)
Milan
                    144.2
                           333 e 19 27
                                                   29 19 SKKS
                                          [+]
                                             31
                                                                    41 59
Florence
                    144.5
                           330
                               i 19 26
                                                 1 29 23 SKKS
                                          +
                                             1]
                                                                  i 19 49 pPKP
                                                                                  e 62.6
Clermont-Ferrand
                    146.3
                                i 19 31a
                           340
                                         [+
                                             2]
                                                                  e 26 15
                                                                          PPP
                                                                                   69.5
Tortosa
                E. 151.6
                           338
                                19 46
                                                 1 30 2 SKKS
                                         [+
                                             91
                                                                  i 23 56
                                                                           SKP
Toledo
                          345
                    153.8
                               e 19 40
                                                 e 26 38
                                             01
                                                         [ + 2]
                                                                  i 20
                                                                      4 pPKP
                                                                                  104.5
Almeria
                    155.9
                           340 i 19 41
                                             2]
                                                   27
                                                         psks
                                                                   20 11 pPKP
                                                                                   80.5
San Fernando
                E. 157.6
                           347 e 19 50
                                             5]
  Additional readings:
    Brisbane iPPE =4m.25s., iZ =4m.29s., iPPN =4m.50s., iSZ =7m.36s.
    Auckland i = 6m.27s., S? = 9m.56s., i = 10m.59s. and 11m.44s.
    Riverview iPP = 5m.52s., iZ = 9m.28s., isSN = 9m.54s., isSE = 9m.57s., iSS?EN =
        10m.34s., iZ = 10m.55s., iS_cSEN = 16m.5s.
    Wellington sP? = 6m.22s., iZ = 6m.45s., PcPZ = 7m.39s., sPcPZ = 8m.17s., S = 11m.19s.,
        sS = 12m.24s., i = 13m.2s.
    Perth i=17m.19s., 20m.9s., 21m.24s., 21m.54s., and 25m.24s.
   Pasadena iZ = 12m.39s., eZ = 13m.4s., iZ = 15m.5s.a, and 16m.26s., ePKP,PKPZ =
        38m.37s.
   Mount Wilson iZ = 13m.35s., iPKKPZ = 30m.32s., ePKP,PKPZ = 38m.37s.
   Riverside iZ = 13m.37s., ePKP,PKPZ = 38m.29s.
   Palomar eZ = 16m.28s.
   Tucson e=13m.57s., 15m.47s. and 17m.4s., eSKS=23m.16s., eSS=29m.45s., isSS=
        30m.22s... ePKP.PKP = 38m.22s...
   Bombay PSE = 26m.24s., iE = 30m.30s.
   St. Louis eSKKSE = 25m.34s., eSN = 26m.18s., esSN = 27m.17s.
   Chicago e = 34m.12s.
   Philadelphia e = 26m.35s., eS? = 27m.51s., e = 35m.55s.
   San Juan i = 22m.16s., e = 29m.7s.
   De Bilt iPPP = 25m.50s.
   Stuttgart eSS = 34m.23s.?
   Kew ePKS?Z = 20m.5s., eSSS? = 41m.45s.
   Florence iPKPZ = 22m.40s., iPPE = 24m.34s.
                                                       \epsilonSKPE = 25m.49s.,
                                                                            iskkse =
       31m.42s., ePPSE = 35m.39s., iSSE = 41m.15s.,
   Clermont-Ferrand eSKP = 22m.55s., iPSKP = 32m.46s.
   Toledo SS = 43m.25s.
   Almeria sPKP = 20m.20s., pPKP<sub>1</sub> = 21m.26s., PP = 24m.22s., pPP = 24m.42s.,
       sSKS = 27m.11s., iSKKS = 30m.23s., SKSP = 34m.3s., SS = 44m.15s., SSS = 50m.40s.
   Long waves were also recorded at Harvard.
```

Sept. 17d. Readings also at 0h. (Tucson, Florence, Uccle, De Bilt, and Stuttgart), 1h. (Pasadena, Mount Wilson, Tucson, Riverside, Palomar, Tinemaha, Kew. Arapuni, Auckland, and Wellington), 2h. (Kew), 4h. (Sofia and Riverview), 5h. (Stuttgart), 6h. (Palomar, Tucson, and near Balboa Heights), 14h. (Stuttgart, Wellington, Brisbane, Riverview, Arapuni, Calcutta, and Tashkent), 15h. (De Bilt, Uccle, Kew, and Florence).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

# 1943

363

Sept. 18d. Readings at 4h. (Suva and Auckland), 5h. (Stuttgart and Riverview), 10h. (Jena, near Basle, Zürich, Strasbourg, Ravensburg, Stuttgart, and Ebingen), 11h. (Calcutta), 14h. (Tinemaha, Tucson, Suva, and near Andijan), 15h. (Palomar, Tucson, and Tinemaha), 16h. (near Florence), 17h. (Stuttgart and Zürich), 20h. (Stuttgart, Uccle, Florence (2), Calcutta, and Bogota), 21h. (Kew and De Bilt).

Sept. 19d. 4h. 47m. 46s. Epicentre 28°.5S. 113°.5W. (as on 1940 Jan. 2d.).

A = -.3510, B = -.8072, C = -.4747;  $\delta = +11$ ;  $\hbar = +2$ ; D = -.917, E = +.399; G = +.189, H = +.435, K = -.880.

	0.11							
	$\triangle$ Az.		O-C.	Cartagor (China Constant)	O-C.	Sur	p.	L.
	0 0	m. s.	8.	m. s.	s.	m. s.		m.
Huancayo	39.2 73		PP	i 13 26	- 6	( ) <del>4   1   1</del>	_	e 16.3
La Paz z. La Plata E.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\frac{-6}{+50}$	i 13 52 15 38	$^{-43}_{+9}$	77550		19·8 20·9
Bogota	50.2 56	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-6	10 00	1 0	i 8 58	$\mathbf{P}$	20 0
Arapuni	58.7 241		_	19 27	+56	· · · ·	-	27.7
			0.0000000000000000000000000000000000000	5.20200440	117212			A.F. A.
Wellington	58.7 237	13 29	PPP	18 21	+15		(1000)	27.2
Auckland Christchurch	59·7 241 59·8 233	13 34	PPP	$\frac{18}{22} \frac{44}{29}$	$^{+25}_{\mathrm{SS}}$	24 39	Q	$\frac{30 \cdot 2}{27 \cdot 2}$
Tucson	60.5 2	i 10 15	+ 1	e 18 30	+ 1	e 12 22	$\mathbf{PP}$	e 26.5
La Jolla z.	61.1 357	e 10 27	+ 9	_	-		~ ·	
	01 0 05	10.00						
Palomar Z.	$61.6 357 \\ 62.3 356$	e 10 23 e 10 26	+ 1	-	-			
Riverside z. Mount Wilson z.	62.5 356		ň				333	
Pasadena	62.5 356		+ 1	e 19 10	+16		-	e 26.8
Rio de Janeiro N.			S	(e 18 55)	-3		_	e 25·7
			296.000	18=80				000-000-000
Haiwee z.	64·4 355 65·3 50		$^{+}_{+11}$	e 19 25	- 4		-	e 29·4
San Juan Tinemaha z.		e 10 48	$\stackrel{+}{+}\stackrel{1}{1}$	6 15 25				e 29·4
Santa Clara	66.0 352	e 11 9	+19	e 20 9	+31			e 32·5
Fort de France	66.4 57	e 10 40	-13	_	-	-	1000	
	00 - 0-0	1 11 50		1.10 45	W 247			- 20 0
Berkeley Ukiah	$66.5 352 \\ 67.9 352$	The state of the s	+64	i 19 45 e 20 18	$^{+}_{+17}$			e 32·0 e 32·4
Salt Lake City	68.9 2	A STATE OF THE STA	- 4	e 20 10	T 17	_		e 33.8
Logan	69.9 2		+28	e 20 32	+ 8	e 25 12	SS	e 30·6
St. Louis	70.2 19		- 3	i 20 31	$^{+}_{+}$ $^{8}_{3}$	e 21 5	PS	
	ma 0 0			- 01 01	1.41	~ 90 19	SS	a 91.0
Bozeman Pittsburgh N.W.	73·9 3 75·3 26		- 9	e 21 21 i 21 25	$^{+11}_{-1}$	e 26 12	88	e 31·9
Bermuda	76.1 41		-	e 21 47	+12			e 32·3
Philadelphia	76.9 30	e 15 30	$\mathbf{PP}$	e 21 46		-	-	e 32·4
Victoria	77.2 353	e 12 20?	+23	e 21 54	$^{+}_{+}$ $^{3}_{7}$			$38 \cdot 2$
Fordham	78.2 30	e 12 8	+ 5	e 21 56	- 1	32	950	e 33·2
Riverview	78.8 237	e 12 8	т_0	e 22 12	+ 8	e 22 50	PS	e 36.8
Harvard	80.5 31	e 12 23	+ 8			e 17 23	PPP	e 45·2
Seven Falls	84.5 28	e 12 32	- 4		3 TO 10 TO 1	(27 14?)		27.2
Sitka	$87 \cdot 2  348$	e 22 58	sks	e 23 34	+ 6	e 29 44	SS	e 41·2
College	96.8 346		-	e 24 19	[+ 8]	- market	-	e 46-5
Granada	121.7 62		$\mathbf{PP}$	31 17	PPS			58.8
Almeria	122.5 62		-	e 31 28	PPS	_		59.2
Kew	126.0 44		-	e 27 14?	$\{-40\}$		-	e 52·4
Clermont-Ferrand	128.0 52			e 31 45	$_{\rm PS}$	-		e 61·2
Uccle	128.8 46		<u> </u>	e 27 20?	$\{-52\}$	e 31 32?	PS	e 61·2
De Bilt	129.4 43		-	e 39 14?	SS	C 01 01.		e 62.2
Stuttgart	132.1 48	e 19 14	[-2]			e 31 44?	PS	e 65.2
Copenhagen	133.1 38	23 41	PKS			2 2 2 2 2 3 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2		
Florence	133.7 55	e 19 58	[ +39]	i 31 39	$_{\mathrm{PS}}$	i 39 42	SS	e 64·5
Helwan z.	149.4 79	19 50	[+4]		****	e 23 29	$\mathbf{PP}$	
Ksara	153.3 71	e 20 22	[+30]	e 33 55	PS		-	
Calcutta N.	the second of the second					e 39 51	3	e 90·9
Tashkent	167.0 351	e 20 12	[+5]	e 27 57	[+47]		~~	-
Bombay E.	168.8 213			_		e 45 58	SS	

For Notes see next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

364

NOTES TO SEPTEMBER 19d. 4h. 47m. 46s.

```
Additional readings :--
  Huancayo e = 9m.34s.
  La Plata S?N =15m.14s.?.
  Wellington PPP = 14m.4s., i = 15m.59s. and 17m.5s., Q = 24m.14s.?
  San Juan e = 11m.30s, and 23m.36s.
  Berkeley eSN = 19m.14s., eE = 31m.45s., eN = 31m.49s.
  St. Louis esSN = 21m.16s.
  Riverview eE = 27m.33s.
  Sitka e = 33m.25s.
  Granada SKKS =32m.9s.
  Almeria i = 31m.40s.
  Clermont-Ferrand i = 40m.57s., e = 59m.44s.?.
  Uccle eN = 38m.32s.
  Florence iPKPE = 23m.12s.
                                 iSKPE = 25m.56s., iPPPE = 27m.52s.
      36m.28s., eSSN = 41m.31s., eSSSE = 46m.56s., phases wrongly identified.
  Helwan eZ = 20m.5s, and 21m.2s.
  Tashkent ePS = 30m.44s., ePPS = 31m.56s.
  Long waves were also recorded at Honolulu, Paris, and San Fernando.
```

#### Sept. 19d. 6h. Pacific.

```
Tuai P = 0m.37s., i = 0m.53s., S = 2m.24s., i = 2m.29s., L = 3m.13s.
Auckland P = 0m.56s., S = 2m.40s., L = 3m.30s.
Wellington P = 1m.30s., S = 3m.29s., L = 4m.30s.
Arapuni S = 3m.30s.?
La Jolla eP = 10m.48s., i = 11m.6s.
Mount Wilson iPNZ = 10m.49s.a, iZ = 11m.3s., iNZ = 11m.7s.
Palomar iPZ = 10m.50s.a. eZ = 10m.59s. iZ = 11m.3s., 11m.8s., and 11m.30s.
Pasadena iPZ = 10m.50s.a, iZ = 11m.7s., eLZ = 36.4m.
Tinemaha eP = 10m.50s.a, iZ = 11m.12s. and 11m.17s., eZ = 14m.25s.
Riverside iP = 10m.51s., i = 11m.5s.
Haiwee eP = 10m.56s.
Tucson iP = 11m.7s., i = 11m.25s. and 11m.36s., e = 14m.44s. and 21m.12s.
Apia eN = 11m.30s.?, eE = 14m.54s.?, eN = 15m.36s.?.
Copenhagen ePKP = 18m.12s.
Stuttgart eZ = 18m.12s, and 22m.32s.
Granada PKP = 19m.7s., and 20m.15s., PP = 24m.4s.
Long waves were also recorded at Christchurch, Riverview, Harvard, and Clermont-
    Ferrand.
```

Sept. 19d. Readings also at 0h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Tucson, Tinemaha, Copenhagen, and Stuttgart), 1h. (near Istanbul (2)), 5h. (Fort de France), 9h. (Haiwee, La Jolla, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Clermont-Ferrand, Stuttgart, Basle, Chur, Neuchatel, Zürich, near Berkeley, Branner, and Lick, not all one shock), 11h. (near La Paz, Riverview, Auckland, and Wellington), 12h. (Stuttgart), 14h. (Andijan, near Stalinabad, and Tashkent), 15h. (Mount Wilson, Pasadena, Palomar, Tucson, and Tinemaha), 20h. (Riverview).

Sept. 20d. 0h. 53m. 46s. Epicentre 20° 4N. 108° 8W. (as on 1943 June 1d.).

Epicentre 19°.5N. 109°W. (U.S.C.G.S.)

```
A = -.3023, B = -.8880, C = +.3465; \delta = -1; h = +5; D = -.947, E = +.322; G = -.112, H = -.328, K = -.938.
```

		$\triangle$ Az.		Ρ,	O-C.	S.	O-C.	Supp.		L.	
				m. s.	8.	m. s.	s.	m. s.		m.	
Tucson		11.9	352	i 2 58	+ 4	e 5 35	+26	: <del>: - : :</del> :	-	e 6-4	
La Jolla	Z.	14.5	330	e 3 29	+ 1	_		_	_	-	
Palomar	Z.	14.8	333	e 3 32a	0	-	-	-	-		
Riverside	88	15.5	333	e 3 43	+ 1	-	*****		_		
Mount Wilson		16.0	331	e 3 50	+ 2	-	-		_		
Pasadena		16.0	331	i 3 49k	+ 1		÷ 100 100 1	-		e 7·0	
Santa Barbara		17.0	329	e 4 2	+ 1			_	_	(2000) ===	
Haiwee	Z.	17.6	335	e 4 10	+ 2	_	-	-	-	-	
Tinemaha	Z.	18.6	337	i 4 20 a	- 1	-	-	-	***	_	
Fresno	N.	18.9	333	e 5 27	+63	_	11111		-		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943 365

	△ <b>A</b> :	200 61	O – C.	V21.00 (100 to 100 to 1	-C. Su	pp. L. m.
Lick Santa Clara Salt Lake City Branner E. Berkeley	$20.2 \ 33$ $20.4 \ 33$ $20.5 \ 35$ $20.6 \ 32$ $21.0 \ 33$	e 4 49 i 5 2 e 4 44 i 4 48	$^{+10}_{+21}$ $^{+2}_{+5}$ $^{-1}$	i 9 1 +	- 36 - 25 - 23 - 23	e 10.9
Logan Ukiah Cape Girardeau E. Ferndale St. Louis	21.4 35 $22.4 33$ $23.8 4$ $24.0 33$ $24.2 3$	e 5 2 l e 5 29 l e 9 14 ?	+ 4 + 14 + 3 - 3	i 9 21 + e 9 51 +	e 6 3 -17 - 23 -18	PP e 10·4 e 11·5
Bozeman Chicago Columbia Victoria Victoria Pittsburgh N.W.	25.3   35 $27.9   3$ $28.1   5$ $30.3   34$ $31.7   4$	e 5 50 e 8 41 6 12	+ 2 - 4 - 3	e 10 39 + e 10 51 +	-13 — -12 — -13 — -13 —	- e 13·2 - e 11·7 - e 15·9 - 15·2 
Saskatoon Philadelphia Fordham Ottawa Harvard	31·7 34·7 36·0 36·9 38·2 4	8 e 7 2 7 14	PP - 3 + 2 + 1	e 11 46 + e 12 26 + e 12 53 + e 13 26 + e 13 26	- 9 e 13 28 - 9 e 8 20 - 4 15 44? - 9 e 8 36	SS e 14.6 PP e 19.5 SSS e 17.2 PP i 20.4
San Juan Seven Falls Bermuda Sitka Honolulu	40·2 8 40·7 4 41·0 6 41·5 33 45·7 28	e 9 33 e 9 22	PP PP	e 14 4 +	e 10 30 SS 21 40 -5 39	PP e 16.8 - 25.2 - e 17.0 e 17.9 e 19.8
Huancayo La Paz Uccle Florence	$\begin{array}{cccc} 46 \cdot 1 & 13 \\ 54 \cdot 2 & 12 \\ 88 \cdot 1 & 3 \\ 95 \cdot 8 & 3 \end{array}$	9 23	- 6	e 23 10 [-	SS — 	S e 41·2 SS e 43·5

Additional readings :-

Tucson i = 3m.18s, and 3m.48s.

Palomar iZ = 3m.38s, and 3m.48s.

Pasadena iZ = 3m.58s. Branner iPN =4m.528.

Berkeley eN = 4m.58s., iSZ = 9m.6s.

St. Louis ePZ = 5m.20s., iPZ = 5m.24s., ipPZ = 5m.35s., iSN = 9m.51s., isSE = 10m.4s., iE = 11m.0s.

Fordham eSS = 15m.32s.

Harvard i = 7m.36s., eSSS = 16m.38s., eScS = 17m.39s.

Uccle eSSN = 29m.26s.?, eSSSEN = 36m.30s.

Long waves were also recorded at Riverview, Seattle, and other European stations.

Sept. 20d. Readings also at 1h. (Stuttgart, Tucson, Mount Wilson, Palomar, and Riverside), 3h. (Haiwee, Mount Wilson, Pasadena, Tucson, Palomar, Tinemaha, Stuttgart, and Sofia), 4h. (Mount Wilson, Pasadena, Palomar, and Tucson), 6h. (near La Paz), 8h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, Tinemaha, La Paz, and Bogota), 9h. (near Bogota), 10h. (Mount Wilson, Tucson, and Palomar), 13h. (Auckland, Christchurch, Wellington, Riverview, and Suva), 16h. (near La Paz), 22h. (Auckland, Christchurch, Wellington, Riverview, Suva, and near Mizusawa), 23h. (Fort de France and Stuttgart).

Sept. 21d. Readings at 1h. (Wellington), 3h. (near Tuai, Auckland, Christchurch, Wellington, Arapuni, Suva, Riverview, Haiwee, Mount Wilson, Pasadena, Tucson, Palomar, Riverside, Tinemaha, Bacau, Bucharest, Campulung, and near Focsani), 4h. (near Tuai, Auckland, Wellington (2), Christchurch, Arapuni, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and St. Louis), 5h. (Granada), 6h. (La Paz and Kew), 12h. (near La Paz), 15h. (Fort de France and near Stalinabad), 18h. (Stuttgart, Riverview, Auckland, and Wellington), 19h. (Auckland and Wellington).

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

366

Sept. 22d. 12h. 4m. 44s. Epicentre 38°·0S. 73°·0W. Depth of focus 0·010.

(as on 1940 Dec. 2d.).

Intensity VIII at San Carlos, Chillan, and Burnes. Macroseismic radius 250km. Macroseismic epicentre 36°·7S. 72°·0W.

F. Greve.
"Determinacion del Coeficiente de Seguridad antisismico para la diferentes Zonas de Chile," p. 15.

Annales de l'Institut de Physique du Globe de Strasbourg. Strasbourg 1951, 2e partie,

Séismologie tomes VII-VIII, p. 37.  $A = +.2310, B = -.7555, C = -.6131; \delta = +3; h = -1;$ 

Additional readings:— La Plata PN = 3m.4s.?. Fort de France e = 18m.47s. Pasadena iZ = 12m.38s.

48m.0s.

Sept. 22d. 23h. Pacific shock. No determination available.

```
Epicentre 36°S. 177°W. Magnitude 6½ (Wellington). 34°S. 179°W. Magnitude 6½ (Pasadena).
```

Apia iP = 23m.10s., eS? = 27m.28s., eSS? = 29m.0s.Sydney eP = 23m.24s., eS = 28m.12s., eL = 31m.0s.? Brisbane iPN = 23m.35s., iPZ = 23m.38s., iPPN = 24m.3s., iPPE = 24m.7s., iSN = 28m.5s., iSSE = 28m.53s., iLE = 30m.49s.Riverview iPE = 23m.39s., iE = 24m.12s., iSE = 27m.52s., iE = 28m.27s. and 28m.53s.iN = 28m.58s., eLZ = 30m.18s.Honolulu iP = 28m.25s., e = 31m.15s., iS = 36m.35s., eL = 44m.35s.Kodaikanal eE = 28m.37s. Harvard e = 30m.7s., i = 37m.15s., 39m.5s., 40m.25s. and 49m.8s., eL = 80m.Pittsburgh iNW = 30m.51s., eNW = 42m.25s. La Jolla eP = 31m.12s. Santa Barbara ePZ = 31m.13s. Pasadena iP = 31m.13s.k, ePPZ = 34m.38s., iPPZ = 34m.45s., eSKSEN = 41m.48s.eQEN = 54m.46s.Mount Wilson ePNZ = 31m.14s. Riverside iP = 31m.15s. Palomar iPZ = 31m.16s., iZ = 31m.29s.Santa Clara ePZ = 31m.17s., eSE = 41m.59s., eE = 57m.26s. Haiwee eP = 31m.21s. Tinemaha ePNZ = 31m.22s., ePPZ = 34m.56s.La Paz eP? = 31m.22s., iSKKS = 42m.35s., iPPS = 44m.47s., LE = 67m.42s. Berkeley iPN = 31m.26s., eE = 41m.56s., eN = 41m.59s.Huancayo eP = 31m.28s., ePP = 35m.25s., e = 37m.46s. and 42m.22s., eS = 42m.53s.e = 44m.16s., eSS = 48m.53s., e = 53m.5s., eL = 61m.19s.Tucson iP = 31m.29s., i = 31m.42s., ePP = 35m.8s., eSKS = 42m.15s., eS = 42m.49s.ePS = 43m.58s., e = 44m.27s., eSS = 48m.41s., eL = 58m.39s.Fordham e = 31m.56s. and 38m.44s. Colombo eE = 32m.?. Wellington S? = 33m.53s. Arapuni e = 34m.?. La Plata N = 34m.48s., and 41m.48s., E = 42m.0s., LN = 59m.Perth P=35m.0s., PP=36m.25s., PPP=37m.5s., S=41m.25s., SS=44m.10s., L=

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

367

```
Sitka e = 35m.20s., ePP = 35m.53s., eSKS = 42m.39s., eS? = 43m.34s., e = 45m.10s.
     eSS = 50m.16s., e = 55m.13s., eL = 58m.10s.
Ukiah e=35m.32s., ePPP?=36m.42s., eSKS?=41m.50s., eS=42m.14s., e=52m.15s.,
     eL = 55m.18s.
Rapid City e = 35m.48s.?, eSS = 50m.18s.?, eL = 69m.7s.
Logan ePP=36m.4s., eSKS=42m.34s., e=55m.48s., eL=60m.14s.
College ePP = 36m.45s., e = 42m.37s. and 54m.37s., eL = 63m.24s.
Barcelona e = 36m.46s., i = 42m.8s., eL = 111m.13s.
St. Louis ePKP?Z = 36m.47s., epPKP?Z = 37m.10s., eSKSE = 43m.13s., eSKKS?E = 44m.31s., eSN = 45m.13s., iPS?E = 46m.51s., ePPS?N = 48m.4s., eSSN = 51m.58s.,
     iSSSN = 57m.11s., eN = 62m.39s.
Saskatoon e = 37m.0s.? and 46m.21s., L = 69m.
Rio de Janeiro ePN =37m.0s., eSN =46m.47s.
Fort de France ePKP = 37m.6s.
Ottawa PKPZ = 37m.11s., PPE = 39m.0s.?, SN = 47m.0s.?, PSE = 48m.36s.?, SS =
     56m.0s. ?, eL = 72m.
Andijan PKP = 37m.21s.
Seven Falls PKP = 37m.21s., PP = 39m.24s. 7, PS = 49m.24s. 7, SS = 56m.54s., L = 87m.
Tashkent ePKP = 37m.25s., ePP = 39m.32s., ePKS = 40m.50s. ?, eSKS = 44m.15s. ?.
     ePPS = 51m.28s. ?
Sverdlovsk ePKP = 37m.44s., iPKS = 41m.23s., eSSS = 63m.54s.
Chicago ePP? = 37m.45s., eS = 45m.31s., ePS = 47m.27s., eSS = 53m.27s., eSS = 53m.27s.,
     57m.49s., eL = 65m.37s.
Basle ePKP = 37m.50s.
Grozny PKP = 37m.50s.
Lisbon PKPZ = 37m.50s., PKP2Z = 39m.44s., PKP2E = 39m.52s.?, PPZ = 43m.37s.,
    PPE = 43m.43s.?. SKSPE = 54m.14s.?, E = 57m.2s., SSE = 64m.40s., SSN = 57m.2s.
     64m.48s.?, LN = 103.8m.
Ksara ePKP? = 38m.9s., e = 41m.38s.
Helwan PKPZ = 38m.10s., PKKPZ = 38m.30s., pPKKPZ = 39m.19s., PPZ = 41m.54s.
Copenhagen PKP = 38m.12s., 38m.33s., 42m.31s., and 46m.47s.
Triest e = 38m.14s., i = 49m.52s., eL = 94m.
Scoresby Sund PKP = 38m.16s., 41m.0s.?, 42m.6s.?, and 59m.30s., L = 90m.
Stuttgart ePKP?Z = 38m.18s., ePKP,?Z = 39m.23s. and 39m.35s., ePPZ = 43m.40s.,
    ePPP_2? = 49m.34s., eQ = 97m.30s.
Zürich ePKP = 38m.18s.
Chur ePKP = 38m.20s.
Milan ePKPZ = 38m.20s.
Kew iZ = 38m.20s. and 38m.41s., eZ = 48m.26s., eE = 49m.21s., eNZ = 50m.25s., e =
     56m.41s., eZ = 60m.27s., eEZ = 63m.21s., eZ = 70m.18s., eL = 96m.
De Bilt ePKP = 38m.20s. a, ePP = 43m.10s., iSS = 63m.20s., eL = 95m.
Uccle ePKPZ = 38m.20s., ePPNZ = 43m.46s., eSKKS?N = 49m.42s., ePSKS?N =
     53m.12s., eN = 56m.17s.
Bombay PPE = 38m.21s., PPPE = 41m.4s., SKKSE = 44m.47s., PSE = 47m.46s., PPSE =
     49m.13s.
Paris ePKP = 38m.22s., eL = 107m.
Toledo iPKPZ = 38m.27s., ePKP<sub>1</sub> = 39m.50s., ePP = 43m.49s., SS = 65m.13s., L = 105m.
Clermont-Ferrand ePKP = 38m.28s., i = 39m.29s., e = 47m.43s., eSSS = 69m.24s., eL =
    96m.
Sofia eEN = 38m.30s.?
San Juan ePP = 38m.32s., e = 40m.29s., eSKS = 44m.10s., ePS = 48m.20s., e = 55m.25s.,
    eL = 68m.37s.
Almeria iPKP=38m.33s., pPKP=39m.20s., PKP=40m.18s., pPKP=40m.54s.,
    sPKP<sub>2</sub>=41m.22s., iPP=43m.57s., SKS=45m.12s., pSKS=46m.18s., PPP=
    47m.58s., pPPP=48m.55s., SKSP=53m.49s., PSKS=54m.8s., PPS=58m.10s.,
    sSS = 66m.1s., SSS = 71m.42s., L = 105m.
Florence iPKPZ = 38m.33s., iPKP<sub>2</sub>E = 39m.25s., ePPE = 43m.12s., ePPPE = 46m.36s.,
    iSKKSN = 49m.55s., iPSKSE = 53m.49s., iSSE = 63m.30s., iSSSE = 71m.13s.
    eLN = 93m.22s.
San Fernando ePKP?Z=38m.34s., ePP?Z=43m.56s., eSKS?E=45m.7s., eSS?E=
    65m.42s., LE = 101m.30s.
Granada iPKP = 38m.42s., pPKP = 39m.26s., PKP = 40m.8s., pPKP = 40m.36s.,
    sPKP<sub>2</sub>=41m.0s., SKP=41m.50s., iPP=43m.50s., ipPP=44m.24s., sPP=
    44m.53s., PPP=48m.6s., pPPP=49m.0s., eSKKS=49m.9s., esSKSP=55m.45s.,
    sSS = 65m.42s.
Philadelphia e = 38m.43s., ePP = 38m.59s., eSKS? = 44m.9s., ePS = 48m.34s., eSS? =
    54m.23s., e = 59m.11s., eL = 69m.8s.
Bermuda ePP = 39m.13s., e = 47m.50s., ePS? = 49m.13s., eSS = 56m.38s., eL = 70m.43s.
Calcutta eN = 39m.31s. and 45m.46s., iN = 51m.36s.
Halifax e = 40m. ?, L = 84m.
Bucharest eEN = 42m.0s.?
Salt Lake City eSKS = 42m.34s., eL = 59m.30s.
Victoria e = 42m.36s., L = 64m.
Bozeman eSKS = 42m.48s., eL = 61m.10s.
Prague e = 47m.30s.?, 56m., 67m., 69m., and 71m., eZ = 102m.
Columbia ePS =47m.40s., e =59m.33s., eL =70m.55s.
Aberdeen eE = 48m.47s., eN = 50m.57s., LEN = 103m.50s.
Cheb e = 49m.24s. and 58m.22s., eL = 105m.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

368

Stonyhurst e=50m.57s., i=52m.16s., ePKP=54m.8s., iPPP=59m.20s., iSKS=61m.52s., e=65m. and 69m.,  $ePPP_2=72m.$ , iSSP=73m.9s., iSSS=77m.23s., eL=92m.,  $eSSS_2=102m.$ Tananarive EN=57m.12s., 69m.37s., and 78m.20s.Ferndale eE=59m.0s.?
Upsala eN=68m. and 76m.9s., eLE=98m.Long waves were also recorded at Ivigtut and other European stations.

Sept. 22d. Readings also at 6h. (near La Paz and near Triest), 9h. (Triest and near Berkeley), 15h. (near Fort de France), 16h. (Riverview), 23h. (Haiwee, Pasadena, Palomar, Riverside, Mount Wilson, Tucson, Tinemaha, Sitka, Potsdam, and near Fort de France).

Sept. 23d. 12h. Mexico.

Tucson iP = 38m.7s., iS = 38m.24s., iL = 39m.17s.

Palomar ePZ = 38m.34s., iSZ = 40m.14s.

La Jolla ePZ = 38m.50s., e = 39m.3s., iS = 40m.7s.

Riverside ePEZ = 39m.10s., iS = 40m.37s.

Mount Wilson ePZ = 39m.22s., iSZ = 40m.59s.

Tinemaha ePZ = 39m.29s., eSZ = 42m.16s.

Pasadena iNZ = 39m.40s., eSN = 40m.48s.

Tacubaya eE = 41m.1s., i = 45m.51s.

St. Louis iPZ = 42m.2s., eSE = 45m.54s., eLE = 47m.57s.

Long waves were also recorded at Santa Clara, Cape Girardeau, Salt Lake City, Logan, Bozeman, Chicago, and Philadelphia.

Sept. 23d. 15h. 0m. 32s. Epicentre 14°-8N. 91°-5W.

Felt strongly in the State of Chiapas. Epicentre: 15.5N. 92°.2W. 15°N. 92°W. (U.S.C.G.S.).

Catalogo compendiado de temblores, 1941-44, Mexico, 1945, p. 52.

A = -.0253, B = -.9669, C = +.2538; S = -5; h = +6; D = -1.000, E = +.026; G = -.007, H = -.254, K = -.967.

		Λ	Az.	P.	O-C.	s.	O-C.	Suj	pp.	L.
		0	0	m. s.	s.	m. s.	s.	m. s.		m.
Oaxaca	N.	5.5	294	i 1 28	+ 3	-	-	<del></del> -	_	_
Vera Cruz	N.	6.2	315	e 1 38	+ 3		-		_	
Merida	N.	6.3	16	i 1 49	P*	200		-	-	_
Puebla	E.	7 - 7	304	e 1 58	+ 2		-			-
Tacubaya	N.	8.7	303	e 2 14	+ 4	-				-
Guadalajara	E.	12.7	299	e 3 2	- 3		-		-	-
Balboa Heights		13.1	115	e 3 18	+ 8		-	•	-	_
Mobile		16.1	10	3 58	+ 9		_		777	- 0 0
Port au Prince		18.7	76	e 4 9	-13	7 39	- 9	4 26	$\mathbf{PP}$	e 8·3
Bogota		19.9	118	e 4 42	+ 6	e 7 36	-39	i 4 53	$\mathbf{PP}$	e 12·4
Columbia		21.3	24	i 4 55	+ 5	i 8 51	+ 8	i 5 28	PPP	e 11.6
Cape Girardeau	E.	22.5	15	e 5 5	+ 3	e 9 6	+1			
St. Louis		23.8	2	i 5 17	+ 2	i 9 26	- 2	i 5 52	$\mathbf{PP}$	1 10.1
San Juan		24.6	77	i 5 26	+ 3	i 9 43	+ 1		-	i 10.7
Tucson		24.7	319	i 5 25	+ 1	i 9 45	+ î	5 45	$\mathbf{PP}$	e 12·6
Chicago		27.1	5	i 5 45	- 1	i 10 16	- 8	i 6 22	$\mathbf{PP}$	e 11·2
Pittsburgh		27.5	20	i 5 51	+ 1	i 10 24	- 6	e 6 21	$\mathbf{PP}$	
New Kensington		27.6	20	e 6 11	+20	e 10 52	+20			e 14·7
Philadelphia		28.9	27	i64	+ 1	i 10 48	- 5	i 6 57	$\mathbf{PP}$	i 12.0
Fort de France		$29 \cdot 3$	87	e 6 29	+23	e 10 56	- 3	—	-	
La Jolla		29.5	313	i 6 6	- 2	e 10 55	- 7	i 9 14	$P_{e}P$	-
Palomar	Z.	29.5	314	16 7 z		i 12 46	$S_{e}P$	i 9 12	$P_{\mathbf{c}}P$	100
Bermuda		30.0	50	e 6 24	+12	e 11 32	+22		_	e 13·1
Fordham		30.2	28	i 6 14	. 0	i 11 1	-12	i 12 27	SS	
Riverside		30.2	314	i 6 13	- 1	e 11 10	- 3	i 9 14	$P_{\mathbf{c}}P$	
N.F		90.0	914	i 6 20 a	. 0	i 12 51	$S_{c}P$	i 9 17	$P_cP$	
Mount Wilson		30.8	314	1 6 20 a		i 11 20	- 3	i 9 16	PcP	e 13·3
Pasadena Panid City		30.8	$\frac{314}{344}$	e 6 203	1.000	e 11 73	16	e 12 25?	SS	
Rapid City		31.1	148	16 98	+ 6		.1. 4		PP	i 13.9
Huancayo		31.3	330	i 6 28 e 6 24	T 0	i 11 32 e 11 15	-16	e 7 34 e 12 39	ŝŝ	e 16.7
Salt Lake City		01.0	000	C O 24		0 11 10	11000000	× ** **	~~~	10 TO

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943	369

	Δ	Az. P.	O-C.	s. o-c.	Supp.	L.
Haiwee Logan Santa Barbara Weston Harvard	$31.8 \\ 32.1 \\ 32.1 \\ 32.5 \\ 32.5$	o m. s.  318 i 6 28  331 i 6 30  313 i 6 29  28 i 6 36  28 i 6 36 a	s. - 1 - 2 + 2 + 2	m. s. s. i 12 53 SeP i 11 37 - 6 e 11 37 - 6 e 11 46 - 3 i 11 46 - 3	m. s. i 9 18 Pel i 7 37 PP i 9 20 Pel e 7 56 PP i 7 54 PP	e 17.8
Tinemaha Fresno N. Ottawa Bozeman Santa Clara	$32.5 \\ 33.3 \\ 33.3 \\ 34.9 \\ 35.1$	319 6 34 a 317 i 7 2 20 6 42 336 e 6 55 316 i 6 58	$^{+21}_{+1}\\ ^{0}_{+1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i 8 10 PP e 7 42 PP 7 42 PP 8 16 PP	e 15·5
Branner Shawinigan Falls Berkeley Seven Falls Ukiah	$35.3 \\ 35.6 \\ 36.5 \\ 36.9$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 1 \\ 0 \\ + & 2 \\ - & 1 \\ - & 2 \end{array}$	e 12 28 - 5 12 31 - 2 i 12 34 - 4 12 48 - 3 i 12 52 - 6	8 28 PP i 13 16	19.5
Halifax Ferndale La Paz Saskatoon Seattle	$38.4 \\ 38.7 \\ 39.2 \\ 41.5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{r}       -49 \\       +1 \\       +1 \\       -5     \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 4 Pcl	P 19.8
Victoria Sitka Ivigtut La Plata E. N.	42.7 53.8 55.7 58.8 58.8 58.8	$egin{array}{cccccccccccccccccccccccccccccccccccc$	-10 +24 PPP - 4 - 4 + 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 40 SS i 19 4 ? 18 46? PP: 12 22? PP: 10 28 ?	e 24·8 e 22·7
College Scoresby Sund Lisbon San Fernando Stonyhurst	62·7 69·4 75·0 77·6 77·6	337 e 10 27 20 15 343 53 12 13 56 e 12 28 37 e 12 0	$^{-}_{\begin{subarray}{c} -2 \ PPP \ +28 \ +28 \ 0 \end{subarray}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 19 32 PP 24 34 SS 26 16 SS e 15 23 PP e 26 48 SS	34·4 37·0
Toledo Kew Granada Almeria Bergen	78·7 79·4 79·6 80·5 80·6	52 i 12 5 39 e 12 51 55 i 12 8 55 i 12 11 30 —	$     \begin{array}{r}         - 1 \\         + 42 \\         - 2 \\         - 4 \\         4     \end{array} $	e 21 55 - 8 e 22 31 + 21 22 11 - 1 22 21 - 1 e 22 58 PS	e 14 58 PF i 12 37 pP i 12 38 pP	37.4
Paris Tortosa E. Uccle De Bilt Clermont-Ferrand	81.6 82.0 82.3 82.5 82.7	42 e 12 20 50 e 11 43 39 e 12 21 38 i 12 25 a 45 i 12 26 a		e 22 22 -11 22 22 -15 e 22 28 -12 e 22 32 -10 e 22 34 -10	15 27 PF e 27 58 SS e 27 58 SS i 15 34 PF	e 38·5 e 38·5
Neuchatel Basle Copenhagen Stuttgart Zürich	85·0 85·2 85·6 85·9 85·9	43 e 12 32 42 e 12 38 33 e 12 41 41 i 12 41 a 42 e 12 42	- 6 - 1 - 2 - 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 13 7 8 15 57 PP i 13 10 pP e 13 10 pP	e 40·4
Upsala Chur Milan Potsdam Cheb	86.6 86.7 86.9 87.1 87.4	29 e 13 31 42 e 12 46 a 44 e 12 47 37 - 28?	$-{1 \atop -}{1 \atop 1} \atop -{22 \atop -}$	e 24 4? PS e 23 15 [+ 3] 24 40 PS i 23 17 [+ 2] 23 14 [- 3]	e 13 16 ? 15 17 ? i 23 55 ? e 16 28? PP	e 41·5
Prague Florence Triest Sofia Bucharest	88·7 88·8 89·9 97·4 98·3	38 e 11 58? 45 i 12 54 a 43	- 3 PP	e 23 22? [ - 3] e 23 14 [-11] i 23 8 [-24] = =	i 18 57 PPI	e 44.5 e 41.7
Wellington Christchurch Sverdlovsk Helwan Ksara	102.4 $104.3$ $105.0$ $109.3$ $110.4$	231 — 228 24 45 15 e 19 2 50 e 19 3 45 e 19 77	SKS PP PP	24 36 [- 3] (24 45) [- 3] e 33 19 SS e 25 0 [- 9] 28 45 PS	33 43 SSI e 28 28 PS	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

370

```
Az.
                                           0 - C.
                                                                          Supp.
                                                            O - C
                                                                                       L.
                                                     m. s.
                                             8.
                                                                      m. s.
                                                                                       m.
Riverview
                     120.7
                            239
                                             _{\rm PP}
                                                   i 25
                                                           [-6]
                                                                    i 30 18
                                                                               PS
                                                                                      55.5
Tashkent
                     121.4
                             16
                                 e 17 56
                                                   i 30
                                           [-60]
                                                              _{\rm PS}
                                                                      19 58
                                                                              \mathbf{P}\mathbf{P}
Andijan
                     122 \cdot 7
                             14
                                   20 13
                                                     32 18
                                             _{\mathrm{PP}}
                                                             PPS
Calcutta
                 N. 142.9
                                                     42
                                                             SSP
                                                                                    e 70·2
Bombay
                     143.1
                             24
                                   19 44
                                           [+ 8]
                                                     42
                                                             SSP
                                                                      23 16
                                                                             PKS
  Additional readings :-
    Port au Prince eS = 7m.14s.
    St. Louis iZ = 5m.40s., iSE = 9m.34s.
    Tucson i = 5m.39s., eS = 9m.32s.
    Philadelphia e = 6m.28s.
    La Jolla iS_cPZ = 12m.57s.
    Palomar iZ = 6m.31s.
    Fordham iPS = 13m.3s.
    Riverside iS_ePZ = 12m.48s.
    Pasadena iSSEN = 12m.0s., iS<sub>c</sub>PZ = 12m.51s., iS<sub>c</sub>SEN = 16m.46s.
    Logan i = 7m.8s., eS = 11m.32s.
    Santa Barbara iScPZ = 12m.55s., eScSNZ = 16m.54s.
    Weston e = 7m.0s., and 11m.36s.
    Harvard i = 8m.52s., iP_cP = 9m.30s., i = 12m.14s., iP_cS = 13m.10s., eSSS = 13m.56s.,
         e = 16m.52s., eS_cS = 17m.8s.
    Tinemaha iP_cPZ = 9m.21s., iS_cP = 12m.55s.
    Ottawa i = 7m.6s., PPP = 8m.0s., iZ = 12m.28s.
    Bozeman e = 12m.57s.
    Seven Falls SS = 14m.58s.?.
    Halifax SSS = 15m.22s.?.
    La Paz iSSZ = 16m.2s., S_cS = 17m.42s.
    Saskatoon SSS = 17m.28s.
    Sitka i = 17m.41s.
    La Plata E = 19m.40s.
    Scoresby Sund 20m.43s.
    Lisbon E = 14m.32s. and 21m.13s.
    San Fernando ePS?E = 22m.25s.
    Stonyhurst i = 12m.22s., 12m.59s., SKS = 21m.58s., iS_cS = 22m.10s., iPPS? = 23m.14s.,
         eSSS = 30m.7s.
    Kew ePPP?EN=16m.41s., eSKS=21m.57s., ePSE=23m.4s., eZ=25m.28s.?, eQEN
         =33m.28s.7.
    Granada sP = 13m.13s., PP = 15m.0s., pPP = 15m.10s., SS = 22m.45s., PSS = 24m.12s.
    Almeria PcP = 12m.15s., sP = 12m.53s., PP = 15m.39s., pPP = 16m.12s., sPP = 16m.23s.,
        PPP = 17m.48s., S = 22m.44s., pS = 23m.12s., sS = 23m.27s., SP = 23m.48s., PS = 23m.48s.
        24m.2s.
    Tortosa iP_cPE? = 12m.45s., PPPE = 17m.5s., SSE = 26m.37s.
    Uccle iEZ = 12m.53s., ePSE = 23m.42s., eE = 32m.24s., eN = 34m.29s.
    De Bilt iP = 12m.55s.k.
    Clermont-Ferrand ePS = 23m.12s. and 23m.26s.
    Copenhagen 23m.39s., 24m.22s.
    Stuttgart ePPZ=16m.8s., ePPPZ=17m.50s.,
                                                        esS? = 23m.53s., esp = 24m.26s.,
         eSS = 28m.52s.
    Potsdam eN = 23m.22s.
    Florence iSE = 24m.33s., ePSE = 25m.35s., iSSSE = 35m.34s.
    Christchurch PP = 27m.29s., SS = 37m.55s. Phases wrongly identified.
    Helwan eZ = 19m.40s.
    Riverview iSKKS?E = 27m.19s., eSS? = 37m.35s.
    Tashkent iPPS = 31m.49s.
    Bombay iE =37m.46s.
```

#### Sept. 23d. 15h. Undetermined shock.

```
Port au Prince eP = 31m.44s., iS = 32m.46s., i = 33m.11s., 33m.25s., and 33m.41s. San Juan e = 32m.0s. Bogota iP = 32m.4s., i = 32m.14s., and 33m.32s. Fort de France e = 32m.18s., eS<sub>g</sub>? = 33m.59s., e = 38m.36s. Balboa Heights i = 32m.23s., e = 34m.7s. Huancayo eP = 35m.21s., e = 35m.57s., i = 39m.41s., eL = 40m.46s. La Paz PZ = 36m.8s., SZ = 42m.8s., LZ = 47m.14s. St. Louis ePZ = 36m.38s. Tucson iP = 38m.5s., i = 38m.15s., e = 38m.50s. Riverside eZ? = 38m.43s., iZ = 38m.50s. and 39m.1s. Mount Wilson ePZ = 38m.54s., iNZ = 39m.5s. Pasadena ePZ = 38m.54s., iZ = 39m.10s. Haiwee iPZ = 39m.46s., iZ = 39m.10s. Haiwee iPZ = 39m.46s., iZ = 39m.57s. Stuttgart eZ = 41m.55s.
```

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

Sept. 23d. Readings also at 0h. (Santa Clara), 1h. (Triest, Bucharest, Stuttgart, Sofia, and Neuchatel), 3h. (Florence Triest, and Stuttgart), 4h. (near Fort de France), 5h. (Florence, Stuttgart, Helwan, and near Ksara), 6h. (near Andijan and Tashkent), 9h. (La Paz), 16h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Tucson, and Palomar), 23h. (Tortosa, near Bogota, near Berkeley, and Branner).

371

Sept. 24d. 2h. Pacific.

Riverview eP?Z=46m.32s., iSEN=50m.49s., iSS?N=51m.32s., eLEZ=53m.0s., iN = 62m.39s., eL = 68m.6s. (as two shocks). Arapuni e = 52m.42s.?, S? = 60m.30s.?, L = 61m.36s.Santa Barbara ePZ = 53m.40s. Pasadena iPZ = 53m.53s., iZ = 54m.8s., eLZ = 63m.23s. Mount Wilson ePZ = 53m.53s., iZ = 54m.15s., ePPZ = 57m.13s.Haiwee iPZ = 53m.57s. Riverside ePZ = 53m.57s., eZ = 54m.5s. and 54m.12s., ePPZ = 57m.18s. Tinemaha iPZ = 53m.57s., iZ = 54m.22s.Tucson iP =54m.18s. Wellington P? = 55m.40s., S = 58m.17s., R = 59m.42s.?. Christchurch P = 55m.55s., Q = 59m.5s., R = 60m.12s.?. St. Louis eZ = 60 m.7s., eL?N = 79 m.38s.Stuttgart eZ = 60m.36s. Clermont-Ferrand iP? =60m.52s., e=61m.36s. Toledo ePZ = 60m.58s., PP? = 61m.10s.Granada iZ = 61m.45s., and 62m.9s.

Sept. 24d. 6h. 43m. 31s. Epicentre 85° 0N. 10° 0E.

Long waves were also recorded at De Bilt and Florence.

Auckland S? = 61m.55s., L = 64m.

High latitude determination, marred by the anomalous readings at Irkutsk.

$$A = +.0864$$
,  $B = +.0152$ ,  $C = +.9961$ ;  $\delta = -9$ ;  $h = -14$ ;  $D = +.174$ ,  $E = -.985$ ;  $G = +.981$ ,  $H = +.173$ ,  $K = -.088$ .

	Δ	Az.	P. m. s.	O -C.	m. s.	o-c.	m. s.	p.	L. m.
Upsala Uccle Stuttgart Irkutsk Florence	25.3 34.4 36.4 38.6 41.4	171 187 181 80 178	i 5 29 e 6 52 e 7 9 e 9 17	- 1 + 1 + 1 7	e 9 56 e 12 25 e 12 53 e 16 29 e 17 27	+ 2 + 6 + 3 SS	e 8 29 ? e 14 48	ss	e 15·5 e 18·0
Toledo Tashkent Bozeman Granada Chicago	45·4 46·4 47·3 48·1 49·3	195 117 305 195 283	$\begin{array}{c} {\rm e} \ 8 \ 24 \\ 8 \ 30 \\ \hline - \\ {\rm e} \ 18 \ 45 \\ {\rm e} \ 10 \ 42 \\ \end{array}$	$+ \begin{array}{c} 2 \\ 0 \\ + \begin{array}{c} 2 \\ \end{array}$	e 15 19 e 15 44 e 19 34	$\frac{1}{+\frac{1}{13}}$	i = 29	PP	e 25·1 e 24·6
Pittsburgh N.W. St. Louis Tinemaha Haiwee Mount Wilson	49·9 52·6 56·3 57·2 59·1	274 285 312 311 311	e 9 44 e 9 51	$\begin{array}{c} \mathbf{PP} \\ - & 1 \\ - & 0 \\ - & 2 \end{array}$	i 16 15 e 16 40 —	+ 8 - 4 - =	e 20 15 - e 13 40	ss PP	e 22 <u>·4</u>
Pasadena Riverside Tucson	59·2 59·3 60·6	$\frac{311}{303}$	$\begin{array}{ccc} e & 10 & 3 \\ e & 10 & 7 \\ e & 10 & 12 \end{array}$	$\begin{array}{ccc} - & 2 \\ + & 1 \\ - & 3 \end{array}$			e 13 39 e 22 40	$\frac{PP}{SS}$	e 30·5 e 32·6

Additional readings:—
Upsala eE = 6h.43m.57s., eN = 6h.44m.2s.

Toledo i = 8m.35s. St. Louis eE = 18m.15s.

Mount Wilson iZ = 10m.10s. Long waves were also recorded at Scoresby Sund, Paris, and Kew.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

## 1943

372

Sept. 24d. 11h. 31m. 22s. Epicentre 36° 4N. 73° 5E.

Felt in North India.

"Annales de l'Institut de Physique du Globe de Strasbourg," 2e partie, Séismologie, tome VII, VIII, p. 37, Strasbourg 1950. Epicentre 36°·5N. 73°·0E., depth suggested 120 km.

A = +.2291, B = +.7736, C = +.5908;  $\delta = -1$ ; h = 0; D = +.959, E = -.284; G = +.168, H = +.566, K = -.807.

<del></del>				<b>2</b> 01,	* morpor	00, H = 7	- 300,	K =801	•	
The second second second		Δ.	Az.	m. s.	0 – C. s.	s. m. s.	O – C.	m. s.	pp.	L. m.
Stalinabad Tashkent Dehra Dun New Delhi Bombay	N. E.	4·3 5·9 7·2 8·4 17·4	$301 \\ 328 \\ 146 \\ 157 \\ 183$	i 1 15 i 1 35 i 2 2k e 2 10 a i 4 5	+ 7 + 4 P* + 4 - 1	$\begin{array}{c} 3 & 7 \\ \mathbf{i} & 3 & 14 \\ \mathbf{e} & 3 & 42 \\ \mathbf{i} & 7 & 16 \end{array}$	S* + 1 - 1 - 3	i 1 26 - 4 22	Pg	i 8·0
Calcutta Hyderabad Sverdlovsk Kodaikanal Irkutsk	N. E.	18.9 $19.4$ $22.2$ $26.3$ $26.9$	133 166 342 172 43	4 21 i 5 0 e 5 38	- 1 - 9 - 0 - 1	i 7 38 7 48 i 9 2 i 10 28 i 10 45	$-15 \\ -16 \\ + 2 \\ +17 \\ +25$	i <u>4</u> 31	PP	13:3
Colombo Ksara Helwan Bucharest Sofia	E. Z.	$29.9 \\ 30.8 \\ 35.7 \\ 36.5 \\ 38.7$	$\begin{array}{c} 168 \\ 277 \\ 273 \\ 299 \\ 296 \end{array}$	6 16 e 6 21 i 7 2k i 7 10 a i 7 31	$^{+}_{+}$ $^{1}_{0}$ $^{+}_{+}$ $^{1}_{4}$	11 57 14 20 —	+48 SS	e 13 14 9 29 i 9 20 ?	$\frac{SS}{PP}$	i 18·7 e 16·6
Belgrade Kalossa Upsala Prague Potsdam	E. E.	40·5 41·3 42·4 44·0 44·7	$300 \\ 304 \\ 323 \\ 309 \\ 312$	i 7 44 7 51 i 7 54 i 8 9k i 8 19	$\begin{array}{cccc} + & 2 \\ + & 2 \\ - & 4 \\ - & 2 \\ + & 3 \end{array}$	e 13 54 e 14 31 e 18 4 i 18 25	$^{+2}_{\overset{+11}{\mathrm{ss}}}$	i 9 18 i 9 28 i 10 3	PP PP	e 26.6 e 27.6 i 23.0 e 23.6
Copenhagen Triest Cheb Jena Kumamoto		44.9 45.1 45.3 45.8 46.6	317 303 309 310 77	i 8 18 a i 8 20 e 8 25 i 8 24 e 8 31	+ 4 - 1 - 1	i 14 59 i 15 0	+ 3 + 1 =	10 5 i 10 7 e 18 51 i 10 17	PP PP SS PP	e 28·6 e 23·6
Florence Stuttgart Chur Milan Zürich		47.2 47.6 47.7 48.2 48.3	300 307 305 303 306	i 8 38a i 8 39a e 8 39a i 8 44 e 8 43a	$\begin{array}{cccc} + & 2 & & \\ - & 0 & & \\ - & 0 & & \\ - & 2 & & \end{array}$	i 15 31 e 15 36 15 41	+ 2 + 1 - 2	i 9 10 i 10 32 e 10 39	PP PP PP	e 22·2 e 24·0 22·9
Strasbourg Bergen Kôti Basle Neuchatel		48.6 48.6 48.6 48.9 49.4	307 323 75 306 306	i 8 52 e 8 47 e 8 49 e 8 53	$+ \frac{5}{0}$	e 16 4	+15 =	i 11 16 e 20 28	PPP SSS	
De Bilt Uccle Nagano Paris Misima		$\begin{array}{r} 49.5 \\ 50.3 \\ 51.1 \\ 51.9 \\ 52.2 \end{array}$	$312 \\ 311 \\ 69 \\ 308 \\ 71$	1 8 55 a 1 8 59 a 8 46 1 9 11 9 12	$^{+}_{-}_{20}^{1}_{-}_{-}_{3}^{1}$	i 16 4 e 16 10 e 16 48	$^{+}_{-}^{2}_{\overline{3}}$	i 10 50 e 19 43	PP SS —	e 25.6 e 25.6 31.6
Clermont-Ferran Mizusawa Sendai Aberdeen Kew	e.	52.3 $52.4$ $52.5$ $52.8$ $53.0$	$304 \\ 65 \\ 66 \\ 319 \\ 313$	i 9 16 a e 9 19 i 9 21	$^{+}_{-}^{1}_{3}^{3}_{-}$	e 16 28 16 40 16 38 e 20 27 e 16 51	-12 - 2 - 5 - 5 + 1	e 20 51 — e 20 44	ss = ss	e 34·6 i 27·6 e 25·6
Stonyhurst Tortosa Scoresby Sund Almeria Toledo	Е.	53·7 55·7 57·9 59·3 59·3	316 299 338 296 300	i 9 39 i 10 2 i 10 6	$-\frac{1}{4}$	e 20 50 i 17 27 18 20 i 18 10 18 16	${}^{\mathrm{SS}}_{+\ 1}\ {}^{+\ 25}\ {}^{-\ 4}\ {}^{+\ 2}$	i 21 26 11 46 10 27 i 12 15	SSS PP PP PP	$   \begin{array}{r}     1 & 30 \cdot 0 \\     32 \cdot 1 \\     \hline     38 \cdot 5 \\     25 \cdot 1   \end{array} $
Granada San Fernando Seven Falls Saskatoon Ottawa		$60.0 \\ 62.2 \\ 90.9 \\ 91.8 \\ 94.0$	297 296 336 0 338	i 10 11 i 10 25 — e 13 22	- 1 - 1	i 19 10 18 53 e 24 2 e 23 50 [ e 23 567]	$^{+47}_{+2}$ $^{-1}_{+7}$ $^{-1}_{0}$	13 0 25 32 - c 17 14	PP SSS — PP	34·1 47·6 49·6 e 46·6

Continued on next page.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

373

```
P.
                               Az.
                                              O-C.
                                                                               Supp.
                                                                O-C.
                                                                                              L.
                                      m. s.
                                                 S.
                                                                           m. s.
                                                                                             m.
Victoria
                                10
                        94 \cdot 1
                                                                                             49.6
Chicago
                              346
                       100.3
St. Louis
                       103.8
                              347
                                                                                    PP
                                                 P
Tinemaha
                      106.1
                                                                           18 38
                                                                                    _{\rm PP}
Haiwee
                                                \mathbf{p}\mathbf{p}
                      107.1
Mount Wilson
                                                 P
                      108-9
Pasadena
                                   e 18 34
                                                PP
                      109.0
                                                                                  PKKP e 54.6
Riverside
                   z. 109·2
                                 9 e 18 35
                                                PP
                                                                         e 29 40 PKKP
Palomar
                  z. 109·9
                                 8 e 14 35
                                                P
                                                                         e 17 17
Tucson
                                 3 e 18 41
                      111.6
                                              [+ 5] e 21 51
                                                                 PPP
                                                                         e 28 48
                                                                                    _{\rm PS}
                                                                                          e 55·1
Bogota
                      129 \cdot 2
                              316 e 18 43
La Paz
                  z. 140·7
                              290 i 19 34
                                                                        i 22 34
                                                                                    \mathbf{PP}
                                                                                             72.6
Huancayo
                      142 \cdot 9
                              302 e 19 40
                                                                                           e 72.4
  Additional readings :-
    New Delhi iPN = 2m.13s.
    Bombay SSE = 7m.31s.
    Calcutta iP_cP = 10m.10s.
    Helwan P_eP = 7m.35s., eZ = 7m.56s., pP?Z = 8m.53s.
     Bucharest iEN =8m.2s., iE =8m.28s., iZ =8m.34s.
    Belgrade e = 10m.37s., eSS = 17m.8s.
    Upsala iSE = 13m.36s., iN = 17m.24s.
    Potsdam iPN = 8m.22s., ePPN = 10m.8s.
    Copenhagen 18m.20s.
    Jena iN =10m.23s., eN =18m.38s.?
    Florence iPPZ = 10m.42s., iPPPE = 11m.32s., isSE = 16m.49s., iSSE = 19m.14s.
    Stuttgart eP_cPZ = 9m.47s., eSS = 19m.18s.
    Zürich e = 9m.7s.
    Strasbourg eSS = 19m.36s.
    De Bilt ISS = 19m.48s.
    Uccle eSSE = 19m.54s.
    Mizusawa SE = 16m.45s.
    Kew iNZ = 17m.11s.
    Almeria sP = 10m.34s., PcP = 10m.43s., PP = 12m.19s., pPP = 12m.34s., PPP = 13m.47s.,
         pPPP = 14m.33s., sS = 18m.43s., S_cS = 19m.31s., SS = 22m.21s.
    Granada pP = 10\text{m}.26\text{s}., P_cP = 10\text{m}.32\text{s}., sP_cP = 11\text{m}.23\text{s}., pPP = 13\text{m}.11\text{s}., P_cS = 14\text{m}.2\text{s}.,
```

San Fernando PSE = 20m.8s. St. Louis ePPPN = 23m.47s., eSKKSN = 25m.29s., eSN = 25m.50s., ePSN = 27m.19s., ePPSN = 28m.26s., ePKKP3Z = 29m.55s., eZ = 30m.15s.

Tinemaha eZ = 18m.0s.

 $sS_cS = 21m.32s.$ 

Mount Wilson eZ = 17m.54s., ePKKPZ = 29m.42s.

Tucson e = 17m.33s, and 37m.57s.

Long waves were also recorded at Bozeman, College, Pittsburgh, and Riverview.

Sept. 24d. Readings also at 1h. (near Andijan), 4h. (near Mizusawa), 9h. (near La Paz), 11h. (Haiwee, La Jolla, Mount Wilson (2), Pasadena, Palomar, Riverside, Santa Barbara, Tinemaha, Tucson, St. Louis, Stuttgart, and near Apia), 12h. (Almeria and Granada), 13h. (near Apia and near Tashkent), 14h. (Arapuni, Auckland, Christchurch, Wellington, Riverview, Mount Wilson, Pasadena, Palomar, Tucson, La Paz, Stuttgart, and near Apia), 16h. (near Apia), 17h. (Bucharest and Sofia), 22h. (Fordham).

Sept. 25d. Readings at 5h. (near Shawinigan Falls and Seven Falls), 8h. (near Pa Paz, Palomar, Riverside, Tucson, and Tinemaha), 12h. (near Bogota and La Paz), 13h. (Bogota and Riverview), 14h. (near Bogota), 15h. (Milan), 16h. (Harvard), 17h. (near New Delhi and near Tashkent), 21h. (Ravensburg, Stuttgart, Basle, near Chur, and Zürich).

Sept. 26d. 2h. 8m. 10s. Epicentre 39° 0S. 51° 1E. (as on 1941, Nov. 24d.).

$$A = + .4893$$
,  $B = + .6064$ ,  $C = -.6268$ ;  $\delta = +1$ ;  $h = -1$ ;  $D = + .779$ ,  $E = -.627$ ;  $G = -.394$ ,  $H = -.488$ ,  $K = -.779$ .

		Δ	Az.	P.	O-C.	s.	0-C.	Sup	p.	L.
523 8		0	0	m. s.	s.	m. s.	8.	m. s.		m.
Tananarive		20.3	350	i 4 29	-11	e 8 7	-16	4 48	PP	9.9
Colombo	E.	52.9	37	9 22	+ 2					• •
Kodaikanal	E.	54.8	33	<del></del> -		i 17 22	+ 8			-
Bombay	E.	$61 \cdot 1$	24	10 18	0	18 39	+ 2	11 0	$P_{\mathbf{c}}P$	
	N.	61.1	24	10 19	+ 1	18 35	- 2	12 16	PP	-

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

```
Supp.
                                                                                         L.
                                     P.
                                            0 - C.
                             Az.
                                                                                        m.
                                                                       m. s.
                                   m. s.
                                                               S.
                                                                                       33.7
Calcutta
                                                                               PPS
Helwan
                                                    e 20
                                                                                _{\rm PS}
New Delhi
                                             +59
                                                    e 21 11
Ksara
                                                                       12 44?
                                                                               P_cP
                                   12
La Plata
                                 e 16 20
Tashkent
Wellington
                                                      23 20
                                                              +13
                                                                                       40.8
                      85.0
                            141
                            340 e 12 45
                                             + 6
                                                              -66
                      85.1
Sofia
                                                             [+1]
                                                                                \mathbf{PS}
                                                                                     e 40.0
                                                    i 23 33
                                                                     i 24 39
                                 e 13 22
                      89.9
                             28
                                             +20
Florence
                                                                                PS
                                                                                       45.8
                                                                       24 48
                                             - 2
                            319
                                   13
                      90.2
Almeria
                                                                                PS
                                                      24
                            318
                                   13 3k
Granada
                      91.0
                                                    e 24 14
                                                                     e 25 29
                                                                                PS
                                                                                       47.3
                            316 e 13 14
                      91.8
San Fernando
                                                    i 24 10
                                                                                     e 53.8
                            323
                      91.9
Tortosa
                      93.3
                                                    e 24 24
                            320 e 13 18
Toledo
                                                                                     e 43·1
                                                    e 24 41
                                 i 12 26k
                                             -58
                                                                     i 16 9
                            327
                                                              +
Clermont-Ferrand
                      94.7
                                                                                     e 47.0
                                                                                PS
                                                                     e 25 58
                            333 e 13 25
                                             -1
                                                    e 23 38
                                                             [-23]
                      95.0
Stuttgart
                                                                     e 26 20
                                                                                _{\rm PS}
                                                                                     e 46.8
                            331 e 17 38?
                                             PP
                                                    e 25 11
                                                                 4
                      98.4
Uccle
                                                                     e 32 0
                                                                                SS
                                                                                     e 48.8
                            333
                      99.1
De Bilt
                                                                                       66.8
                            300 e 22 20?
                                             \mathbf{PP}
Seven Falls
                     137 \cdot 7
                                                                                     e 89·0
                                             PP
                            288 e 23 14
                     142.7
Pittsburgh
               N.W.
                                                                                     e 80·3
                                 e 19 42
                                               31
                     148.6
                            288
Chicago
                                                                     e 33 25
                                                                              PSKS
                                 e 19 51
                                                                3]
                            281
                                            [+-
                                                4]
                                                    e 26 51
                     150.0
St. Louis
                                                                                     e 83·0
                                                                     i 24 47
                                                                                PP
                     163.9
                             251
                                 i 20 11
                                               6]
Tucson
                                                                                PP
                                 e 20 16
                                                8]
                                                                     e 25 14
                             240
                     168.7
                                            [+]
La Jolla
                                 i 20 17
                                                                                PP
                                                91
                                                                     i 25 14
                             244
                     168.8
                                            [+
Palomar
                                                                                PP
                                            [+9]
                                                                     e 26 17
                                 i 20 18
                     169.5
                            245
Riverside
                                           [+10]
                            243
                                                                     1 25 22
                                                                                PP
                                 i 20 19
                     170 \cdot 1
Mount Wilson
                                 e 20 16
                                            [+7]
                                                                     i 25 22
                                                                                PP
                            243
                     170.1
Pasadena
                                                                     e 25 24
                                                                                PP
                                            [+7]
                                 e 20 17
                     170.9
                            254
Haiwee
                    171.3
                                                                     e 25 29
                                                                                \mathbf{PP}
                                 e 20 21
                                            +11]
                            241
Santa Barbara
                                                                     e 25 27
                                                                                \mathbf{P}\mathbf{P}
                            259 e 20 19
                                           1+
                                               9]
                     171.4
Tinemaha
  Additional readings :-
```

```
Tananarive SS = 8m.29s., P_cP = 9m.0s.
Bombay PPPE = 13m.40s., S_cSE = 20m.16s., S_cSN = 20m.25s., SSE = 22m.35s., SSSE = 20m.35s.
    25m.34s.
Helwan iZ = 11m.26s., PPZ = 13m.52s.
New Delhi PPN = 15m.7s., SKSN = 21m.26s., SSN = 25m.3s.
Florence ePPE = 16m.23s., ePPE = 17m.43s., iSSE = 29m.58s., eSSSE = 32m.22s.
Almeria pP=13m.34s., PP=17m.0s., PPP=19m.2s., SKS=23m.18s., PS=24m.34s.,
    pSP = 25m.38s., SS = 30m.24s., SSS = 38m.2s.
Granada PP = 16m.33s., SS = 30m.30s., SSS = 34m.3s.
San Fernando ePPE = 17m.9s., eSKSE = 23m.18s., eSSSE = 30m.38s.
Stuttgart ePPZ = 16m.40s. and 17m.10s., e = 23m.2s. ?, eSS = 31m.2s.
Uccle eSKS?EN = 24m.20s. ?, eEN = 31m.50s. ?
St. Louis iPKPZ = 19m.56s., iZ = 20m.2s., ePPE = 23m.5s., ePPPPE = 28m.51s.,
    ePPPPE = 30m.30s., eE = 38m.41s., eSPSN = 42m.39s.
Tucson e = 20 \text{m.} 58 \text{s.} and 32 \text{m.} 12 \text{s.}
Palomar iPKP<sub>2</sub>Z = 21m.24s.
Mount Wilson ePKP<sub>2</sub>Z = 21m.32s.
Pasadena iPKP_2Z = 21m.31s., ePPPZ = 29m.20s.
Haiwee ePKP<sub>2</sub>NZ = 21m.30s.
Long waves were also recorded at La Paz, Huancayo, Christchurch, Riverview, Aber-
```

Sept. 26d. 13h. Undetermined shock.

```
Auckland P? = 7m.35s., S? = 16m.5s., i = 18m.53s., R = 28m. Riverview eN = 15m.12s., iN = 19m.6s., eLN = 20m.54s. Colombo eE = 19m.30s. Sydney e = 19m.48s. ? and 23m.54s. ? New Delhi eN = 20m.25s. and 38m.32s. Bombay eE = 20m.29s., 22m.32s., and 23m.5s., LE = 29m. Pasadena ePZ = 21m.21s., iZ = 21m.41s., eLZ = 60m. Mount Wilson ePZ = 21m.24s., eZ = 21m.39s. Tucson eP = 21m.38s., e = 21m.52s. Wellington S? = 22m.10s. ?, R = 30m. Christchurch S = 25m.50s., Q = 27m.54s., R = 30m.37s. Long waves were also recorded at Arapuni, Kew, and De Bilt.
```

deen, Kew, Stonyhurst, Paris, Lisbon, and Bozeman.

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

375

Sept. 26d. 18h. 10m. 48s. Epicentre 52° 0N. 176° 2E.

$$A = -.6168$$
,  $B = +.0410$ ,  $C = +.7860$ ;  $\delta = -8$ ;  $h = -6$ ;  $D = +.066$ ,  $E = +.998$ ;  $G = -.784$ ,  $H = +.052$ ,  $K = -.618$ .

		Δ	Az.	P.	O-C.	s.	0-C.	Su	pp.	L.
				m. s.	s.	m. s.	8.	m. s.		m.
College		22.4	41	e 5 1	1	e 9 4	0			e 11·0
Tinemaha	z.	47.4	82	i 8 39	+ 1		-	-	-	
Haiwee	Z.	48.2	82	e 8 45	+ 1		_	_		
Mount Wilson		49.4	84	i 8 54	+ 1		_	_		
Pasadena		49.4	84	i 8 52	- 1		-	_		e 22·7
Riverside	Z.	50.0	84	e 8 57	- 1	-			( <del>) = (</del>	-
Palomar	Z.	50.7	84	i9 4	+ 1		_		-	
La Jolla		50.8	85	e 9 5	+ 1	-		-	23	~~
Tucson		55.2	81	e 9 34	- 3	-			77707	e 26.6
Sverdlovsk		59.4	325	10 1	- 5		_	19 5	PPS	
Chicago		61.8	58		-	e 18 49	$^{+}_{+}$ $^{3}_{3}$	e 24 22	3	e 29·7
St. Louis		62.7		e 10 27	- 2	e 19 0	1000	e 19 20	$_{PS}$	
Seven Falls		65.8	44			e 19 30	- 5	-	-	$32 \cdot 2$
Andijan		66.5		e 10 21	-33	10.47		1007		- 00 -
Pittsburgh		66.7	54	-	_	e 19 47	+ 1	-	_	e 33·5
Tashkent		67.6	309	e 10 59	<b>- 2</b>	e 19 51	6		- 3	200
New Delhi	N.	73.2	295			**************************************		e 21 37	$_{\mathrm{PS}}$	-
Uccle		77.3	356	e 12 0	+ 2	e 21 42		e 22 54?	PPS	e 37·2
Stuttgart		79.0	353	e 1 44	3	e 22 181		e 41 18?	Q	e 43·3
Bermuda		80.5	49	-		e 22 52	$\mathbf{PS}$	_		e 40·0
Clermont-Ferrar	nd	82.4	356	e 27 12	8	S *******	-	_	_	e 53·2
Bombay		83.2	292	e 16 45	9	e 22 46	- 3	e 23 34	PS	
Florence	Z.	83.7	350	i 12 8	-24			i 15 59	PP	
San Juan		91.5	58	<del></del> -		e 24 31	+23	-	_	e 46·8
Helwan	N.	92.9	330	<del></del>		e 23 48	[-2]		-	-

Additional readings :-

Tucson e = 9m.56s., 12m.19s., and 22m.23s.

St. Louis eSE = 18m.53s., eSS?E = 23m.41s.

Uccle eN = 26m.46s. Bombay eE = 23m.38s.

Florence iPPPZ = 18m.31s., iSSN = 30m.34s.

Long waves were also recorded at Sitka, Santa Clara, Philadelphia, Calcutta, and at other European stations.

Sept. 26d. 22h. 38m. 9s. Epicentre 5°·0N. 82°·5W. (as on 1943, March 5d.). Epicentre as adopted (U.S.C.G.S.).

$$A = +.1300$$
,  $B = -.9877$ ,  $C = +.0866$ ;  $\delta = -5$ ;  $h = +7$ ;  $D = -.991$ ,  $E = -.131$ ;  $G = +.011$ ,  $H = -.086$ ,  $K = -.996$ .

		Λ	Az.	P.	O-C.	s.	0 - C.	Su	pp.	L.
		0	0	m. s.	8.	m. s.	8.	m. s.	1808000	m.
Balboa Heights		4.9	35	1 16	- 1	i 2 13	- 2	-		_
Bogota		8.4	90	i 2 7	+1	i 3 44	+ 1	i 2 47	$P_g$	
Huancayo		18.7	157	1 4 17	- 5	e 7 59	+11			e 9·2
San Juan		20.8	48	i 4 43	- 2	e 8 39	+ 6	i 8 45	SS	e 11·1
Fort de France		23.1	65	e 5 9	+ 1	_	_	-	_	_
La Paz		25.7	146	5 35	+ 2	_		3 <u></u>	_	
St. Louis		34.2	350	e 6 47	$^{+}_{-}  ^{2}_{2}$	e 12 14	- 2	e 8 30	PPP	
Tucson		37.9	319	e 7 18	- 2			e 8 57	PP	e 19.5
La Jolla		42.6	315	e 7 56	- 3		-	12	-	
Palomar	z.	42.6	316	i 7 59	0				-	<del></del>
Riverside	z.	43.3	316	e 8 4	- 1	-	·	· .		
Mount Wilson	Z.	43.9	316	e 8 10	0	-	_		_	
Pasadena	z.	44.0	316	e 8 12	+ 1	-	_	-	_	e 21.9
Santa Barbara	Z.	45.2	315	e 8 21	+ 1 + 1		-			
Tinemaha	Z.	45.7	319	e 8 24	0	-	-	-		

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

376

Sept. 26d. Readings also at 0h. (Tinemaha, Riverside, Palomar, and Tucson), 1h. (near Ksara), 3h. (near Andijan and Tashkent), 4h. (Stuttgart, Uccle, De Bilt, and Kew) 8h. (Pasadena, Mount Wilson, Riverside, Tinemaha, Santa Barbara, Haiwee, Palomar, and Tucson), 9h. (near Andijan, Tashkent, and Stalinabad), 11h. (near Bogota), 14h. (Wellington and near Stuttgart), 15h. (Stuttgart, Pasadena, Riverside, Tinemaha, Tucson, and near Bogota), 17h. (near Granada, and near Berkeley, Lick, Branner, Fresno, and Santa Clara), 19h. and 21h. (near Reykjavik), 22h. (Tinemaha, Tucson, near Ferndale, and Branner).

Sept. 27d. 4h. 40m. 40s. Epicentre 35°·4N. 135°·8E. Depth of focus 0·050. (as on 1937 August 16d.).

Intensity II-III at Ibukiyama and Tukubasan. Epicentre 35°.5N, 135°.4E. Radius of macroseismic area 300 km. Depth 360 km. Seismological Bulletin of the Central Meteorological Observatory, Japan for the year 1943, Tokyo 1950, pp. 43-44. Macroseismic chart p.43.

A = -.5857, B = +.5696, C = +.5767;  $\delta = +7$ ; h = 0; D = +.697, E = +.717; G = -.413, H = +.402, K = -.817.

				- 12 To 19 T			0.1462	
	Δ	AZ.	Р.	O-C.	s.	O-C.	Su	p.
	0	٥	m. s.	S.	m. s.	s.	m. s.	
Hikone	0.4	105	0 48k	+ 4	1 17	- 2		
Kyoto	$\tilde{0} \cdot \tilde{4}$	188	0 44	Ō	( ) The same of th	- 1		_
Gihu	ŏ · 8	90	0 47k	+ 2	1 23	+ 2		-
Kameyama	0.8	135	0 47	$+\tilde{2}$	$\tilde{1}$ $\tilde{2}\tilde{4}$	$^{+}_{+}$ $^{2}_{3}$		
Torrocke	0.8	279	0 45k	1.0	1 21	Ö	-	_
Toyooka	0.0	210	0 40 8	•	1 21	v	1:1-1:1	
Kobe	0.9	215	0 44	- 2	1 22	$\begin{array}{ccc} + & 1 \\ + & 3 \\ - & 9 \end{array}$		
Nagoya	1.1	104	0 48k	+ 2	1 26	+ 3		-
Sumoto	1.3	216	0 47k		1 15	- 9		_
Wakayama	1.3	204	0 47	0	1 24	0	-	
Owase	î · ¥	166	0 48k	70.00	1 27	+ 2	_	_
	965 - 686 	1004000 VO <b>2020</b>	0 0	1967.27000	1 90	0000 00	32-30	
Toyama	1.7	41	0 52	+ 2	1 32	+ 3		
Siomisaki	2.0	181	0 50	- 2	1 32	0	8 - 8	
Omaesaki	2.1	112	0 52k			02.12/25	Canada a	-
Kohu	$2 \cdot 2$	84	1 0k		1 45	+10	6.00	1000
Shizuoka	$2 \cdot 2$	111	0 54k	+ 1	1 41	+ 6		-
Wazima	2.2	24	0 54 a	+ 1	1 37	+ 2	-	
Nagano	$\tilde{2}\cdot\tilde{3}$	24 57	0 57	$\begin{array}{ccc} + & 1 \\ + & 3 \end{array}$	1 43	+ 7	-	-
Misima	9.6	96	0 58k	+ 2	1 47	+ 7		
Maebasi	2.8	69	1 0	1 5	1 46	+ 3		7775
	The second secon			$^{+}_{-}$ $^{2}_{3}$	1 42	_ X		
Hirosima	3.0	250	0 57 k	- 3	1 42	-T- 1	0000	2000
Kumagaya	3.0	76	0 58	- 2	1 48	+ 2	2 <del>-3</del>	-
Osima	3.0	105	1 1	+ 1	1 50	+ 4	Carried .	-
Hamada	3.1	261	0 58k	- 3	1 45	- 3		
Yokohama	3.2	89		+ 2	1 54	+ 4	-	
Aikawa	3.2	37	$\begin{array}{ccc} 1 & 4 \\ 1 & 3 \end{array}$	+ 1	1 51	- 1		
	001250	10000	4 0		1 50	0.000000000		
Mera	3.3	98	1 2	0	1 56	+ 4	-	-
Utunomiya	3.5	70	1 4	Ō	1 54	- 1	9 <del>.00</del>	-
Tukubasan	3.6	74	1 5	0	1 57	0	-	
Kakioka	3.7	75	1 16k	+10	2 7	+ 9		-
Mito	$3.7 \\ 3.9$	73	1 9	+ 1	$\begin{array}{ccc} 2 & 7 \\ 2 & 2 \end{array}$	0	-	-
Tyosi	4.1	85	1 13	+ 3	-			
Hatidyozima	$\frac{1}{4} \cdot 1$	123	1 14	1 1	2 7	+ 1		-
Hadroine	4.4	57	1 15	$\begin{array}{cccc} + & 3 \\ + & 4 \\ + & 1 \end{array}$			-	
Hukusima	1000 000			T :	2 12	4		_
Onahama	4.4	112	100	+ 1		TD 1		
Kumamoto	4.9	240	0 49	F	1 20	P	V. <del>a</del>	
Sendai	5.0	53	1 20 a	+ 2	2 22	- 1	5 <del>- 5 -</del>	-
Akita	5.5	37	1 28	+ 2	2 37	+ 4	-	
Mizusawa	5.6	48	e 1 29	+ 2	2 35	0		-
Morioka	6.1	43	1 32 a		2 43	- 2		
Miyako	6.4	47	1 36	Ŏ	2 49	- 3	-	_
Tomie	6.5	247	1 36k	- 1	2 54	0		2_7
Yakusima	6.7	224	1 33	- 7	2 01			
	6.8		1 39	- 1 - 2	2 54	- 6		
Hatinohe	(1) 1 American (1) American (1)	40		- 5	3 17	_ 8	- L	
Mori	7.7	28	$\frac{1}{2}  \frac{49}{1}$	- 6	0 17		9===	
Nake	8.8	219	2 1	- 3		0.75	N=2	

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

		٨	Az.	F	٠.	0	C.	s.	0 - C.	S	app.
		0	0	m.	170000	8.		m. s.	8.	m. s.	
Sapporo		8.8	28	2	2		2	3 40	- 3		
Andijan		49.3	296	e 8	4	-	12	i 14 49	- 6	7	
Tinemaha		80.4	52	i 11	33k	-	1	_		3-4	-
Santa Barbara		81.0	54	i 11	37	-	1		-	1-	-
Haiwee		81.2	52	i 11	36 k	-	3	_	_	_	
Pasadena		82.2	53	i 11	42k	-	2	i 21 28	0	i 13 6	pP
Mount Wilson	N.	82.3	53	e 11	42	_	2			-	
Riverside	1377	82.9	53	i 11	43k	-	4	_	-		_
La Jolla		83.6	54	i 11	48	_	3	-	****		440,440,14
Palomar	z.	83.6	53	i 11	48k	=	3			i 12 8	$P_{c}P$
Stuttgart	z.	83.7	328	i 11	45	-	6		-	· —	
Chur		85.0	326	e 11	52k	-	6			_	-
Zürich		85.0	326	e 11	52	_	6	· ·	-	-	-
Basle		85.3	326	e 11	54	-	5	-	_		_
Neuchatel		86.0	326	e 11		-	4		-		-
Tucson		88.2	51	i 12	5	_	8	4	-	e 15 42	PP
St. Louis	Z.	94.9	34	i 12	41	-	3		-	e 16 38	PP
La Paz		151.5	54	19	15	14	91	-	-	-	-

Additional readings:—
Pasadena iZ=12m.6s., iPPZ=14m.55s.Tucson e=12m.59s.

Sept. 27d. 22h. 3m. 41s. Epicentre 30°·1S. 177°·8W. Focus at Base of superficial layers. (as on 14d.).

Epicentre 29°.8S. 177°.9W. (U.S.C.G.S.). Depth 100 kms. 30°S. 176°W. (Wellington).

Α	=8	3660,	B = -	0333	3, C:	=4990	$\delta = \delta$	·+7;	h=+2		
Auckland Arapuni Tuai New Plymouth Wellington		$^{\circ}_{9\cdot 2}$ $^{\circ}_{9\cdot 6}$ $^{\circ}_{11\cdot 2}$ $^{\circ}_{12\cdot 7}$	Az. 221 213 204 215 207	m. 2 2 2 2 2	$12 \\ 19? \\ 18 \\ 49$	O-C. s. - 1 - 1 + 8 -10	S. m. s. 3 53 4 7? 4 2 4 43 5 6	O-C. s. - 4 - 5 - 3 - 16	m. s. i 2 29 i 3 4 i 2 59	PPP  PP	L. m. 4·3 4·5 i 5·3 6·3
Christchurch Apia Brisbane Riverview Sydney		15·4 17·1 25·7 26·5 26·5	207 22 268 254 254	e 3 i 5 i 5 i 5	37 a	$^{+}_{-}\overset{6}{\overset{4}{\overset{1}{+}}}_{1}^{1}_{\mathbf{pP}}$	6 15 e 6 51 i 9 52 i 10 7 e 10 34	-11 -15 - 1 + 1	e 7 14 i 5 48 i 10 22 e 6 37	$_{\mathrm{ss}}^{\mathrm{SS}}$	e 8·2 i 12·4 e 12·1 e 12·5
Misima Kumagaya Nagoya Hikone Nagano		76.6 77.2 77.6 78.1 78.2	$324 \\ 325 \\ 324 \\ 323 \\ 325$	11 11 11 e 11	49 55 55 57 53	$\begin{array}{c} & 0 \\ + & 3 \\ + & 1 \\ - & 5 \end{array}$					
Sendai Kõti Kagosima Mizusawa Santa Barbara		78·2 78·3 78·5 78·8 84·4	$328 \\ 320 \\ 317 \\ 329 \\ 45$	11 e 12 11 i 12	56 57 0 59 31	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	<u>-</u> 16_19	<u>-</u>	e 12 6 i 12 50	pP pP	
La Jolla Pasadena Santa Clara Berkeley	E.	$84.9 \\ 85.1 \\ 85.2 \\ 85.2$	47 46 41 41 41	e 12 i 12 i 12 i 12 i 12	32 34 37 38 35	$ \begin{array}{ccccc}  & 1 & & & \\  & 0 & & \\  & + & 3 & \\  & + & 4 & \\  & + & 1 & & \\ \end{array} $	i 23 0 i 22 57 i 22 54	$+\frac{1}{1}$ $-\frac{3}{11}$	i 12 49 i 12 55	pP P	e 34·7 e 39·9
Mount Wilson Palomar Riverside Ukiah Haiwee	N. Z.	85·3 85·4 85·5 85·6	46 47 46 39 44	e 12 i 12 i 12 i 12	37 a 37	$^{+}_{+}^{0}_{1}^{2}$	e 23 16 e 23 8	sS [+ 5]	e 12 52 1 12 55	pP PP	e 39·0

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

	△ A:	m. s. s.	m. s. s.	m. s.	L. m.
Tinemaha Tucson Victoria Salt Lake City Logan	$   \begin{array}{r}     87.0 & 4 \\     88.7 & 5 \\     92.1 & 3 \\     93.2 & 4 \\     93.8 & 4   \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	i 13 9 pP e 13 35 pP	e 40·6 e 43·4 e 43·4 e 40·3
Sitka Huancayo Bozeman College La Paz	94.3 2 94.6 10 96.7 4 97.5 198.0 11.5	7 e 13 37 pP 2 = =	$egin{array}{cccccccccccccccccccccccccccccccccccc$	i 25 39 PS e 25 49 PS e 31 4 SS i 26 24 PS	e 42·7 e 41·1 e 43·9 e 45·7 45·6
Rapid City Calcutta Colombo E. St. Louis Chicago	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	7 e 14 4 + 3 0 18 19 PP 4 e 18 34 PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 27 42 PS 33 11 SS e 18 49 pPP e 28 25 PS	e 46·7 51·9 54·0 e 45·4
Rio de Janeiro N. Bombay E. New Delhi N. San Juan Philadelphia	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 19 50 PP 9 e 19 42 PP 3 e 20 3 PP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 24 PS i 29 26 PS e 29 45 PS e 29 43 PS	e 33·5 e 48·7
Ottawa Fort de France Harvard Seven Falls Andijan	$     \begin{array}{ccccccccccccccccccccccccccccccccc$	0 e 18 50 [+ 2] 5 e 18 49 [- 1] 0	e 25 55 } [+ 5]	e 36 19 SS e 19 7 PPKP e 37 31 SSP	e 47·3 e 59·3 46·3
Bermuda Tashkent Sverdlovsk Scoresby Sund Upsala E.	123.6 & 69 $125.6 & 30$ $131.8 & 32$ $137.4 & 13$ $148.5 & 34$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	e 26 21 [+28] e 26 3 [+4] e 31 42 PS	e 31 3 PS e 30 35 PS i 21 25 PP 21 37 PP	e 52·2 — 70·3
Ksara Copenhagen Helwan Bucharest De Bilt	$151 \cdot 3$ $283$ $153 \cdot 4$ $34$ $154 \cdot 8$ $273$ $156 \cdot 3$ $313$ $157 \cdot 9$ $353$	$\begin{bmatrix} 1 & 19 & 47 & [ & 0] \\ 5 & 19 & 49 & [-&1] \\ e & 20 & 19? & [+28] \end{bmatrix}$	33 52 PS = =	e 23 29 PP 23 26 PP 20 14 sPKP i 24 4 PP	79·3 75·3
Jena Prague Kew Sofia Uccle	158.0 $158.0$ $343$ $158.6$ $339$ $158.9$ $319$ $159.3$ $357$	e 36 19? ? e 19 55 [ 0] e 20 7? [+12]	e 30 15 =	i 20 36 sPKP e 50 19 SSS e 20 28 PKP ₂ e 20 32 PKP ₂	e 59·3 e 77·3
Belgrade Stuttgart Paris Triest Basle	$159 \cdot 4$ $326$ $160 \cdot 6$ $343$ $161 \cdot 3$ $359$ $162 \cdot 0$ $333$ $162 \cdot 1$ $347$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	e 31 6 SKKS	e 20 34 PKP ₂ i 20 38 PKP ₂ e 24 22 PP e 20 45 PKP ₂	e 33·1 e 77·8 e 82·3
Zürich Chur Neuchatel Milan z. Clermont-Ferrand	$162 \cdot 1$ 346 $162 \cdot 3$ 346 $162 \cdot 7$ 346 $163 \cdot 7$ 346 $164 \cdot 4$ 357	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e 21 44 PKP. i 20 46 PKP. i 20 55 PKP.	e 46·7
Florence Lisbon Toledo San Fernando Granada Almeria	$     \begin{array}{r}       164.6 & 23 \\       167.3 & 43 \\       169.0 & 26 \\       170.5 & 43 \\       171.5 & 35 \\       172.2 & 28 \\     \end{array} $	$egin{array}{cccccccccccccccccccccccccccccccccccc$	i 32 0 SKKS 31 43 SKKS 46 19 SS 35 27 SKSP 26 46 [-17]	e 20 56 PKP 20 5k pPKP 25 21 PP i 25 20 PP 20 27 pPKP	84·3 82·3 90·6 82·8

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

Logan e = 23m.49s. Huancayo ePP=17m.23s., i=26m.0s., eSS=31m.1s., eSSS=34m.56s., e=39m.2s. La Paz ePPZ = 17m.40s., iPPZ = 17m.52s., PPP = 19m.42s., SSS? = 35m.56s. Calcutta ePP=18m.30s., eSSN=34m.2s., eSSN=38m.27s.St. Louis iSKKSE=25m.38s., eSN=26m.20s., ePSE=27m.54s., ePPSE=29m.45s., eZ = 29m.56s., eN = 32m.27s., eSSSE = 37m.53s.Chicago eSS = 34m.9s., e = 37m.40s.Bombay iE = 21m.33s., PPPE = 22m.15s., PPPN = 22m.18s., SKKSE = 26m.35s., PSN = 29m.27s., PPSN = 30m.31s., iE = 31m.35s., SSE = 35m.29s.San Juan e = 26m.46s. Philadelphia e = 26m.46s., eSS = 35m.54s.Harvard ePP = 20m.27s., epPP = 20m.46s., ePS = 30m.6s., ePPS = 31m.35s. Bermuda ePS = 31m.13s., e = 38m.20s.Tashkent iPP = 20m.47s. Scoresby Sund 23m.1s., 28m.57s., 31m.47s., and 34m.25s.?, SS = 39m.25s. Helwan eZ = 21m.52s., PP?Z = 23m.49s., eE = 38m.55s. Kew ePP=23m.58s., eZ=24m.36s., eZ=32m.40s., eSKKS=33m.5s., eSKSPEN= 34m.49s. ?, eSSS = 51m.19s.Uccle eSKP=23m.28s., ePPNZ=24m.11s., eZ=24m.38s., eSKKS?N=30m.13s.. ePSKS?N = 34m.35s.Stuttgart iPP = 24m.18s., ePPP = 27m.59s., ePPP₂ = 32m.49s., e = 33m.57s., ePSKS = 34m.40s., eSS = 44m.43s.Paris e = 32m.22s. Basle i = 24m.48s. Clermont-Ferrand e = 30m.26s. Florence iPPN = 24m.40s., ePPPN = 28m.23s., iPSKSN = 35m.15s., iSSSN = 51m.25s.Lisbon PPZ = 25m.1s., PPN = 25m.5s., PPE = 25m.10s., PPPZ = 29m.17s. San Fernando iPPEN = 25m.51s., eSSE = 48m.8s. Granada SS = 46m.26s. Almeria sPKP = 20m.38s.,  $PKP_2 = 21m.45s.$ ,  $pPKP_2 = 22m.13s.$ ,  $sPKP_2 = 22m.29s.$ iPP = 25m.20s., pPP = 25m.49s., sPP = 26m.9s., pSKS = 27m.29s., PPP = 29m.20s., SKSP = 35m.13s., PPS = 39m.29s., SS = 46m.17s., SSS = 52m.51s.Long waves were also recorded at Tananarive, Kodaikanal, Bergen, and Potsdam.

Sept. 27d. Readings also at 3h. (near Reykjavik), 5h. (Almeria), 6h. (San Francisco), 9h. (near Andijan), 14h. (Stuttgart, Riverview, Christchurch, Auckland, and Wellington), 16h. (Fort de France and Ottawa), 17h. (Pasadena, Riverside, Tucson, Palomar, and near St. Louis), 19h. (La Plata), 22h. (Granada).

Sept. 28d. 10h. 45m. 42s. Epicentre 18°·1N. 147°·5E. Depth of focus 0·010.

(as on 1940, Dec. 31d.).

A = -.8022, B = +.5111, C = +.3088;  $\delta = +11$ ;  $\hbar = +5$ ; D = +.537, E = +.843; G = -.260, H = +.166, K = -.951.

		Δ	Az.	P. m. s.	O – C.	S. m. s.	0 -C.	m. s.	pp.	L. m.
Mizusawa Brisbane		21·7 45·6	$\frac{348}{172}$	e 4 44 i 8 15	+ 3	8 32 i 14 58	$-1 \\ +11$	i 10 1	$\overline{PP}$	$\equiv$
Irkutsk Riverview		47·9 51·8	$\frac{326}{176}$	8 24 i 9 8	-68 + 8	i 16 25	$+\overline{12}$	i 9 23	pP	e 22·4
Calcutta	N.	$55 \cdot 3$	285	_		e 17 0	0	_		-
Auckland Arapuni		$60.4 \\ 61.8$	$\frac{156}{155}$		_	e 25 189 19 189	Company of the Compan			37.3
College Wellington		$63.1 \\ 64.3$	$\frac{26}{158}$	10 28	+ 1	e 18 45 20 28?		e 25 27 12 59	$_{\mathrm{PP}}^{\mathrm{SSS}}$	e 29·4 34·3
New Delhi	N.	64.6	293			e 18 28	-32			_
Christchurch	- 20.1	65.5	160		=	$\frac{18}{19} \frac{18}{23}$	$^{-53}_{-2}$			
Colombo Sitka	Е.	66·7 68·1	269 35	· —	=	e 19 54	$^{-2}_{+12}$		=	e 32·0
Tashkent Bombay	E,	$69.5 \\ 70.3$	$\frac{308}{284}$	$\begin{array}{c} 10 & 54 \\ e & 11 & 10 \end{array}$	-64 - 5	$\begin{array}{ccc} 19 & 54 \\ 20 & 3 \end{array}$	- 5	13 38	PP	34.3
Stalinabad		70.3	305	11 10	$^{+5}_{-66}$	10 mm		-	-	-
Sverdlovsk		$73.3 \\ 79.3$	325 54	i 10 17 i 11 55		i 22 14	$+\frac{1}{27}$	i 12 12	pP	=
Berkeley Santa Barbara		82.2	57	e 12 13	- 1 + 1		-	i 12 26	$\mathbf{pP}$	_
Tinemaha		$82 \cdot 6$	54	i 12 14	0	-	_	i 12 27	$\mathbf{pP}$	_

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

1943

380

		Δ	Az.	P.	O -C.	s.	O-C.	Su	pp.	L.
			0	m. s.	8.	m. s.	S.	m. s.		m.
Haiwee Pasadena		83·1 83·5	54 56	e 12 17 i 12 18k	+ 1	e 22 53	$+{23}$	i 12 40		~ 20.9
Mount Wilson			100000000000000000000000000000000000000		11.77	e 22 53	7-20		pP	e 39·8
		83.6	56	i 12 19k	20,000,00	-		i 15 32	$\overline{PP}$	
Riverside		84.2	56	e 12 21 k		-		e 12 34	pP	
La Jolla		84.6	57	e 12 23	- 1	_			_	_
Palomar	z.	84.8	57	i 12 25k	0	2	_	i 12 41	$\mathbf{pP}$	_
Bozeman		85.0	44	and Farming	-	e 22 55	+10	e 28 55	SS	e 39·7
Logan		85.8	48	i 12 30	0	-		e 12 54	$\mathbf{pP}$	e 42.6
Moscow		86.0	328	e 12 26	- 5	22 44	[-1]	_	_	
Sale Lake City		$86 \cdot 1$	49	e 12 31	0	e 22 43	[-3]	() <del>( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) </del>	-	e 41·1
Tucson		89.9	56	i 12 50	+ 1	e 23 59	+28	i 16 20	$\mathbf{PP}$	e 40.6
Ksara		96.9	308	14 18?		e 24 18	-14		-	
St. Louis		101.9	43	e 17 56	$\mathbf{PP}$			e 32 23	SS	55 THE
Helwan		$102 \cdot 2$	307	e 17 51	$\tilde{P}P$	e 24 19 e 24 18	[ + 5] [ + 3]			
Stuttgart		103.8	333	e 13 46	- 6	e 32 69		e 18 9	$\mathbf{PP}$	e 49·5
Florence		106.5	328	e 18 40	$\mathbf{PP}$	e 29 3	PPS			e 52·7
Toledo		116.5	336	e 19 36	$\mathbf{PP}$	1142 <u>25                                   </u>				73.3
Bermuda		121.1	31	e 20 50	PP	e 30 38	PS	-	1)1777	e 60·5
San Juan		130.9	44	e 22 9	PKS	e 28 59	7	e 34 27	3	0.00
Fort de France		136.8	42	e 20 53	2	- 20 00		C 0 1 21		
rore de ridade		100 0	4.5	C 20 00	1116		25.55	100	100-12	3=50
Huancayo		138.3	88	e 22 58	PKS	, <del></del>	-	e 41 3	SS	e 65.7
La Paz		146.0	92	19 34	[+6]	3	-	- 10 <del>-10</del>	_	68.3
Rio de Janeiro	N.	168.9		(e 23 18)	PKS	-	8 <del>1.56</del> .	2	\$ <del>- 1</del>	

Additional readings :-

Brisbane eN = 10m.8s., eZ = 15m.2s., iZ = 15m.9s.

Riverview eE =15m.40s.

Wellington  $P_cPZ = 10m.38s.$ , iZ = 11m.38s., SSS = 28m.42s.

Bombay SN = 20m.7s.,  $S_cSN = 20m.52s.$ ,  $S_cSE = 20m.56s.$ , SSE = 25m.20s.

Pasadena iZ = 12m.32s.

Mount Wilson iZ = 12m.33s.

Tucson i = 13m.35s., e = 18m.57s.

St. Louis eSN = 25m.31s., ePSE = 26m.47s.

Helwan eZ = 18m.22s, and 19m.30s.

Stuttgart eZ = 20m.31s.

Florence eS?E = 29m.41s., iN = 43m.39s.

Rio de Janeiro readings have been diminished by 1 hour.

Long waves were also recorded at Honolulu and other American and European stations.

Sept. 28d. Readings also at 4h. (La Paz), 5h. (near Lisbon), 7h. (Jena), 8h. (Mount Wilson, Pasadena, Palomar, Tucson, Riverside, Tinemaha, St. Louis, and Triest), 9h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, Arapuni, Auckland, Wellington, Christchurch, and near Apia), 10h. (Stuttgart, Belgrade, Sofia, and near Bucharest), 11h. (near Stalinabad), 12h. (Palomar, Tucson, Pittsburgh, and Riverside), 13h. (Haiwee, Mount Wilson, Pasadena, Palomar, Riverside, Santa Barbara, Tinemaha, Tucson, and La Paz), 14h. (Florence), 15h. (near La Paz), 16h. (Mount Wilson, Pasadena, Palomar, Riverside, Tucson, Tinemaha, near Seven Falls, Ottawa, and Shawinigan Falls), 17h. (Bombay, Calcutta, New Delhi, Tashkent, Ksara, Helwan, Copenhagen, Florence, and Stuttgart), 19h. (Mizusawa).

- Sept. 29d. Readings at 4h. (Mount Wilson, Palomar, Riverside, Tucson, and Tinemaha), 5h. (Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, St. Louis, Huancayo, La Paz (2), Stuttgart, and De Bilt), 7h. (Auckland, Tuai, Wellington, Riverview, Tucson, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha), 8h. (Mount Wilson, Pasadena, Palomar, Tucson, and Riverside), 9h. (Stuttgart, Uccle, Mount Wilson, Pasadena, Palomar, Tucson, Riverside, Tinemaha, Auckland, Arapuni, Christchurch, Wellington, Riverview, Tucson, and near Apia), 10h. (De Bilt, Paris, Huancayo (2), La Paz, and St. Louis), 16h. and 18h. (near Fort de France), 20h. (Mount Wilson, Tucson, Riverside, and Tinemaha), 22h. (near La Paz), 23h. (Tucson, Mount Wilson, Pasadena, Palomar, Riverside, and Tinemaha).
- Sept. 30d. Readings at 0h. (Florence, St. Louis, and Wellington), 4h. (near Almata, Andijan, Tashkent, Bombay, Calcutta, and New Delhi), 7h. (Christchurch, Arapuni, Wellington, Riverview, Sydney, Brisbane, Mount Wilson, Pasadena, Riverside, Stuttgart, near Florence and Triest), 8h. (De Bilt, St. Louis, and Tucson), 11h. (Bombay, Calcutta, New Delhi, Kodaikanal, Andijan, Tashkent, Brisbane, and Riverview), 12h. (Christchurch, Wellington, Mount Wilson, Pasadena, Palomar, Riverside, Tinemaha, Tucson, and St. Louis), 13h. (Triest, near Andijan and Stanlinabad), 14h. (Triest and Florence), 17h. (Bombay, New Delhi, near Andijan, Stalinabad, and Tashkent), 19h. (near Mizusawa), 23h. (Basle and near Branner).

The scanned images of the bulletins of the International Seismological Summary (ISS) have been obtained as part of a global earthquake relocation project (Villaseñor et al., 1997) initiated with funding from the US National Science Foundation through grant EAR-9725140 and collected by SGA Storia Geofisica Ambiente (Bologna) on behalf of the Istituto Nazionale di Geofisica e Vulcanologia (Rome), in the frame of Euroseismos project.

A digital hypocenter file of the ISS (Villaseñor and Engdahl, 2005) can be obtained from the USGS web site: <a href="http://earthquake.usgs.gov/scitech/iss/">http://earthquake.usgs.gov/scitech/iss/</a>

These data are considered public domain and may be freely distributed or copied for non-profit purposes provided the previous references are quoted.

Villaseñor, A., and E.R. Engdahl, *A digital hypocenter catalog for the International Seismological Summary,* Seism. Res. Lett., vol. 76, no. 5, pp. 554-559, 2005.

Villaseñor, A., E.A. Bergman, T.M. Boyd, E.R. Engdahl, D.W. Frazier, M.M. Harden, J.L. Orth, R.L. Parkes, and K.M. Shedlock, *Toward a comprehensive catalog of global historical seismicity,* Eos Trans. AGU, vol. 78, no. 50, pp. 581, 583, 588, 1997.