Fake P Phases

In early 1998, the ISC learned that "fake P" readings from the US National Seismic Network had been finding their way into the published ISC Bulletin. In response to an enquiry from the ISC, NEIC's Bruce Presgrave described the purpose and properties of these spurious phase readings. Body wave arrivals are required to anchor surface wave amplitudes in the NEIC data management system. Because of high-frequency noise at some USNSN stations, however, it is sometimes possible to measure a surface wave amplitude where no body wave is detectable. To avoid excluding useful amplitudes from the data, P arrivals are inserted into the database with properties that are intended to prevent their use by any careful seismologist, including a large positive travel time residual.

The ISC accepts phase readings from NEIC, and the fake P's were included. The outcome has almost always been harmless: the association and identification are unchanged, the residual remains large, and the arrival time is automatically assigned an effectively null weight in computing the event location. Occasionally, however, the phase is reassociated or re-identified by an ISC Bulletin editor as pP or sP, potentially leading to an inaccurate event depth.

An algorithm has been developed to identify the fake P's in NEIC data files with very high confidence. In arrivals from the first month of 1996, the algorithm identified 621 fake P's and a comprehensive manual review of the flagged arrivals showed one apparent mis-identification. From the start of 1996, fake P's will routinely have an operator identification code 111 and a null ISC identification in ISC products, and be neglected in processing.

Fake P's are likely to be have been included in the ISC Bulletin at least back to 1992, and we will be evaluating means for properly identifying these arrivals in the processed data. Further details are given below.

Fake P times are created at NEIC in order to enable measurements of surface wave amplitude and period to be used in the determination of event surface wave magnitudes. There are occasions when a surface wave amplitudes and periods can be measured but the first onset is non determinable. This often applies at oceanic stations such as HON. NEIC phase association rules will not associate the data unless a primary phase time is reported.

At the ISC, fake P's are identified when all of these conditions hold:

- 1. The data comes from NEIC
- 2. The time is exactly on a ten second boundary
- 3. The NEIC priority code is '10*' or '20*' (The priority code discriminant reported by Presgrave was somewhat more restricted than this, but the ISC does not appear to retain the third character of the priority code.)
- 4. There are exactly two 'phases' reported. The first being the onset time and the second the surface wave amplitude and period
- 5. The phase identification is P.
- 6. No amplitude, log a/t, period etc. for the first phase
- 7. No onset time, phase id, etc. for second phase
- 8. Amplitude and period are from vertical component

These rules were established based on discussions with Bruce Presgrave that following notification that NEIC had routinely included fake P times in the data stream reported to the ISC. A study of the NEIC phase readings data stream as supplied to ISC was undertaken.

Using the data for 1996 January as a sample, the following facts emerged.

The total number of RAGs (Reading Associated Group) for 199601 was 98524.

Primary times are given to 1/100th of a second.

found random

0	2	Times falling exactly on an hour boundary
2	54	Times falling exactly on a ten minute boundary
16	465	Times falling exactly on a one minute boundary
98	2678	Times falling exactly on a ten second boundary
985	18537	Times falling exactly on a one second boundary
9852	72621	Times falling exactly on one tenth second boundary
88672	25903	Times with 1/100th non zero

There are 1153 RAGs with times exactly on a ten second mark which also report surface wave data. From these there are 620 RAGs which report the phase id as 'P', leave the emergent/impulsive indicator and identification quality fields as blank and only report the vertical component in the surface wave field. All these records report Priority path code as 106 or 206. Where

character	1 = 1	quick and dirty
	2	preliminary
character	2 = 0	<pre>local (interpretation generated at NEIS) or phoned to NEIS</pre>
character	3 = 6	treat amplitudes as ground amplitudes

The following table shows the stations found and their frequency of occurrence

11	ALQ	Albuquerque	New Mexico	W	34:56:33	Ν	106:27:27	W	1849
4	ARU	Arti	Sverdlovskaya	В	56:25:48	.7N	58:33:45	.0E	250
1	BDFB	Brasilia	Distrito Federal		15:38:28	.35	48:00:50	.9W	1095
1	BGCA	Bogoin	Central African	Republic,	/ 5:10:34	Ν	18:25:27	Е	576
16	BINY	Binghamton	New York		42:11:57	.5N	75:59:10	.0W	498
19	BMN	Battle Mountair	n/Nevada		40:25:53	.3N	117:13:18	.4W	1594
3	BOSA	Boshof	South Africa		28:36:50	. 7S	25:15:19	Е	1202
15	CBKS	Cedar Bluff	Kansas		38:48:50	.4N	99:44:14	.6W	667
11	ССМ	Cathedral Cave	Missouri		38:03:20	.4N	91:14:40	.5W	223
19	CEH	Chapel Hill	North Carolina		35:53:27	Ν	79:05:34	W	152
19	СМВ	Columbia Colle	ge/California		38:02:06	Ν	120:23:06	W	719
12	COR	Corvallis	Oregon	BW	44:35:08	.6N	123:18:11	.5W	121
15	DUG	Dugway	Utah	BW	40:11:42	Ν	112:48:48	W	1477
4	ELK	Elko	Nevada		40:44:41	.4N	115:14:19	.6W	2210
2	EYMN	Ely	Minnesota		47:56:46	.3N	91:29:42	.0W	475
9	FVM	French Village	Missouri		37:59:02	.4N	90:25:33	.6W	310
14	GLD	Golden	Colorado		39 : 45 : 02	Ν	105:13:17	W	1762
1	GOGA	Godfrey	Georgia		33:24:40	.3N	83:27:59	.8W	150
18	GOL	Golden	Colorado	BCW	39:42:01	Ν	105:22:16	W	2359
10	нкт	Hockley	Texas		29:57	Ν	95:50	W	-415
36	HON	Honolulu	Hawaii	W	21:19:27	Ν	158:00:02	W	2
20	HRV	Harvard	Massachusetts		42:30:23	Ν	71:33:30	W	180
20	ISA	Isabella	California	В	35:39:48	Ν	118:28:24	W	835
7	JFWS	Jewell Farm	Wisconsin		42:54:51	.3N	90:14:53	.1W	335
18	LBNH	Lisbon	New Hampshire		44:14:24	.4N	71:55:33	.2W	367
1	LBTB	Lobatse	Botswana		25:00:52	. 2S	25:35:49	.2E	1028
1	LKWY	Lake	Wyoming		44:33:54	.7N	110:24:00	.0W	2424
19	LSCT	Lakeside	Connecticut		41:40:42	.2N	73 : 13 : 27	.8W	318
9	LTX	Lajitas	Texas		29:20:02	Ν	103:40:01	W	1013
19	MCWV	Mont Chateau	West Virginia		39:39:29	.2N	79 : 50 : 44	.2W	280
19	MIAR	Mount Ida	Arkansas		34:32:44	.5N	93:34:22	.8W	207
21	MNV	Mina	Nevada	В	38:25:55	.9N	118:09:15	.8W	1507
17	MYNC	Murphy	North Carolina		35:04:26	.0N	84:07:40	.4W	550
19	NEW	Newport	Washington		48:15:48	Ν	117:07:12	W	760
12	OBN	0bninsk	Kaluzhskaya	В	55:10	Ν	36:36	Е	
12	PF0	Pinyon Flat Obs	s./California		33:36:33	Ν	116:27:19	W	1280
19	SAO	SanAndreas Obs	./California	В	36:45:54	Ν	121:26:42	W	350

1	SBA	Scott Base	Victoria Land	BW	77:51:01 S	166:45:22	E 38
1	SDN	Sand Point	Alaska and Aleutians		55:20:28.8N	160:29:49.8	W 23
4	SIT	Sitka	Alaska and Aleutians		57:03:25 N	135:19:28	W 19
12	SLM	Saint Louis	Missouri	В	38:38:10 N	90:14:10	W 161
15	SMTC	Superstition Mi	t./California		32:56:56.4N	115:43:12.0	W -50
1	SMY	Shemya	Alaska and Aleutians		52:43:51 N	174:06:11	E 58
18	SSPA	Standing Stone	Pennsylvania		40:38:08.9N	77:53:16.8	W 158
20	TPNV	Topopah Spring	Nevada		36:56:55.8N	116:14:58.2	W 1600
16	TUC	Tucson	Arizona	BW	32:18:35 N	110:47:03	W 906
1	VNDA	Vanda	Victoria Land		77:30:50.2S	161:50:44.2	E 98
13	WDC	Whiskeytown	California		40:34:48 N	122:32:23	W 300
18	WMOK	Wichita Mts	Oklahoma		34:44:16.4N	98:46:51.6	W 486
8	WVOR	Wild Horse Vall	ley/Oregon		42:26:02.2N	118:38:12.2	W 1344
19	YSNY	Yorkshire	New York		42:28:32.9N	78:32:15.0	W 628

A program to count the frequency of records of different types produced:

count record class

98524 all records

3418 records with surface wave values

2057 records with only vertical component surface wave data

2678 records with time exactly on ten second boundary

80998 records with primary phase code given as P

20378 records with onset code blank

954 records with path code 106 or 206

- 1090 records with only first arrival and surface wave
- 903 only first arrival and Z component surface wave
- 621 satisfy all above criteria
 - 1 satisfy all criteria except time is not on 10 sec. marker

0 satisfy all criteria except path not 106 or 206

0 satisfy all criteria except onset not blank

- 0 satisfy all criteria except ident not P
- 0 satisfy all criteria except no surface wave

0 satisfy all criteria except no Z surface wave

0 satisfy all criteria except not primary and sw only

The records from the NEIS station list seem to show that all the stations belong to appropriate networks to be treated in this fashion.