Discriminating between fractures and fabrics in a highly anisotropic shale using shear-wave splitting

Alan F. Baird¹, J.-Michael Kendall¹, Quentin J. Fisher², Jessica Budge³

¹University of Bristol ²University of Leeds ³Nexen Energy

Bristol University Microseismicity ProjectS BUMPS

Shale Texture

Shales possess an intrinsic microstructure – high degree of crystal preferred orientation (e.g., Kaarsberg, 1959; Vernik and Nur, 1992; Valcke et al., 2006; Kanitpanyacharoen et al., 2011)

Observable effect on seismic wave propagation in shales

Allan et al (2016)

Shale Seismic Anisotropy

Commonly known as vertical transverse isotropy (VTI)

Thomsen (1986) parameters – ε , γ , δ – provide simple description of VTI anisotropy

Effects:

- Shear-wave splitting
- Shear wave sheets cross
- Shear wave triplications

Shale Seismic Anisotropy

Commonly known as vertical transverse isotropy (VTI)

Thomsen (1986) parameters – ε , γ , δ – provide simple description of VTI anisotropy

Effects:

- Shear-wave splitting
- Shear wave sheets cross
- Shear wave triplications

Shale Seismic Anisotropy

Commonly known as vertical transverse isotropy (VTI)

Thomsen (1986) parameters – ε , γ , δ – provide simple description of VTI anisotropy

Effects:

- Shear-wave splitting
- Shear wave sheets cross
- Shear wave triplications

Microseismic dataset

- 92,571 events from 119 stages along 10 horizontal wells
- Recorded by 96 3C geophones in three downhole arrays
- 1D velocity model built assuming elliptical anisotropy
 - Provides estimates of ϵ and γ
 - Geophones located primarily in thick, strongly anisotropic layer above target layers

Shear-wave splitting results

Shear-wave splitting results

Smoothed splitting results

Smoothed splitting results

SV Synthetics Maslov asymptotic theory

SV Synthetics Maslov asymptotic theory

SV Synthetics Maslov asymptotic theory

Sources of anisotropy: Mineralogy

- Most geophones are in the overlying clay rich layers
- Preferred alignment of clay minerals can produce anisotropy

- Theoretical model of Sayers (2005)
- ODF described by two coefficients: W₂₀₀ (contours) and W₄₀₀ (colour)
- Assumptions:
 - VTI rock and TI clay platelets
 - Quartz randomly oriented (isotropic)

- Theoretical model of Sayers (2005)
- ODF described by two coefficients: W₂₀₀ (contours) and W₄₀₀ (colour)
- Assumptions:
 - VTI rock and TI clay platelets
 - Quartz randomly oriented (isotropic)

- Theoretical model of Sayers (2005)
- ODF described by two coefficients: W₂₀₀ (contours) and W₄₀₀ (colour)
- Assumptions:
 - VTI rock and TI clay platelets
 - Quartz randomly oriented (isotropic)

- Theoretical model of Sayers (2005)
- ODF described by two coefficients: W₂₀₀ (contours) and W₄₀₀ (colour)
- Assumptions:
 - VTI rock and TI clay platelets
 - Quartz randomly oriented (isotropic)

- Theoretical model of Sayers (2005)
- ODF described by two coefficients: W₂₀₀ (contours) and W₄₀₀ (colour)
- Assumptions:
 - VTI rock and TI clay platelets
 - Quartz randomly oriented (isotropic)

- Theoretical model of Sayers (2005)
- ODF described by two coefficients: W₂₀₀ (contours) and W₄₀₀ (colour)
- Assumptions:
 - VTI rock and TI clay platelets
 - Quartz randomly oriented (isotropic)

Normal compliance

Effect of additional compliance from cracks/grain boundary contacts

Z_N: 0.010 Z_T: 0.010

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2

0.4

0.6

ε

0.8

 \succ

Grain boundaries must have low normal compliance

Tangential compliance

Conclusions

- Estimated SWS from microseismic events in a shale reservoir and interpreted anisotropy in terms of fabric and fractures
- Strong VTI anisotropy with evidence for:
 - Overprint of NE striking fracture induced anisotropy
 - SH-SV wavefront crossover
 - SV wavefront folding (triplication)
- Aligned phyllosilicates can explain magnitude of anisotropy
- Horizontal micro-cracks or grain boundaries must have low normal compliance
- Future work: obtain a sample of shale to better quantify mineralogy and texture

Acknowledgments

BRISTOL UNIVERSITY MICROSEISMICITY PROJECTS BUMPS

